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Motion observed in a rotating frame of reference is generally explained by invoking inertial forces.
While this approach simplifies some problems, there is often little physical insight into the motion,
in particular into the effects of the Coriolis force. To aid in the understanding of three-dimensional
inertial forces, motion on a rotating sphere is considered from the points of view of an inertial
observer and of an observer fixed on the sphere. The inertial observer observes the motion to be
along a great circle fixed in the inertial frame, in analogy with simple straight-line motion in the
two-dimensional case. This simple ‘‘straight-line’’ viewpoint of the inertial observer is reconciled
qualitatively and quantitatively with the view of the rotating observer that requires inertial forces in
order to account for the motion. Through a succession of simple examples, the Coriolis and
centrifugal effects are isolated and illustrated, as well as effects due to the curvilinear nature of
motion on a sphere. ©2000 American Association of Physics Teachers.
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I. INTRODUCTION

Observation of motion from a rotating frame of referen
introduces many curious features. Fundamentally, the ac
eration of the rotating observer causes motion that is w
behaved as viewed by an inertial observer to become
tinctly nonintuitive when viewed by the rotating observe
For example, particles upon which no forces act appear to
deflected from their straight line paths. The general appro
taken to account for this strange behavior is to introdu
inertial forces. These new ‘‘forces’’ then enter the equat
of motion in the rotating frame. While this approach is ve
powerful in some circumstances, the complexity of the v
tor cross products and of the resultant coupled differen
equations generally obscures physical insight into the m
tion. Upon introduction to inertial forces, students genera
spend more time grappling with the mathematics than un
standing the motion. The physical origin of the inertial forc
is generally only truly understood by viewing the motion
the inertial frame and then relating that to the noniner
view. This approach is common in the case of tw
dimensional motion on a frictionless turntable.1,2 In that ex-
ample, particles merely travel in straight lines as seen by
inertial observer. The complicated motion seen by the ro
ing observer is then just a transformation of the sim
straight-line inertial motion into the rotating reference fram
The simplicity of the geometry and of the frame transform
tion helps students focus on the motion rather than the m
ematics. Understanding of inertial forces in the tw
dimensional case is also aided by a wide variety of lect
demonstrations of turntable motion,3 as well as the simple
exercise of playing catch on a merry-go-round.4

Unfortunately, physical insight into three-dimensional i
ertial forces is harder to come by. There are few treatme
that compare the inertial and rotating viewpoints, and th
are no simple ways to demonstrate the effects of motion o
rotating sphere, either in the lecture hall or at the amusem
park. The most common examples of three-dimensional
ertial forces are provided by motion relative to our rotati
earth. Unfortunately, the small effects arising from the c
trifugal and Coriolis forces on earth are not generally par
the everyday experiences that we use to build up our ph
cal intuition. Effects upon the weather, ocean currents, riv
and projectile motion are well documented,4 but motion over
1097 Am. J. Phys.68 ~12!, December 2000 http://ojps.aip.or
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very long distances is required for discernible effects.
common pedagogical example of the Coriolis force is
rocket fired from the north pole, which, as shown in Fig.
flies south in the inertial frame but does not move east al
with the rotating earth, thus landing west of its intended t
get. While other examples of the utility of the inertial view
point in explaining Coriolis effects have appeared in t
literature,5–9 these examples typically emphasize a particu
aspect of the motion, and, like the example of Fig. 1, are
easily generalized.

The aim of this article is to provide simple explanations
three-dimensional inertial forces by considering how the
ertial motion is viewed in the rotating frame. A gener
framework is used to analyze motion on a rotating sph
from the point of view of an inertial observer and to sho
how that motion corresponds qualitatively and quantitativ
to the rotating-frame description that invokes inertial forc
We consider the idealized situation of motion on a frictio
less, rotating sphere. This ‘‘terrestrial ice hockey’’ examp
is a generalization of the two-dimensional frictionless tu
table, with the simple straight-line inertial motion replac
by motion along an inertial great circle. The simplicity o
great circle motion together with a judicious choice of initi
conditions permits us to isolate the different inertial forc
and provide simple qualitative explanations. We then pres
a quantitative comparison of the motion as viewed in the t
frames. While the use of great circles in the context of m
tion on a sphere may appear obvious, instances of such u
have been infrequent.10,11

II. ROTATING REFERENCE FRAMES

Consider two coordinate systems whose axes rotate
respect to one another and whose origins coincide. Ass
that one system is an inertial system and let the angular
locity of the rotating system with respect to the inertial sy
tem bev¢ . Considering the motion of a particle at positionr¢,
the relations between the velocities and accelerations as m
sured in the two coordinate systems are12

S dr¢

dt D
inertial

5S dr¢

dt D
rotating

1v¢ Ãr¢, ~1!
1097g/ajp/ © 2000 American Association of Physics Teachers
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S d2r¢

dt2 D
inertial

5S d2r¢

dt2 D
rotating

1v¢ Ã~v¢ Ãr¢!

12v¢ ÃS dr¢

dt D
rotating

1
dv¢

dt
Ãr¢. ~2!

The acceleration equation is known as Coriolis’ theorem a
was presented by Gaspard Gustave de Coriolis in 18
Hereafter, we ignore the last term to consider only syste
that rotate at a constant angular velocity. In the inertial s
tem, a particle of massm subject to a forceF¢ obeys New-
ton’s equation of motion:

mS d2r¢

dt2 D
inertial

5F¢ . ~3!

