
Electrostatic Potential Due to a Ring of
Charge (Code: 2D)

To solve this problem, I started with:

V (~r) =
1

4πε0

N∑
i=1

qi
|~r − ~ri|

(1)

This equation gives the electrostatic potential due to N point charges.
In this equation, qi represents the individual charges, |~r − ~ri| is the distance
between the point we are measuring the potential at (~r) and location of the
charge (~ri) and ε0 is the permittivity of free space. From this equation we
can see that V is directly proportional to the amount of charge, and inversely
proportional to the distance between ~r and ~ri.

This equation took on a similar form for a linear charge distribution:

V (~r) =
1

4πε0

∫ λ(~r′)|d~r′|
|~r − ~r′|

(2)

The prime notation used here is a convenient way to denote variables that
are related to the position of the charge. Thus, ~r′ is the position of the piece
of charge, and |d~r′| is the little distance used to integrate around the ring.
Since I was given the total charge and radius of the ring and told that it was
a constant charge density, I had the following expression:

λ =
Q

2πR
(3)

After plugging this into Eqn (2) I had:

V (~r) =
1

4πε0

Q

2πR

∫ |d~r′|
|~r − ~r′|

(4)

I used cylindrical coordinates because of the geometry of the ring. In this
system |d~r′| becomes Rdφ′ and the limits of integration then become [0, 2π]
to sum over the entire ring. Applying this to Eqn (4) yeilds:

V (~r) =
1

4πε0

Q

2π

∫ 2π

0

dφ′

|~r − ~r′|
(5)
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It seemed to me that I was ready to integrate now, but because ~r and
~r′ won’t always point in the same direction, I needed to write them out
explicitly. Using the solution from our homework assignment to write out
|~r− ~r′|’s components in cartesian form and converting them to in polar form,
I had

V (r, φ, z) =
1

4πε0

Q

2π

∫ 2π

0

dφ′√
(r2 +R2 + z2 − 2rR cos(φ− φ′)

(6)

This is an integral that can’t be solved by hand.

The next step was to set r = 0 and Eqn (7) became:

V (r=0, φ, z) =
1

4πε0

Q

2π

∫ 2π

0

dφ′√
R2 + z2

(7)

I integrated to get:

V (r=0, φ, z) =
Q

4πε0

1√
R2 + z2

(8)

After recognizing that I needed to use the power series

(1 + c)p = 1 + pc+
p(p− 1)

2!
c2 + ... (9)

I factored out an R from the denominator so that c << 1. I then had:

V =
Q

4πε0R

(
1 +

z2

R2

)− 1
2

(10)

Using Eqn (10) and recognizing that p = −1
2

and c = z2

R2 , I obtained the
following:

V (z) =
Q

4πε0R

(
1− z2

2R2
+

3z4

8R4
+ ...

)
(11)

I discovered that unless I focused on a specific axis, the simplest form of
an expression can came as an unsolveable integral. I probably would not have
recognized this at first. I also discovered that changing the position vectors
into rectangular coordinates and then describing each of their rectangular
components in polar form can allow for easier manipulation. After focusing

2



on the z-axis I saw that an otherwise difficult integral to calculate can become
manageable. After expanding my solution in a power series that was familiar
to me, I also saw that the electrostatic potential contained only even powers
of z. The group that evaluated points far from 0 along the z-axis had an
answer that was similar to mine, but with the z terms in the denominator
and the R terms in the numerator.
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