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Abstract. Operators play a central role in the formalism of quantum mechanics. In particular, operators corresponding to 
observables encode important information about the results of quantum measurements. We interviewed upper-level 
undergraduate physics majors about their understanding of the role of operators in quantum measurements. Previous 
studies have shown that many students think of measurements on quantum systems as being deterministic and that 
measurements mathematically correspond to operators acting on the initial quantum state. This study is consistent with 
and expands on those results. We report on how two students make sense of a quantum measurement problem involving 
sequential measurements and the role that the eigenvalue equation plays in this sense-making. 
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INTRODUCTION 

Previous research in students’ understanding of 
quantum mechanics found that some students interpret 
the mathematics of an operator of an observable acting 
on wavefunctions as being a representation of making 
a quantum measurement of that observable1-4. 
Although this interpretation is ultimately incorrect, it 
is easy to imagine how students might come to this 
misunderstanding. Eigenvalue equations are used in 
quantum mechanics to determine the eigenvalues 
(possible values of measurements) and eigenstates 
(possible states after a measurement is made). 
Additionally, it is common for students to over 
generalize eigenvalue equations and think that they 
hold for all states and are not limited to eigenstates1.  
In mathematics, operators transform vectors; in 
physics, measurements change the state of a quantum 
system; but these are two different uses of the idea “to 
change.” In order to calculate the state of particle after 
a measurement has been made, one can use a 
projection operator made up of a superposition of 
outerproducts of eigenstates that correspond to the 
eigenvalue that is measured. However, this projection 
operator is not the same thing as the Hermitian 
operator corresponding to the observable quantity. 

In this study, we describe two approaches to 
thinking about quantum measurements. We give rich 
descriptions of problem-solving interviews with two 
upper-level physics students. We explore how these 
students make sense of quantum measurements and 
how the eigenvalue equation plays a role in this sense-
making. 

METHODS 

Semi-structured clinical interviews were conducted 
with fourteen juniors at Oregon State University in the 
spring of 2011.  Students were asked to reflect on their 
experiences in their quantum courses, describe how 
they would explain to a friend or roommate what an 
operator is and how it is used in quantum mechanics, 
think aloud while solving a problem related to 
sequential measurements on identically prepared 
hydrogen atoms, and consider seven statements about 
operators and quantum measurement and discuss 
whether they agree with these statements. The students 
were instructed to talk aloud during problem solving 
and while considering the Agree/Disagree statements. 
Students wrote on tabletop whiteboards and were 
video and audio recorded. Of these interviews, two 
students were purposefully selected for detailed 
analysis to illustrate different approaches to this issue 
of measurement. Ann was selected as an example of a 
student who uses a correct approach, while Billy was 
selected as an interesting example of a student who is 
trying to make sense of using an incorrect approach. 

All of the students interviewed had recently taken 
the quantum Paradigms5,6. These courses take a “spins 
first” approach to quantum mechanics and introduce 
the formalism of quantum mechanics in the context of 
a simulation of Stern-Gerlach experiments. The 
interviews occurred four weeks after the completion of 
the third, winter term, Central Forces Paradigm.  

The students were asked to consider the following 
Sequential Hydrogen Measurement problem - Imagine 
you have a collection of hydrogen atoms identically 
prepared in the state: 
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and perform the following sequence of experiments:  
measure zL , measure 2L , and measure zL .  

What state do you expect the particles to be in 
immediately after the last measurement? How would 
your answer change for the sequence of experiments:  
measure 2L , measure zL , and measure 2L ? 

The Agree/Disagree Statements include: (Operator 

as Measurement) “When an operator Â  corresponding 
to an observable A  acts on a wavefunction  , it 
corresponds to a measurement of that observable”;  

(Operator Is Not a Measurement) “ Â  acting on   is 
not a statement about the measurement of A ”; (Psi 

prime) “When an operator Â  corresponding to an 
observable A  acts on a wavefunction  , it 
corresponds to a measurement of that observable” 

NARRATIVES 

Ann 

Ann starts by describing operators as something 
that transforms functions or matrices. “an operator is 
something that, just like a function is sort of a box that 
you know you take numbers in and spit numbers out, 
an operator is something that you take functions or 
matrices in and spit functions or matrices back out… 
in essence it's, it operates on things.”  