Substitution of Eq.~2! into Eq. ~3! leads to the equation o
motion in the rotating frame:

mS d2r¢

dt2 D
rotating

5F¢2mv¢ Ã~v¢ Ãr¢!22mv¢ ÃS dr¢

dt D
rotating

.

~4!

The rotating observer thus postulates two new forces to
plain the motion of the particle. These new forces go b
variety of names: ‘‘inertial’’ forces, because they repres
the inertia of the body; ‘‘noninertial’’ forces, because th
arise from being in a noninertial frame; or ‘‘fictitious’’ o
‘‘pseudo’’ forces, because they are artifacts of being in
noninertial reference frame. The first new term on the rig
hand side of Eq.~4! is called the centrifugal force,

F¢ cent52mv¢ Ã~v¢ Ãr¢!, ~5!

and points away from the axis of rotation. The second n
term on the right-hand side of Eq.~4! is called the Coriolis
force and is often written as

F¢ Cor522mv¢ Ãv¢r , ~6!

wherev¢r is the velocity relative to the rotating system. Th
Coriolis force causes deflection perpendicular to the mo
in the rotating frame.

These new forces allow one to solve for the motion o
particle in a rotating frame without any reference to the m

Fig. 1. A rocket launched along the prime meridian from the North P
continues south~the medium thickness solid line! along a meridian fixed in
the inertial frame. The intended earthbound route~the dashed line! moves
east with the earth, and the rotating observer sees the rocket follow a cu
path ~the thickest solid line! that deflects to the right of the intended path
1098 Am. J. Phys., Vol. 68, No. 12, December 2000
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tion in an inertial frame. While this is a convenient and po
erful technique, the physical basis for the inertial forces
often masked by such an approach. Our approach is thu
describe the motion in both frames and show how the co
spondence between the two can help to understand the
tial forces.

III. QUALITATIVE DISCUSSION

Before addressing the problem of motion on a rotat
sphere, it is instructive to consider first the case of motion
a plane. Consider the simplest case of a hockey puck on
icy turntable, where friction can be ignored and the force
gravity is countered by the normal force of the turntable
the puck. Since there is no net force on the puck, it rema
at rest or continues with constant velocity in the inertial s
tem. The acceleration of the rotating observer causes
simple inertial motion to be seen as curved motion in
rotating frame, which is explained by invoking inertia
forces. Figure 2 shows two simple examples that serve
demonstrate centrifugal and Coriolis forces. All the figures
this section~Figs. 2 and 3! represent time durations lon
enough for higher-order effects to be evident, but we foc
on the lowest-order effects in each case. In Fig. 2~a! the puck
is released from rest with respect to the turntable, at a p
tion A, which is a radiusR from the rotation axis. An ob-
server on the turntable who is oblivious to the rotation~here-
after referred to as the ‘‘naı¨ve rotating observer’’! would
expect the puck to remain at rest. An observer in the iner
frame notes that the puck has a tangential velocity com
nentvR arising from the rotation of the turntable. The ine
tial observer sees the puck follow the straight path fromA to
C, while the rotating observer rotates fromA to A* and sees
the puck follow the path fromA* to C, taking it to larger
radii. The rotating observer aware of the rotation~hereafter
referred to simply as the ‘‘rotating observer’’! invokes the
centrifugal force to explain why the puck drifts to larg
radii, while the inertial observer claims it is a simple cons
quence of the inertial motion of the puck combined with t
acceleration of the rotating observer. In Fig. 2~b! the puck is
launched from the origin toward a targetB on the turntable.
The naı¨ve rotating observer would expect the puck to follo
a straight path, shown in Fig. 2~b! asA to B* , whereB* is

e

ed

Fig. 2. ~a! Motion of a puck released from rest with respect to a rotati
turntable from positionA. After a timet, the initial position of the puck has
rotated fromA to A* . The inertial observer sees the puck follow the straig
line from A to C, while the rotating observer sees the puck follow the curv
path fromA* to C. ~b! Motion of a puck launched with a speedn from the
center of the turntable toward a targetB on the turntable. After a timet, the
target has rotated fromB to B* . The inertial observer sees the puck follo
the straight line fromA to C, while the rotating observer sees the pu
follow the curved path fromA to C, which deviates from the straight pat
from A to B* as expected if rotation is ignored.
1098D. H. McIntyre
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the rotated inertial position of the target after some timet.
The inertial observer sees the puck follow the straight p
from A to C, while the rotating observer sees the puck follo
the curved path fromA to C, which clearly misses the targe
B* . The rotating observer invokes the Coriolis force to e
plain the deflection, while the inertial observer claims it is
simple consequence of the inertial motion of the puck co
bined with the acceleration of the target. These two sim
examples illustrate that inertial straight-line motion is tran
formed into more complicated, and in general curved, m
tion when viewed from the rotating frame.

