Electrostatic Potential Due to a Ring of Charge (Code:3D)

The problem I was asked to solve was to find the electrostatic potential due to a ring of charge. The ring had a radius R and a total charge Q.

$$
\begin{gather*}
V(\vec{r})=\frac{1}{4 \pi \epsilon_{0}} \sum_{i=1}^{N} \frac{q_{i}}{\left|\vec{r}-\overrightarrow{r_{i}}\right|} \tag{1}\\
V(\vec{r})=\frac{1}{4 \pi \epsilon_{0}} \int \frac{\lambda\left(\overrightarrow{r^{\prime}}\right)\left|\overrightarrow{r^{\prime}}\right|}{\left|\vec{r}-\overrightarrow{r^{\prime}}\right|} \tag{2}\\
\lambda=\frac{Q}{2 \pi R} \tag{3}\\
V(\vec{r})=\frac{1}{4 \pi \epsilon_{0}} \frac{Q}{2 \pi R} \int \frac{\left|d \overrightarrow{r^{\prime}}\right|}{\left|\vec{r}-\overrightarrow{r^{\prime}}\right|} \tag{4}\\
V(\vec{r})=\frac{1}{4 \pi \epsilon_{0}} \frac{Q}{2 \pi} \int_{0}^{2 \pi} \frac{d \phi^{\prime}}{\left|\vec{r}-\overrightarrow{r^{\prime}}\right|} \tag{5}\\
V(r, \phi, z)=\frac{1}{4 \pi \epsilon_{0}} \frac{Q}{2 \pi} \int_{0}^{2 \pi} \frac{d \phi^{\prime}}{\sqrt{\left(r^{2}+R^{2}+z^{2}-2 r R \cos \left(\phi-\phi^{\prime}\right)\right.}} \tag{6}
\end{gather*}
$$

V along the z-axis:

$$
\begin{gather*}
V(r=0, \phi, z)=\frac{1}{4 \pi \epsilon_{0}} \frac{Q}{2 \pi} \int_{0}^{2 \pi} \frac{d \phi^{\prime}}{\sqrt{R^{2}+z^{2}}} \tag{7}\\
V(r=0, \phi, z)=\frac{Q}{4 \pi \epsilon_{0}} \frac{1}{\sqrt{R^{2}+z^{2}}} \tag{8}
\end{gather*}
$$

I was then prompted to expand this in a power series to approximate V at points very close to zero. After recognizing that I needed to use the power series

$$
\begin{gather*}
(1+c)^{p}=1+p c+\frac{p(p-1)}{2!} c^{2}+\ldots \tag{9}\\
V=\frac{Q}{4 \pi \epsilon_{0} R}\left(1+\frac{z^{2}}{R^{2}}\right)^{-\frac{1}{2}} \tag{10}
\end{gather*}
$$

$$
\begin{equation*}
V(z)=\frac{Q}{4 \pi \epsilon_{0} R}\left(1-\frac{z^{2}}{2 R^{2}}+\frac{3 z^{4}}{8 R^{4}}+\ldots\right) \tag{11}
\end{equation*}
$$

I discovered that unless I focused on a specific axis, the simplest form of an expression can came as an unsolveable integral. I probably would not have recognized this at first. I also discovered that changing the position vectors into rectangular coordinates and then describing each of their rectangular components in polar form can allow for easier manipulation. After focusing on the z-axis I saw that an otherwise difficult integral to calculate can become manageable. After expanding my solution in a power series that was familiar to me, I also saw that the electrostatic potential contained only even powers of z. After letting z approach infinity, the expression for potential became $V(z)=\frac{Q}{4 \pi \epsilon_{0} R}$ which is the potential due to a point charge. This makes sense because as you get further and further away, the ring appears to vanish to a single point.

The group that evaluated points far from 0 along the z-axis had an answer that was similar to mine, but with the z terms in the denominator and the R terms in the numerator. The group that had evaluated the expression on the x, y-plane at points close to 0 had the expression $V(\vec{r})=\frac{1}{4 \pi \epsilon_{0}} \frac{Q}{2 \pi} \frac{1}{R}\left[2 \pi+\frac{2}{2 R^{2}}\right]$. The group that evaluated it on this plane for points far outside the ring had a similar expression with the R 's and r 's swapped. If you look at all of these results collectively you will see that at points very far from the ring you approach the expression for electrostatic potential due to a point charge, and for the point at the center of the ring you get the electrostatic potential due to a point charge a distance R away with charge Q.

