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When making measurements, scientists attempt to change one variable while holding 
all other independent variables fixed, a process that is mathematically modeled as a 
partial derivative. This project aims to characterize experts’ and students’ disciplinary 
understandings of partial derivatives across STEM subjects. We have developed an 
expanded framework of the concept image of derivative to include “thick derivatives” 
and classroom activities to move students toward a more robust understanding of 
derivatives. We continue to test these materials and explore students’ initial and 
ongoing understandings of partial derivatives. This project will provide classroom-tested 
curricular materials and associated instructor resources to the education community that 
will support learning trajectories in multiple STEM disciplines. 
 
Introduction: 
 
A common feature across STEM disciplines is that we are interested in studying 
change, whether we are studying how changing a design parameter affects a device, 
how changes in temperature affect a measurement, or how pressure changes when we 
adiabatically compress a gas. Indeed, the nature of scientific measurement is to control 
all independent parameters of an experiment except for the one parameter being 
studied—which itself is being changed. Mathematically, we express the concept of 
changing one parameter while fixing others by using partial derivatives. However, how 
we use partial derivatives, and how we talk about partial derivatives varies dramatically 
across STEM disciplines. We have found that many students—even those with a strong 
mathematics background—find partial derivatives particularly difficult. This raises the 
question of how we can best prepare students to use partial derivatives in their fields. 
 
Goals: 
 
Our current grant continues the joint work of two very successful projects: The 
Paradigms in Physics Project1,2, begun in 1997, and the Vector Calculus Bridge 
Project3, begun in 2001. Written materials produced by these projects include more than 
250 group activities and class notes for 20 separate courses. 
 
The major goals of this phase of the project are to: 

• Explore how experts use and represent change; 
• Move students toward a robust understanding of the quantification of change; 
• Develop and test curricular materials for middle-division math and physics 

courses; 
• Establish students' initial and ongoing levels of understanding as they progress 

through these materials; 
• Make these materials freely available online. 

 



Approach: 
 
A theoretical appreciation of representations is helpful in understanding how students 
interpret, use, and move between different representations. We draw on the perspective 
of distributed cognition4, which provides an account for the role of external entities 
(including tools, other people, and representations) in cognition.  As a part of this 
project, we are also studying the representations used to work with partial derivatives 
across the STEM disciplines, and will use these results to analyze and construct 
learning trajectories for students, as they progress from novice to expert throughout 
their university career. 
 
Outcomes: 
 
How experts use and represent change: In the process of interviewing professional 
mathematicians, physicists, and engineers, we have identified shortcomings that arise 
when applying Zandieh's framework5 beyond the level of first-year calculus, and in 
particular outside the field of mathematics.  We have found that the concept image for 
the derivative of physicists and engineers contains substantial elements that are 
congruent with the three process-object layers identified by Zandieh, but lead to the 
introduction of new contexts and representations that could also be productive in the 
instruction of calculus.  
 
Physicists and engineers live and work in a world full of uncertainty, and are 
accustomed to use the language of equality where there is actually approximation.  This 
language reflects a somewhat “thicker” concept of the derivative than that held by 
mathematicians.  Where a mathematician would speak of the slope of the secant line as 
an approximation for the derivative, a physicist or engineer might say that the slope of a 
line drawn between two thoughtfully chosen measurements of a physical observable is 
the derivative (with some unspecified uncertainty).  As we will explain, this “thickness” 
derives from the impossibility of achieving exact results in experimental or numerical 
contexts.  Attempts to estimate a derivative over too small an interval, for example, 
could result in a highly erroneous estimate of a derivative due to numerical round-off 
error or limitations in experimental precision. 
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Figure 1: Our extended framework for the concept of the derivative.  
 