To illustrate the effects of inertial forces in the thre
dimensional case, we choose the simplest example of mo
on a rotating sphere. In analogy with the two-dimensio
frictionless turntable, we consider particles sliding on a fr
tionless, rotating sphere of radiusR. This is akin to playing
ice hockey on a frozen earth, but frozen before the ea
started spinning so we can ignore the effect of the rotation
its shape. We require gravity to keep the hockey puck on
surface, but do not need to know the magnitude of the gr
tational acceleration. We require that the puck stays on
earth, so we consider only velocities, with respect to
inertial frame, that are less than the orbital velocity. Aga
in analogy with the two-dimensional case, we consider
viewpoints of an inertial observer, an earthbound obser
and a ‘‘naı¨ve’’ earthbound observer who is unaware of t
rotation.

In the inertial frame, the only forces on the hockey pu
are the normal force of the ice and the force of gravity. Sin
both forces are radial, there is no torque about the cente
the earth, ensuring conservation of angular momentum.
motion of the puck is therefore in the plane defined by
initial radius vector to the puck and the initial velocity vect
of the puck. Since this plane passes through the center o
earth, it intersects the surface of the earth in a great cir
The puck thus follows a great circle path in the inert
frame. To the extent that we consider a great circle a
‘‘straight line’’ on a sphere, the motion of the puck is anal
gous to the two-dimensional motion of the puck on the fr
tionless turntable.

The great circle motion of the puck takes place in t
inertial frame. A naı¨ve earthbound observer would expect t
puck to follow a great circle path with respect to the ear
These two great circles are in general different because
rotation of the earth gives the puck an additional eastw
velocity in the inertial frame, resulting in different initia
directions of the motion, as viewed in the two frames. T
actual motion perceived by the earthbound observer is n
great circle, but rather is the transformation of the iner
great circle into the rotating frame. The essence of the
proach in this article is to describe the differences betw
the path viewed by the earthbound observer and the
expected on a stationary earth. Particular choices of in
conditions permit us to isolate and qualitatively describe
different inertial forces. Since these are dynamical effe
their demonstration and understanding are generally aide
dynamical presentation. Animations of the figures in this s
tion ~both turntable and sphere! are available for viewing on
the World Wide Web.13

To illustrate some basic features of great circle motion
is instructive to first consider motion on a stationary sphe
A puck with an initial velocity to the east follows the gre
circle path shown in Fig. 3~a!. Some time after leaving the
initial position A, the puck arrives at a positionB, which is
1099 Am. J. Phys., Vol. 68, No. 12, December 2000
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clearly east ofA, but also south of the original line of lati
tude. This appears counterintuitive since we are gener
accustomed to considering the earth as locally flat and
using latitude and longitude as rectilinear coordinates,
which case a puck thrown to the east along a line of latitu
would continue heading east and would arrive atF, a point
on the same line of latitude. However, a line of latitude is n
a ‘‘straight line’’ on a sphere; this is most obvious near o
of the poles. Thus, instead of following a line of latitude
the east, the puck travels along a great circle or geodesi
the sphere with no deflections from that ‘‘straight line’’ pat
This great circle path is also related to the line of sight fro
A towardB. Imagine constructing a vertical tower at positio
B tall enough for the observer atA to see above the horizon
The observer atA sees the tower when looking directly eas
meaning that a straight line tangent to the circle of latitude
A intersects the tower. This line projected radially down
the earth’s surface coincides with the great circle path fromA
to B. Hence, we also refer to this path as the line of sig
from A to B. Thus, if we call the final position of the puc
~B! along the great circle the ‘‘target,’’ then in simple term
we can say that the earthbound observer saw a target to
east, launched the puck to the east, and hit the target.
puck clearly misses the targetF expected on a flat earth. W

Fig. 3. ~a! Motion of a puck launched to the east on a stationary earth.
puck travels along a great circle path fromA to B. On a flat earth, the puck
would always travel east and end up atF. ~b! Inertial view of the motion of
a puck released from rest with respect to the rotating earth. The puck tra
along the inertial great circle path fromA to C in a time t. After the timet,
the earthbound observer has moved along the original line of latitude froA
to A* , and has seen the puck move along the path fromA* to C. ~c! Motion
of a puck that is launched eastward with respect to the rotating earth.
puck is launched from positionA at time t50 toward a target located a
position B. After a time t, the launch site and the target have rotated
positionsA* andB* , respectively. The target on a flat earth would be aF
~rotated toF* after timet!. The inertial observer sees the puck travel alo
the great circle fromA to C, while the earthbound observer sees the pu
move along the path fromA* to C, missing the intended target atB* . The
puck would end up atC0 if the initial velocity with respect to the earth wer
zero.~d! Motion of a puck that is launched to the north with respect to t
rotating earth. The description of the motion is the same as in~c! above. The
flat earth targetF is coincident with the targetB.
1099D. H. McIntyre
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, so
call the difference between these two targets the curvilin
correction, since it arises from the inherent curvilinear nat
of a great circle on a sphere and the mismatch between
great circle and the supposedly straight lines used in
latitude–longitude coordinate system. A similar effect h
previously been pointed out in the two-dimensional turnta
problem when the rotating observer uses a curvilinear co
dinate system.3 Another counterintuitive aspect of this effe
on the earth is that if an observer sees a landmark by loo
directly east, then the observer is not directly west of
landmark. Note that if the puck is launched toward the no
pole @N in Fig. 3~a!#, then it continues heading north alon
the original meridian. Since the meridians are great circ
there is no curvilinear correction for this motion.

