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Abstract. Research has shown that students struggle to understand the use of partial derivatives in thermodynamics. We
have designed an apparatus, which we have called a Partial Derivative Machine, that serves as a mechanical analogue of a
thermodynamic system. Using this device, students have a tangible way to wrestle with issues related to partial derivatives
and thermodynamics, such as which variables are held fixed, how many variables are independent, and how energy can be
added to a system. In this paper, we present a description of the apparatus, an introduction to the associated activities, and an
overview of how this apparatus can be connected to thermodynamic systems.
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MOTIVATION

Students often struggle with thermodynamics at least in
part due to the unfamiliarity and complexity of partial
derivatives [1–6]. Despite the development of new repre-
sentations and activities designed to help students mas-
ter the use of partial derivatives, they continue to strug-
gle when faced with unfamiliar mathematical manipula-
tions with new physical quantities such as entropy. Addi-
tionally, students have been taught in their mathematics
courses, and sometimes in earlier physics courses, that
when taking a partial derivative, “everything else” is held
constant — an operational definition that is particularly
problematic in thermodynamics.

During the 2012-2013 academic year, we designed an
apparatus, which we have called a Partial Derivative Ma-
chine (PDM), with the goal of introducing partial deriva-
tives in a physical context that is familiar to students
through a mechanical analogue of a thermodynamic sys-
tem. This apparatus, along with the activities described
in this paper, represent a small piece of an extensive re-
design of Energy and Entropy, which is the thermody-
namics portion of the Paradigms in Physics sequence at
Oregon State University [7]. The Paradigms in Physics
Project is an on-going and comprehensive reform of the
upper-division physics curriculum [8, 9]. Most of the
changes to Energy and Entropy have involved the devel-
opment of activities and sequences designed to provide
more physical significance to thermodynamics through
concrete examples. In particular, we view kinesthetic ex-
periences and experiments (both laboratory and thought)
as valuable representations for students to experience
[6, 10]. Descriptions of some of these activities can be
found in other recent publications [6, 11, 12]. The PDM
is the most recent example of this kind of reform and was
designed for use in the Interlude, a one week session (7
contact hours) at the beginning of Energy and Entropy

FIGURE 1. The PDM, (A/B) Corners with only knob, (C/D)
Corners with pulley and knob, (E) Measuring Flag.

that covers mathematical techniques relevant to thermo-
dynamics [7]. The Partial Derivative Machine was first
used in the Spring 2013 Interlude, a class of roughly 30
students.

THE PARTIAL DERIVATIVE MACHINE

The Partial Derivative Machine is an apparatus consist-
ing of a central spring system that can be stretched
via four strings extending outward from the center (See
Fig. 1). Alternative central systems can be used for this
activity including a loop of string, a piece of spandex,
and other combinations of springs (see Fig. 2). This cen-
tral system is on a large piece of particle board which
features a pulley on two adjacent corners (Corners C and



FIGURE 2. Example Central Systems: (A) Loop of String,
(B) Piece of Spandex, and (C) Spring System.

D in Fig. 1), and a knob on all four corners (See Fig. 3).
By tightening the knobs at A and B (See Fig. 1), one
can hold the system in place while adding weights to the
hanging strings, allowing one to manipulate the state of
the system.

In order to more easily measure the stretching of the
system, a measuring tape is placed on the board parallel
to each string and flags are added to the strings (Example
labeled E in Fig. 1). By labeling the axis from corner B
to corner D as the “X-axis” and the axis from corner A
to corner C as the “Y-axis” the instructor is able to define
four quantities for this experiment:

1. x, the distance between the flags on the X strings
2. y, the distance between the flags on the Y strings
3. Fx, the tension in the X oriented strings
4. Fy, the tension in the Y oriented strings

There are two conditions under which the system can
be manipulated. The first method involves tightening the
knob on corner C or D to pin a third string, thereby fixing
x or y, and then increasing the mass on the freely hanging
string. For example, pinning the knob at C would fix y,
then adding weight to the X string would increase x, Fx,
and Fy.