When asked to give examples of computations 
where she had to use an operator, she mentions the 
energy eigenvalue equations, using rotation matrices, 
and coordinate transformations.  

She starts the Sequential Hydrogen Measurement 
problem by describing a general procedure she would 
go through to address the problem. “So, um what 
happens to each of them as they move through the 
measuring device is that the state of the particle gets 
projected onto whatever state it is you measure. And 
so, say that you're measuring zL , and you measure it in 

a particular state. Then what you're doing is taking this 
initial state and using these projection operators and 
having those act on the ket so that what you get out in 
the end is basically a rescaled, the components of the 
initial one that corresponds to whatever it is that you 
study. And so you're going to repeat that process with 

2L and zL again. And so what you get out in the end, 

you have to add all of those different operators that 
you do on the state in order to get the final one out. So 
then, what state you expect to be in after the last 
measurement? I would expect them to be in the state 
of whatever z , whatever z -component of the angular 
momentum that I measured.” 

She seems to anchor her discussion on her 
understanding that the particle’s state after a 
measurement is the result of a projection of its initial 
state onto the states (eigenstates) that correspond to the 
value that is measured. In this discussion, she 
specifically mentions projection operators as providing 
the relevant transformation of the state. 

The interviewer then prompts her to do the 
computation. After she picks up her pen, she says 
she’s going to project the initial state and then she 
asks, “Do I know what...the results of the 
measurement, like Lz are, for instance?” The 
interviewer asks what possible results she might 
expect, and she turns her attention to the quantum 
numbers in the kets. After she identifies that the 
m quantum number could be 0 or 1, she talks about 
creating a projection operator by taking an outer 
product of kets, but her kets are empty. She then says 
that in this case, it’s easier to do a scalar product 
between the eigenstates and the initial state and then 
rescale, but she still needs to know what value of Lz 
was measured. The interviewer picks m=0 and Ann 
performs the computation. She has some minor 
difficulty rescaling the resulting state. Then the 
interviewer asks her about the case when m=1, the 
degenerate case. Here, she uses a similar strategy of 
selecting the eigenstates that correspond to m=1 
(without using a projection operator), and she is 
careful to maintain the relative probabilities of the two 
terms that remain. 

She repeats the same procedure with the second L2 

and the last Lz measurement. For the L2 measurement, 
she again asks for information about which of the 
possible values of l she would measure, and she does 
not correctly remember the eigenvalues of L2.  

When asked if the final state of the particle at the 
end of the sequence would be the same if the order of 
the measurements were reversed, she explains that 
even if the order were the same, the end state could be 
different if different values of Lz were measured. “Um, 
not necessarily because what I could have done, for 
instance is measured different Lz at the beginning, 
right, like, so I'm assuming I do these measurements 
and they have the possibility of getting different 
results, right. So if I had done the say the Lz 
measurement and gotten a different result then I would 
have picked out a different component of this initial 
wavefunction and so I might not have ended up with 
the same thing.” Again, here she anchors her 
discussion on the fact that the measurement could 
result in different values for the angular momentum. 

Ann disagrees with the Operator as Measurement 
Statement. “I guess not exactly, because if you want to 
measure, say, the energy of a state you have to act on 
an eigenfunction of that state in order to get your 
energy back out. (Here she is equating “measurement” 



 

 

with getting a particular number out of a calculation.) 
What you can do is get an expectation value, for 
instance, by having the bra of the, so do something 

like Ĥ  . So there you can get back out an 

expectation value for your measurement. But just 
having this act doesn't necessarily get you an energy. 
This act gets you an energy times each component that 
you then have to deal with.” Here, Ann takes issue 
with the fact that Ψ is not an eigenstate. She 
understands that when the operator acts on a 
wavefunction, each eigenfunction in the expansion of 
the wavefunction gets multiplied by an eigenvalue. 
Here, she talks about a similar computation - 
calculating an expectation value - and distinguishes 
between the expectation value computation with 
having the operator act on the wavefunction.  