Now consider a rotating earth and a puck that is relea
from rest ~with respect to the rotating earth! by an earth-
bound observer at a northern latitudelstart. A naı̈ve earth-
bound observer would expect the puck to remain at its ini
location on the earth. An inertial observer notes that the p
has an eastward speed equal to the speed of the surface
earth at the initial latitude,nearth5vR coslstart. The puck
travels along the inertial great circle shown in Fig. 3~b! and
after some time arrives at positionC. During that time, the
earthbound observer travels along the original line of latitu
from the initial position of the puckA to a new positionA*
in the inertial frame. Thus the earthbound observer sees
puck follow the path fromA* to C ~not a great circle!. The
inertial observer explains this relative motion as the diff
ence between the great circle path of the puck and the fi
latitude of the earthbound observer. The earthbound obse
explains the southward motion by invoking the centrifug
force @Eq. ~5!#, which points away from the axis of rotatio
and has upward and southward components, as shown in
3~b!. The upward component simply reduces the norm
force and hence the apparent weight of the puck. The so
ward component is responsible for the southward displa
ment of C from A* . Note that the westward displaceme
evident in Fig. 3~b! is a higher-order effect caused by th
Coriolis force due to the acquired southward motion~see the
discussion of north–south motion below!, and will not be
evident when we focus on small times in the quantitat
analysis later.

Next consider the case where the earthbound observe~at
the same northern latitude! gives the puck an eastward ve
locity nE so that the inertial speed of the puck~i.e., as mea-
sured by the inertial observer! is nE1nearth. The puck fol-
lows the same inertial great circle path as in Fig. 3~b!, with
an increased speed along the path. Figure 3~c! shows the path
of the puck and the initial and final inertial positions of th
earthbound observer~A andA* ), the target~B andB* ), the
target expected on a flat earth~F and F* ), and the final
inertial position of the puck~C!. The puck moves along th
inertial great circle fromA to C, which in this case is coin-
cident with the earthbound great circle that the puck wo
follow on a stationary earth since the initial velocity is to t
east in both frames. After some time, the expected ea
bound path~A to B! has rotated~it appears asA* to B* ) and
the inertial path fromA to C transformed into the earth fram
appears as the path fromA* to C ~which is not a great
circle!, taking the puck south of the flat-earth targetF* and
south of the spherical-earth targetB* . Once again, the iner
tial observer explains the southward relative motion (F* to
C! as the difference between the great circle path of the p
1100 Am. J. Phys., Vol. 68, No. 12, December 2000
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and the original circle of latitude. The earthbound obser
attributes the southward displacement to three effects.
curvilinear correction@see Fig. 3~a!# accounts for the differ-
ence between the flat-earth targetF* and the spherical-earth
target B* . The centrifugal effect alone~i.e., whennE50)
would cause the puck to end up atC0 , which corresponds to
positionC in Fig. 3~b!. The additional displacement in lati
tude toC is attributed to the Coriolis force that the eart
bound observer invokes due to the puck’s motion in the
tating frame. The Coriolis force@Eq. ~6!# for eastward
motion points away from the axis of rotation and has upw
and southward components, as shown in Fig. 3~c!. The up-
ward component again reduces the normal force and he
the apparent weight of the puck. The southward compon
is responsible for the displacement of the puck, which is
the right of the velocity in the rotating frame~in the Northern
Hemisphere!.

Note the similarity of the effects depicted in Figs. 3~a!–
~c!. In each case the puck finishes south of the original cir
of latitude due to its motion along the great circle. Thus t
inertial observer treats the three cases similarly. On the o
hand, the earthbound observer credits the curvilinear cor
tions of Figs. 3~a! and ~c! to the motion of the puck, the
centrifugal deflections of Figs. 3~b! and~c! to the rotation of
the earth, and the Coriolis deflection of Fig. 3~c! to the com-
bination of the puck’s motion and the earth’s rotation. T
notion that the three effects described by the earthbound
server are treated as a single effect by the inertial obse
will become more evident in the later quantitative analys

Finally, consider a puck that is launched to the north w
respect to the earth. The naı¨ve earthbound observer expec
the puck to follow the meridian toward the north pole,
shown in Fig. 3~d! ~A to B; rotated toA* to B* after a time
t!. In the inertial frame, the rotation of the earth imparts
eastward velocity component to the puck, causing it to f
low the great circle path fromA to C shown in Fig. 3~d!. The
earthbound observer sees the puck head north and then c
to the east (A* to C!, ending up south and east of the targ
(B* ). The earthbound observer attributes the southward
flection to the centrifugal force, just as in the previous e
amples, and the eastward deflection to the Coriolis for
which is solely to the east for northward velocities. On
again, the inertial observer explains the deflections as
difference between the great circle motion of the puck a
the motion of the intended target. For small times, the in
tial velocity of the puck is constant in magnitude and dire
tion ~this is true for all times in the two-dimensional turn
table example!. Since the target moves in a circle~B to B* )
along its line of latitude, it has inertial displacements bo
parallel and perpendicular to the original meridian of lon
tude @line AB in Fig. 3~d!#. The perpendicular displacemen
of the target is less than that of the puck since the local e
speed is smaller at the target. In other words, the differe
in the azimuthal speeds of the puck and the target cause
puck to move east of the target. The displacement of
target parallel to the meridianAB causes the puck to end u
south of the target. If the target had moved only perpendi
larly to AB and had the same speed as the puck’s east
speed, then the puck would have hit the target; but b
conditions are not true, leading to two effects. The eastw
deflection can equivalently be viewed as a consequenc
the conservation of angular momentum.9 As the puck moves
northward, its distance from the axis of rotation decreases
1100D. H. McIntyre
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its angular velocity must increase in order to conserve an
lar momentum. Since the angular velocity of the target~fixed
to the earth! remains constant, the puck leads the target l
gitudinally.