Alternatively, one can leave both the X and Y strings
free and add weights to one or both. In doing so, placing
weight on a string causes the system to stretch in one
direction while compressing in the other direction as the
system balances the forces. For example, adding weight
to the X string would cause x and Fx to increase while Fy
stays constant and y decreases.

It is important to note that as weights are added it is
not uncommon for the system to shift from its centered
position. In order to keep Fx and Fy orthogonal as the
system is shifted, students are told to temporarily loosen
knobs at A and B to recenter the system between mea-
surements. If done correctly, this action is only a transla-
tion of the system. Thus it does not result in stretching or

FIGURE 3. Corner with Pulley and Knob (C/D in Fig. 1).

compressing the system and does not impact any of the
measurements students are instructed to make.

PLAYING WITH THE MACHINE

When first introduced to the Partial Derivative Machines,
the central system was hidden from students through
the use of a “black box” (See Fig. 4). With only the
knowledge that there were four strings extending from
this box, students were asked to determine:

• The properties of the system that can be controlled.
• The properties of the system that can be measured.
• The number of independent properties of the sys-

tem.

Students worked briefly in groups of 3 students to answer
this prompt and then were brought back together for a
class discussion. During the wrap-up discussion, students
listed a number of controllable properties including the
position of the central system relative to the center of the
board, the forces applied to the system, and the amount
the system was stretched in either direction. Students
decided it was possible to measure x and y by taking
values for the positions of the flags, and to measure Fx
and Fy by noting the mass hung from the relevant string.

Many students did not realize however that the tension
in a particular string is not equivalent to the weight hung
from that string if the corresponding knob is locked since
the mass becomes irrelevant when the string is pinned
down. Most students also determined that only two of
these properties could be controlled independently and
that manipulating a pair of parameters caused a respon-
sive change in the other parameters.

FINDING A SIMPLE DERIVATIVE

Once students were familiar with the machine, they were
asked in a second exercise to find ∂x

∂Fx
and had to con-



FIGURE 4. PDM with “Black Box” included.

sider that there were two possible options:
(

∂x
∂Fx

)
y

and(
∂x
∂Fx

)
Fy

. As an introduction, the instructor defined the

concept of stretchability as it relates to the system and
distinguished between the “isowidth” (constant y) and
“isoforce” (constant Fy) stretchabilities.

After collecting data sets, plotting results, and calcu-
lating numerical values for both quantities students were
asked to present their results to the class. The focus of
the presentation was not to provide the class with numer-
ical values, but to explain the techniques used to both
measure and calculate the necessary information. The ap-
proach of some groups was to take a few measurements
of the form (Fx,x) and approximate the derivative with
the quantity ∆x

∆Fx
. Other groups chose instead to plot x as

a function of Fx.
Due to the different systems under the black boxes,

the numerical values for the “isowidth” stretchability
and “isoforce” stretchability varied widely from group
to group. The relationship between x and Fx also varied
from system to system — some groups found a linear
relationship while others found that the plot was clearly
nonlinear.

After these presentations and discussion of the results,
students removed the “black box” to see the central sys-
tems. Students then walked around the classroom observ-
ing other groups’ systems to see how each apparatus was
different. This allowed for discussion of why particular
systems behaved as they did and why particular variables
were dependent or independent of each other for each
system.

These observations were followed by a whole-class
discussion. The instructor asked students to consider if
this activity was consistent with or contradicted the idea
that one takes a partial derivative while holding “every-
thing else” constant. Next, the class revisited the number
of independent variables and which could be set simulta-

neously.
It was not obvious to some students that y and Fy were

relevant quantities when changing x and Fx. To address
this concern the instructor conducted a demonstration
making use of the piece of spandex (B in Fig. 2). Having
one student grab a pair of opposite handles and hold them
a fixed distance apart, a second student was instructed to
stretch the spandex in the other direction, which simu-
lated measuring

(
∂x
∂Fx

)
y
. It then became abundantly clear

to the first student that in order to maintain a constant y it
was necessary for Fy to increase as Fx increased. We have
repeatedly found that the kinesthetic effect of feeling the
force increase in this demonstration helps people notice
that the force and displacement in the two directions are
coupled.