Similarly, Ann agrees with the Operator Not A 
Measurement statement. “The only thing you can get 
information out of, really, is the operator acting on 
each of the different components, as long as you have 
it written in the same basis so that you actually pull 
something out of this operator acting on Ψ.” Her 
reasoning here is anchored on her understanding that 
the operator acts differently on each component of the 
eigenfunction expansion and doesn’t pick out one of 
the possible values that could be measured. 

Billy 

From the beginning, Billy describes operators as 
acting on states and equates the operator with the 
measurement apparatus. “Um, I would say an operator 
is what acts - so mathematically, an operator is what 
acts on some state, on some eigenvector… So, kinda 
like the Stern-Gerlach experiment, where you have a 
spin up and then you send it through some operator 
(emphasis added), either some mixed state or not, then 
you see what comes out of that operator, or out of that, 
basically out of that projection.” He mentions 
projections several times in his opening statements, 
and it’s clear that he understands measurements to be 
closely associated with projections, but he does not 
make any clear distinction between projection 
operators and operators which represent observables. 
Projection operators are among the first operators he 
mentions as examples he’s used in quantum 
mechanics, and using a projection operator is the first 
example he gives of a computation in quantum 
mechanics that involves operators.  The first thing he 
chooses to write on the board is a correct mathematical 
expression for the projection that happens when the 
wave function collapses (Figure 1). 

When Billy begins thinking about the Sequential 
Hydrogen Measurement problem, the first thing he 
wants to do is to see what the Lz operator does to the 

initial state. “So, I would do, I'd first see how Lz acts 
on  . And then you'd get some new state, essentially, 
and I think this is /i d  . And, then, I guess the 
way I'd first do it, because I'm not exactly sure how it 
looks in just ket notation, is I'd do the long route, when 
you actually have to do the derivatives of the 
continuous form. From there you get some state.” He 
confirms that the   he is talking about is the initial 
state of the particle. He writes an equation on his board 
that indicates Lz acting on  yields a new state,  . 
Then, Billy takes this new state and lets L2 act on it to 
yield a second new state,  . Finally, he lets Lz act on 
  to yield f . He describes this sequence of 

operations as the sequence of measurements. He is 
unable to proceed with his calculation until the 
interviewer reminds him of the eigenstates and 
eigenvalues of Lz. He then performs the calculation, 
carrying the eigenvalues through each transformation 
so that he ends up with an ħ4 in his final state. “And 
from here, we just get more ħ’s. Something's weird. 
Well, I mean, granted we never actually did like, oh, 
do it, you know, go one after the other in our actual 
courses, but I'm not used to seeing ħ4 kind of thing.” 
He’s troubled by these factors in his final state and 
comments that while this seems unfamiliar, it may just 
be unfamiliar because he doesn’t remember having 
done a sequential measurement calculation like this. 

 

FIGURE 1.  Billy’s general expression for using a 
projection operator. 

Interestingly, when asked what the state of the 
particle would be after the first Lz measurement, he 
says that the state would be your m value times ħ times 
your state back. This appears to be consistent, in his 
mind, with the computation he just performed by 
having the Lz operator act on the initial state Ψ. This is 
interesting because he seems to be thinking that the 
initial state is an eigenstate of the operator, even 
though he recognizes it as a superposition of 
eigenstates with different eigenvalues. Also, this 
answer is problematic because this new state includes 
dimensions from the mħ eigenvalue. Billy indicates 
that in the initial state, “the m is 1, 0, and 1 and so you 
just get ħΨ back.” When the interviewer asks what 
happens to the m=0, and Billy says, “Mathematically, 
it's zero, if we just use the definition. But now I'm 
thinking it seems like it'd be weird if it was, um, if you 
could have another state that was not one, but so you'd 
have like, ah, you know 1ħ, 1ħ, with, I don't know, I 



 

 

don't know if it's, I don't know if 3, 2, 2 is actually 
allowed or if it's prohibited. I think it is. Then you'd 
have 2ħ. And that seems kind of wild, because it 
seems like your angular momentum should be a 
discrete value.” Billy doesn’t resolve this issue in the 
interview. In this discussion, Billy seems to be 
thinking that his calculation is deterministic - having 
the operator act on the state should indicate which 
eigenvalue is going to be measured. When he imagines 
a different case that would result in different (non-
zero) eigenvalues showing up in different terms, Billy 
seems troubled by this. Later in the interview, he 
makes statements about the operator acting on Ψ not 
indicating the value that would be measured.  