These simple examples of the correspondences betw
the inertial and rotating viewpoints facilitate a qualitati
understanding of inertial forces and also make it possible
explain some other interesting and more general situati
For example, consider a puck launched to the east fro
northern latitude such that the inertial speed is equal to
speed of the earth at the equator (vR). The puck follows an
inertial great circle and takes one day to return to its iner
starting point, at which time the earthbound observer a
returns, as shown in Fig. 4~a!. The earthbound observer se
the puck follow a figure-eight-shaped path, always turning
the right in the Northern Hemisphere and to the left in t
Southern Hemisphere, which is attributed to the combin
effect of the centrifugal and Coriolis forces. Th
boomerang-type path can be obtained with any initial he
ing, as long as the inertial speed of the puck isvR. Next
consider a puck launched to the west with a speed slig
less than the local earth speed. The inertial observer see
puck travel east very slowly, such that the earth rotates m
times before the puck travels once around the inertial g
circle. The earthbound observer sees a path headed wes
slightly south of the original line of latitude, resulting in
spiral around the pole as shown in Fig. 4~b!. In this case, the
earthbound observer sees the puck continually turning to
right ~with respect to the naı¨ve earthbound great circle!, since
the Coriolis force dominates the centrifugal force.

As a final qualitative note on this hockey puck examp
we relax the requirement of a sphere and discuss the co
quences of the oblateness of the real earth. A rotating
formable earth takes on an oblate spheroidal shape bec
the centrifugal force pushes material toward the equator@see
Fig. 3~b!#. The resultant surface gives rise to a normal fo
that is no longer purely radial but is tipped slightly towa
the pole, with a component that tends to cancel the sur
component of the centrifugal force. An exact analysis m
also account for the change in gravitational acceleration
to the equatorial bulge, which causes the bulge to be appr
mately twice as large as the centrifugal effect alone wo
imply.11 Nonetheless, the shape of the earth is such that

Fig. 4. ~a! Motion of a puck launched to the east with an inertial speed eq
to the speed of the earth at the equator. The inertial observer sees the
follow the great circle shown~the thickest line!, while the earthbound ob-
server sees the puck follow the figure-eight path.~b! Motion of a puck
launched to the west with a speed slightly less than the local speed o
earth. The inertial observer sees the puck move east along the great
~the thickest line!, while the earthbound observer sees the puck follow
westward path spiraling away from the pole.
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ticles at rest with respect to the rotating earth remain at r
For the earthbound observer, this means that there is no
force on the stationary hockey puck, and hence the centr
gal deflections shown in Fig. 3 are not present on an ob
earth. For the inertial observer, the net force on a hoc
puck at rest with respect to the oblate earth is toward the
of rotation, causing the puck to travel in a circle along its li
of latitude; in contrast to the net radial force on a spheri
earth and the resultant great circle path. The net centrip
force on the puck is matched to the rotation frequencyv of
the earth, but is not matched should the puck rotate a
different frequency. This concept provides a common exp
nation of the Coriolis force from the inertial viewpoint.3,9 A
hockey puck launched to the east has an inertial velo
faster than that of the local surface of the earth. The
centripetal force that kept it at rest before is now not su
cient to keep the puck traveling in a circle at this speed,
the puck moves to a larger radius where there is a sma
centripetal acceleration (n2/r ). The eastward-launched puc
thus moves southward, explaining the rightward Coriolis d
flection ~in the Northern Hemisphere!. A puck launched to
the west is traveling too slowly and moves to a smaller
dius where there is a larger centripetal acceleration. T
westward-launched puck moves northward, again to the r
~in the Northern Hemisphere!. In the rotating frame, the de
flection of the puck from its intended target is due only to t
Coriolis force. This is why discussions of the effects of r
tation upon the weather, ocean currents, and rivers on
oblate earth invoke only the Coriolis force.

IV. QUANTITATIVE ANALYSIS

Great circles remain the focal point in our quantitati
analysis of inertial forces on a rotating sphere. While t
concept of a great circle is commonly appreciated, the eq
tions describing a great circle are seldom documented, so
begin with a presentation of the necessary equations.
motion of the hockey puck on the frozen spherical earth
then analyzed using the formalism of great circles.

A. Great circles

To describe a general great circle, we use two coordin
systems as shown in Fig. 5. Both coordinate systems
fixed with respect to the sphere. The unprimedxyz coordi-
nate system has its origin at the center of the sphere, with
z axis through the North Pole. Points on the sphere are
scribed using the latitudel, measured as positive~negative!
for the Northern~Southern! Hemisphere, and the longitud
f, measured counterclockwise from the prime meridi
which lies in thexz plane. The equator is the great circle
the xy plane, and is described simply byl50. Any other
general great circle is considered as the equator in a pri
x8y8z8 coordinate system, which is obtained by rotating t
unprimed system first about thez axis by an anglef0

and then about the newy8 axis by an anglelmax. All
possible great circles can be accessed using rotation an
0<f0<2p and 0<lmax<p/2. In the primed coordinate
system, the equation of the great circle is simplyl850,
wherel8 andf8 are the latitude and longitude, respective
as measured in that system. In the unprimed coordinate
tem, this general great circle reaches a maximum latit
lmax at a longitudef0 . By transforming the equationl8
50 back to the unprimed frame or by requiring that t
normal vector to the great circle plane be perpendicular

l
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any general vector in that plane, it is straightforward to sh
that the equation of the general great circle in the unprim
coordinate system can be written as

tanl5tanlmaxcos~f2f0!. ~7!