INTEGRATED LAB

As a preface to a major activity associated with the Par-
tial Derivative Machines, students were given a review
lecture on:

• Calculating changes in potential energy, ∆U , as the
work, W , done on the system

• Finding potential energy of stretched springs
• Work as the integral of force, W =

∫
Fdx

After this review they proceeded to conduct a laboratory
experiment. The primary task was to measure the po-
tential energy stored in the spring system of the Partial
Derivative Machine, however a process to determine this
function was not explicitly given. The review of work,
potential energy, and springs prior to data collection was
designed to help students make the connection that the
potential energy could be obtained from the work done
on the system. Since the system was now two dimen-
sional, using W =

∫
~F ·d~r required finding the work done

on the system in both the X and Y directions.
One possible solution method that determines all nec-

essary information is:

1. Starting at a particular x = xo, where ∆x = 0, take
measurements of y while changing Fy in uniform
steps, e.g., 0.05kg×9.81m/s2.

2. Set subsequent x values by loosening knob D, incre-
menting Fx by small uniform steps, and then tight-
ening knob D.

3. Repeat step 1 for each new fixed x value.
4. Using the data and numerical integration of Fx dx

and Fy dy, approximate the value of U(x,y).

This process gave students the data needed to get from
any state (x1,y1) to a different state (x2,y2), provided
each corresponded to a state generated during the steps



outlined above. To verify path independence one would
need to conduct a similar process, now measuring x
for fixed y values while varying Fx (changing Fx and
Fy by the same increments used above). This lab also
provided students practice distinguishing between fixed
y and fixed Fy processes and the relevance of each to
particular measurements.

CONNECTIONS TO
THERMODYNAMICS

The integrated lab was designed to allow students to
reach the conclusion that there are two ways to manipu-
late the potential energy of the system, each correspond-
ing to a particular force (Fx or Fy) and distance (x or y).
The students were able to see the pairing of these quan-
tities through the differential expression for work,

dU = Fxdx+Fydy (1)

which is a mechanical equivalent of the thermody-
namic identity, using conjugate pairs of forces and dis-
tances rather than the canonical thermodynamic conju-
gate pairs: temperature and entropy, pressure and vol-
ume.

The instructor then introduced the concept of the po-
tential energy of the system, U , as a state function deter-
mined by x and y, a function whose total differential is
given by:

dU =

(
∂U
∂x

)
y

dx+
(

∂U
∂y

)
x

dy (2)

From Eqs. 1 and 2 the instructor extracted definitions for
the forces as partial derivatives of the potential energy,
a result which should be familiar from both classical
mechanics and E & M.

Using these expressions for Fx and Fy students were

asked to express
(

∂Fx
∂y

)
x

and
(

∂Fy
∂x

)
y

as derivatives of

U. From these new derivative expressions, and Clairaut’s
theorem (the order of mixed partials does not matter),
students found a Maxwell Relation for their system that
they could experimentally verify.

During the remaining three contact hours of the Inter-
lude the instructor led students through additional math-
ematical techniques relevant to thermodynamics includ-
ing partial derivative manipulations, the cyclic chain rule,
and Legendre Transforms, using the physical parameters
of the PDM. These exercises allowed students to prac-
tice these math methods and understand their results in
the context of tangible experimental measurements.

CONCLUSION

We believe that the use of Partial Derivative Machines
will help to build student understanding of partial deriva-
tives by giving hands-on experiences that demonstrate
the physical significance of partial derivatives. By pre-
senting students with a mechanical exercise, students
are given an accessible introduction to the mathematical
techniques in thermodynamics that rely on the use of par-
tial derivatives. Starting from prior physics knowledge
and allowing students to explore the machine as we build
towards mathematical concepts allows for a clearer in-
troduction of the math before expecting students to work
with less tangible physical systems.

As part of our ongoing efforts to reform the Energy
and Entropy course, we plan to explore the affordances
and constraints of this device more fully. In particular, we
are interested in how the Partial Derivative Machine im-
pacts student reasoning and attitudes about partial deriva-
tives and thermodynamics and its effectiveness at getting
students to connect classical and thermodynamic sys-
tems.
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