Billy tentatively disagrees with the Operator Is Not 
a Measurement Statement. “I would say that is False 
(rising intonation) - it may not, it's not going to give 
you an observable, necessarily, but when you measure 
something you are acting on it. Whenever you do an 
experiment you act on that state which changes the 
state, which is why quantum mechanics is weird. I 
would say this is false, but, you don't get any, like ah, 
the energy value or your eigen...or angular momentum 
value.” Here, Billy anchors his reasoning on the fact 
that, when a measurement is made, the state changes 
(i.e. the wave function collapses) which Billy conflates 
with the mathematical change induced by an operator - 
“you’re acting on it”. He also states that “it”, the 
operator acting on Ψ, is not going to yield an 
eigenvalue, which he refers to as an “observable”.  

When considering another statement “The operator 

Â  acting on the wavefunction  is: Â    ”, Billy 
interprets this as saying, “To me it's saying that like if 
you have Lz and you operate on to your state vector, 
your given state vector, for instance Lz is the operator, 
then you'd get whatever that Lz pulls out, which is 
some eigenvalue times that state back. So 
actually…and I guess the way I'm interpreting the   
is that, it's really the same state but with some new 
constants in front now. Although, in good old linear 
algebra that would, that could drastically, you wouldn't 
necessarily just get that back. Like I, the way we've 
been viewing these is just the eigenvalue equation. 
That's how we've always been, that's how we've been 
interpreting all, whenever we do operator acting on 
some wave function or a state vector. So, how we, the 
way that looks, you just get, you have your state and 
the states remain the same but now you have an 
eigenvalue multiplied by your state. So I would say, 
it's not like, it's not like your whole state is drastically 
changed but now there's just some scalar multiple of 
that state...” This discussion reveals that the 
eigenvalue equation is now central in Billy’s reasoning 
about measurements. As soon as he mentions that it’s 
the same state with constants out in front, he starts to 

consider whether that really is the same state.  He 
refers to "good old linear algebra," trying to think what 
pure math is telling him and realizes that the change 
could be "drastic".  Then he reverts to thinking about 
the interpretation of the eigenvalue equation.  He is 
struggling in his own mind with how much the state 
has changed. By this point in the interview, his early 
references to projections have essentially disappeared 
and Billy is focused on justifying his eigenvalue 
equation reasoning that the operator does represent the 
experiment.  One of his last and most emphatic 
statements in the interview is:  “And I would say that 
when you operate on some wavefunction, then you are 
"measuring" (makes air quotations) and you get some 
observable out.” 

DISCUSSION 

In order to make sense of quantum mechanics and 
make sensible computations, students must understand 
the role of operators and eigenvalue equations. 
Students must also coordinate unfamiliar language, 
symbols, procedural knowledge and conceptual 
knowledge. In these two interviews, we see students 
struggling to express themselves verbally and 
mathematically. Ann, who uses operators correctly in 
the context of quantum measurements, at least once 
uses language that doing a measurement requires the 
operator to “act” on a state. Billy uses the term 
“observable” to mean “a value of a measurement”, and 
in several interviews we noticed this non-standard use 
of terminology. It is common for textbooks to say that 
observables are represented by operators. Here we see 
Billy (and to a lesser extent Ann) trying to negotiate 
the extent of this correspondence. The role of the 
eigenvalue equation seems to add to this confusion. 
Billy’s attempts to make sense of the interview task 
include referring to his understanding of linear algebra 
and his experiences with the familiar spin-½ system. 
Instructional approaches should attend to making these 
potential sensemaking resources more effective. 
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