For a dynamical description of motion along a great circ
we also need parametric equations. Motion at a cons
speedn along the great circle, beginning atf85fstart8 at time
t50, can be described simply byf8(t)5fstart8 1Vt,
l8(t)50, where the angular speedV56n/R and the plus
~minus! sign denotes motion that is counterclockwise~clock-
wise! when viewed looking down from the positivez8 axis.
In the unprimed system, the great circle path can be wri
parametrically as

sinl~ t !5sinlmaxcos~fstart8 1Vt !, ~8!

tan~f~ t !2f0!5
tan~fstart8 1Vt !

coslmax
. ~9!

To generate the complete great circle,p must be added to the
longitudef(t) obtained by solving Eq.~9! for part of the
path, since the inverse trigonometric functions have limi
principal values. This is not a problem when solving Eq.~7!
or ~8! for l.

The above equations describe the great circle and the
tion along it in terms of the quantitieslmax, f0 , andfstart8 ,
whereas most problems are posed in terms of the initial
sition lstart, fstart and the initial heading, which we deno
by the angled with respect to local east. Figure 5 shows
earthbound reference frame with the origin at the initial p
sition of the puck andX coincident with local east,Y with
local north, andZ with local up~along the radius vector!. As
shown in Fig. 5, the initial headingd is measured as positiv
in the counterclockwise sense toward the north. The eq
tions relating these two sets of great circle parameters a

coslmax5ucosd coslstartu, ~10!

Fig. 5. Coordinate systems for the description of a great circle. The gen
great circle~the thickest line! lies in thex8y8 plane. Also shown are the
equator in thexy plane and the line of latitude corresponding to the ma
mum latitudelmax reached by the great circle. The maximum latitude
reached at a longitude off0 . The earthbound observer uses theXYZcoor-
dinate system with origin at the initial position of the puck. The init
inertial position of the puck is latitudelstart and longitudefstart with initial
headingd, measured counterclockwise from local east.
1102 Am. J. Phys., Vol. 68, No. 12, December 2000
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tan~f02fstart!5
tand

sinlstart
, ~11!

tanfstart8 52
tand

tanlstartA11tan2 d
, ~12!

and have been written with the intent of solving them for t
parameterslmax, f0 , andfstart8 . The absolute value in Eq
~10! ensures thatlmax is within the range 0–p/2 for all start-
ing conditions. Since the principal values of the inver
trigonometric functions are limited, one must add or subtr
p when solving Eqs.~11! and ~12! to find f02fstart and
fstart8 for the caselstart,0. Equation~12! can be written more
simply, but the form shown ensures thatfstart8 takes on the
proper values~for lstart.0) when the equation is inverted t
find fstart8 in terms oflstart andd.

B. Terrestrial ice hockey

We now apply these great circle equations to the prob
of a hockey puck sliding on an icy, spherical earth that
tates about thez axis ~see Fig. 5! with an angular velocityv
with respect to the inertial frame. The great circle equatio
derived above are used to describe great circles in both
inertial and rotating frames. We work primarily with th
latitude–longitude coordinate description of the motio
which makes the transformation from one frame to the ot
simple—only the longitudinal differencevt due to the rota-
tion is required.

The motion of the sliding hockey puck is along a gre
circle that is fixed in the inertial frame. A naı¨ve earthbound
observer would expect the puck to follow a great circle th
is fixed with respect to the earth. The initial headings
these two great circles are shown in Fig. 6~a!. The heading of

ral

Fig. 6. ~a! Initial heading of the puck as measured in inertial and rotat
~earth! frames. The puck has velocity componentsnE andnN to the east and
north, respectively, as measured in the earth frame. The speed of the ea
the initial puck position isnearth5vR coslstart. ~b! Great circle path of the
puck as seen by an inertial observer~the thickest line!. The puck is launched
from positionA, which rotates to positionA* after a timet. The great circle
path that the puck would follow on a nonrotating earth is shown both at
time of launch and after the earth has rotated.
1102D. H. McIntyre
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the naı¨ve earthbound great circle is given by

tandearth5
nN

nE
, ~13!

wherenE and nN are the east and north components of
initial velocity of the puck relative to the earth. The rotatio
of the earth causes the inertial observer to measure
puck’s initial heading as

tand inertial5
nN

nE1nearth
5

nN

nE1vR coslstart
. ~14!

Figure 6~b! shows the inertial great circle along which th
puck moves, and the naı¨ve earthbound great circle at the tim
of launch and at a later time after the earth has rotated
general, the inertial and earthbound great circles have dif
ent initial headings, and so reach different maximum la
tudes. The two headings@Eqs.~13! and ~14!# are coincident
only when nN50, i.e., for motion that is initially east o
west, or whenlstart56p/2, i.e., for motion from the poles
The inertial observer notes that the puck has an angular
locity along the inertial great circle of

V56
n

R
56

A~nE1vR coslstart!
21nN

2

R
. ~15!