We have extended the framework of Zandieh (2000) in several ways (see Figure 1): we 
have elaborated on the physical representation of the derivative; we have added a 
numerical representation of the derivative; and we have added space in the framework 
for the set of rules for finding symbolic derivatives.  Each of these changes reflects an 
expansion of the table to incorporate additional answers to the prompt, “find the 
derivative.” By making use of the numerical representation of the derivative, one can 
answer the prompt numerically. Similarly, if the derivative is situated in a physical 
context, one can respond with a measurement process. Both of these responses 
require a conceptual understanding of the derivative in terms of ratio, limit and function, 
and involve a certain “thickness” in the derivative. In contrast, as pointed out by 
Zandieh, the instrumental-understanding approach to “find the derivative” using the 
rules for symbolic derivatives does not require a conceptual understanding of the 
derivative. 
 
The notion of "thick" derivative has been introduced in order to address the idea of 
numerical or experimental data that is approximate but "good enough".  Our extended 
framework has appeared in refereed papers for both the mathematics and physics 
communities and been presented at several conferences and colloquia.  In addition, 



Michelle Zandieh's5 framework for describing student concept images of the derivative 
has been extended to partial derivatives6,7.  
 
We have also examined how experts use partial derivatives in solving thermodynamics 
problems and have identified several epistemic games experts play while manipulating 
partial derivatives.8 
 
Moving students toward a robust quantification of change: We are continuing to 
design and classroom test our learning trajectories and classroom materials in physics 
and mathematics courses.  
 
In particular, a significant innovation has been the development of the Partial 
Derivatives Machine (PDM)9,10. The PDM was designed with the goal of introducing 
partial derivatives in a physical context that is familiar to students through a mechanical 
analogue of a thermodynamic system.  
 

 
Figure 2: Picture of a Partial Derivatives Machine with parts labeled. 
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The PDM (Figure 2) consists of a spring system that can be stretched via strings under 
tension from weights. In order to more easily measure the stretching of the system, a 
measuring tape is placed on the board parallel to each string and flags are added to the 
strings. Therefore, four variables may be measured: the weights on each of the two 
overhanging strings (F1 and F2) and the two positions of the flags on the strings (x1 and 
x2).  
 
Several activities with the PDM have been developed and deployed in classes to help 
students develop more functional and robust understandings of partial derivatives. For 
example, the thermodynamics course is the first time that our students encounter 
scenarios in which the quantities held fixed when taking a partial derivative are 
ambiguous. In mathematics courses, students are taught that when taking partial 
derivatives, all the independent variables are held fixed, or at least all variables are able 
to be systematically varied and held constant. Nevertheless, through experience in the 
classroom we have found that most students come into our course with a firm belief that 
when taking a partial derivative everything else is held fixed. An activity that addresses 
this issue is asking the students to use the PDM to measure 9/:

9;<:
. The students have to 

consider two possible options: 9/:
9;<: /=

and 9/:
9;<: ;=

. The values of these two derivatives 

are, in principle, different and different procedures are required to measure them. The 
instructor asks students to consider if this activity is consistent with or contradicts the 
idea that one takes a partial derivative while holding “everything else” constant.  
 
We have developed sets of activities in physics and mathematics courses to help 
students develop deep conceptual understandings of partial derivatives11. While the 
PDM is useful in thermodynamics courses, we find physical models of 2D functions as 
“surfaces” to be more useful in multivariable calculus. We have begun an active 
collaboration with researchers from the “Raising Calculus to the Surface” project (NSF 
1246094) to develop additional derivatives activities. 
 
Establishing students initial and ongoing levels of understanding: We are working 
on characterizing how students’ ways of thinking about partial derivatives develop within 
multivariable calculus and middle-division physics. Data sources for this research 
include a combination of individual, semi-structured interviews, classroom video, and 
assessments of students in both courses. Characterization of how their thinking about 
partial derivatives develops will allow us to revise the initial learning trajectories and 
curricular materials in the vein of a design experiment.  
 
Broader Impacts: 
 
This project will directly impact mathematics and physics education at the middle-
division undergraduate level by providing classroom-tested curricular materials and 
associated instructor resources to the education community through existing, proven 
online resources (an activities wiki and textbook).  Mathematics materials will support 
learning trajectories in multiple STEM disciplines, not just mathematics and physics.  



The addition of the new materials will make the existing resources easier to adopt by 
providing more complete coverage, in line with most common course structures. 
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