The great circles in Fig. 3 used to facilitate the qualitat
discussion were drawn using the parametric Eqs.~8! and~9!
for a great circle. To make quantitative comparisons betw
the rotating and inertial descriptions of the motion we e
pand the equations describing the inertial motion to sec
order in the small quantityVt. This yields terms of the sam
order as the lowest-order calculations of noninertial effect
the rotating frame. It is these lowest-order terms that
compare. These expanded great circle equations giving
inertial position of the puck are

f~ t !5fstart1Vt
cosd inertial

coslstart

1V2t2
sinlstartsind inertialcosd inertial

cos2 lstart
, ~16!

l~ t !5lstart1Vt sind inertial2
1
2V

2t2 tanlstartcos2 d inertial.
~17!

Expressing these in terms of parameters measured by
earthbound observer results in

f~ t !5fstart1vt1
nEt

R coslstart
1

nEnNt2 sinlstart

R2 cos2 lstart

1
vnN

R
t2 tanlstart, ~18!

l~ t !5lstart1
nN

R
t

2
1

2R2 ~nE1vR coslstart!
2t2 tanlstart. ~19!

In order to illustrate the physical significance of each term
these expansions, we consider a succession of specia
cases with simple initial conditions, as was done in Fig.
and then finish with the general case. We will see that
first-order terms represent the expected motion of the p
on a stationary flat earth plus the angular displacement of
1103 Am. J. Phys., Vol. 68, No. 12, December 2000
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rotating earth, while the second-order terms represent
effects of inertial forces and the curvature of the earth.

First consider the case where the puck is given a velo
nE in the eastward direction by the earthbound observer.
motion of the puck was depicted in the spherical plot of F
3~c!. An expanded plot of the path of the puck for short tim
is shown in Fig. 7 with an equirectangular projection~simple
latitude versus longitude! and notation equivalent to Fig
3~c!. Since there is only an eastward initial velocity in th
case, the expanded equations for the inertial position of
puck are

f~ t !5fstart1vt1
nEt

R coslstart
, ~20!

l~ t !5lstart2
1

2R2 ~nE1vR coslstart!
2t2 tanlstart, ~21!

l~ t !5lstart2
1

2R2 nE
2 t2 tanlstart

2
1

2
v2t2 sinlstartcoslstart2

vnE

R
t2 sinlstart. ~22!

The inertial observer credits the longitudinal displacemen
the initial velocity of the puck, with contributions from th
rotating earth’s velocity (vt, corresponding toA to A* ) and
the launch speed with respect to the earth (term}nEt, corre-
sponding toA* to F* ). The inertial observer credits th
latitudinal displacement to the inertial motion along the gr
circle, which takes the puck south of the original line
latitude. Since the inertial motion is composed of the mot
of the puck with respect to the earth and the motion of
earth, the squared term of Eq.~21! gives rise to three terms
as shown in Eq.~22!. Thus, what the inertial observer credi
to a single effect, the rotating observer credits to three
fects, which, in order of appearance in Eq.~22!, correspond
to the three effects demonstrated in Figs. 3~a!, ~b!, and ~c!,
respectively. The first term@}(nE /R)2# corresponds to the
curvilinear effect described above whereby the target see
the east is at a lower latitude. This is depicted in Fig. 7 by
arrow between the flat earth targetF and the spherical earth
targetB. Note that this curvilinear correction becomes ze

Fig. 7. Motion of a puck that is launched eastward with respect to
rotating earth for short times. The description of the motion from launch
to target is the same as in Fig. 3~c!. The arrows indicate the curvilinea
displacement of the target from the original line of latitude and the cal
lated centrifugal and Coriolis displacements of the puck from the targe
1103D. H. McIntyre
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on a flat earth (R→`), as one would expect.
The second term (}v2) corresponds to the centrifuga

force, which was depicted in Fig. 3~b!. The earthbound ob
server notes that the surface component of the centrifu
force points to the south and results in an acceleration o

aY,cent52v2R sinl cosl ~23!

at latitudel. After a time t, this acceleration results in
displacement

DYcent52 1
2v

2t2R sinlstartcoslstart, ~24!

where the displacement is assumed to be small enough
the latitude can be taken as a constant equal to the sta
latitude. This southward displacement calculated by
earthbound observer is equivalent to the displacement ca
lated by the inertial observer (DY5RDl) using the second
correction term in Eq.~22! and is represented in Fig. 7 by th
arrow from the final position of the earthbound observerA*
to the final position the puck would have if it were releas
from rest (nE50), which is labeledC0 .

The third displacement term in Eq.~22! (}vnE) corre-
sponds to the Coriolis force, which was depicted in Fig. 3~c!.
The surface component of the Coriolis force results in
acceleration of

aY,Cor522vnE sinl ~25!

at latitudel. After a time t, this acceleration results in
displacement

DYCor52vnEt2 sinlstart, ~26!

where againl is assumed constant for smallt. This south-
ward displacement again matches the inertial term an
shown as the arrow ending atC in Fig. 7. The arrows depict
ing the other two effects are duplicated at the final longitu
to show that all three latitude correction terms contribute
explain the displacement of the puck~C! from the flat earth
target (F* ). Thus the lowest-order displacements calcula
by a rotating observer using inertial forces agree with
calculation of the inertial observer for short times, and so
two observers agree on the motion of the puck but not on
physics behind the motion. Note that the higher-order we
ward displacement discussed earlier in regard to Fig. 3~b! is
not evident for the short times shown in Fig. 7.

Next consider a puck launched directly north with a spe
nN with respect to the earth. In this case, the motion of
earth’s surface leads the inertial observer to measure a h
ing given by

tand inertial5
nN

nearth
5

nN

vR coslstart
, ~27!

in contrast to the earth heading ofdearth590°. The great
circle motion of the puck on the earth was shown in F
3~d!. An expanded view of the motion for small times
shown in Fig. 8, with notation equivalent to Fig. 3~d!. Since
there is only a northward initial velocity~in the earth frame!
in this case, the expanded equations for the inertial posi
of the puck are

f~ t !5fstart1vt1
vnN

R
t2 tanlstart, ~28!

l~ t !5lstart1
nN

R
t2

1

2
v2t2 sinlstartcoslstart. ~29!
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The expected northward range of the puck@term in Eq.~29!
}nN] is reduced by the same southward centrifugal defl
tion calculated above@Eq. ~24!#. The longitude exhibits the
rotation of the earth (vt) and a correction term that corre
sponds to the Coriolis force. For a northward velocity, t
Coriolis force is solely to the east@to the right again, as
shown in Fig. 3~d!# and causes an acceleration of

aX,Cor52vnN sinl, ~30!

which results in an eastward displacement after a timet ~as-
sumed small! of

DXCor5vnNt2 sinlstart. ~31!

Both displacements calculated by the rotating observer
shown as arrows in Fig. 8, and again agree with the iner
description of the motion for small times. Note that there
no curvilinear correction in this case since the expected p
along the meridian is a great circle~coincident with the line
of sight to the north!.

The general case, where a puck has both eastward
northward velocities, is depicted in Fig. 9. The puck follow
the inertial great circle fromA to C, while the earthbound
observer sees the puck follow the path fromA* to C. The
expected path on a stationary earth is fromA* to B* , and the
path expected on a flat earth is fromA* to F* ~constant
heading!. For short times, as shown in the main plot of Fi
9, the puck~C! ends up south and east of the target (B* ).
The full inertial position Eqs.~18! and ~19! required here
include all the correction terms discussed in the east
north cases and one new term in the longitude (}nEnN),
which is another curvilinear correction and is shown as
arrow ending atB* in Fig. 9. The deflection of the puck from
the target~for small times! is a combination of the previously
discussed terms and includes the southward centrifugal

Fig. 8. Motion of a puck that is launched to the north with respect to
rotating earth. The description of the motion from launch site to target is
same as in Fig. 3~d!. Both axes are broken in order to show launch a
target locations at both times and the small corrections. As shown in
spherical plot of Fig. 3~d!, the paths fromA to C andA* to C are curved, but
in this plot all the curvature is hidden in the broken region of the plot~thin
dotted lines!. The arrows indicate the calculated centrifugal and Corio
displacements of the puck from the target.
1104D. H. McIntyre
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flection @Eq. ~24!# and both southward@Eq. ~26!# and east-
ward @Eq. ~31!# Coriolis deflections~which are combined
into one arrow in Fig. 9!.

V. SUMMARY

In summary, we have presented an analysis of motion o
rotating sphere from both the inertial and rotating vie
points. This analysis is grounded in the simple geometry
great circles and is applied to an idealized terrestrial
hockey example to provide particularly straightforward de
onstrations of the physical origin of inertial forces. The C
riolis and centrifugal forces are isolated and illustrated
analyzing specific simple initial conditions. The exact ine
tial equations are expanded to show that the lowest-o

Fig. 9. Motion of a puck that is launched to the northeast with respect to
rotating earth. Short times are shown in the main plot and longer times
shown in the spherical plot. The heading for this case isdearth560°, with a
speed~in the earth frame! of nearth, which gives an inertial heading o
d inertial530°. The description of the motion from launch site to target is
same as in Fig. 3~c!. Only the final positions of the puck~C! and the in-
tended target (B* on a spherical earth andF* on a flat earth! are shown in
the main plot; the labelsA andA* denote the origins of the respective path
The two curvilinear arrows indicate the difference between the cons
heading path fromA* to F* and the great circle path~or line of sight! from
A* to B* . The other arrows indicate the calculated centrifugal and Cori
displacements of the puck from the target.
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corrections agree with the rotating observer’s analysis
invokes inertial forces. The analysis also brings forth effe
due to the curvilinear nature of the motion that are not co
monly discussed. The recent advent of powerful symbo
manipulation software makes possible the effective dyna
cal presentation of these often hard-to-visualize dynam
effects.13

This approach should be particularly well suited for use
an intermediate undergraduate mechanics course, whic
usually students’ first introduction to inertial forces. The sim
plicity of the geometry and of the frame transformations
volved should allow students to focus on the physics of
motion rather than the mathematical complexity of the in
tial forces and the resultant equations of motion. The rotat
frame viewpoint may be more appropriate for real world e
amples like atmospheric winds and ocean currents, but
common pedagogical examples used to introduce studen
inertial forces are simple enough to be analyzed in the m
ner presented here.
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