Electrostatic Potential Due to a Ring of Charge (Code:1D)

The problem I was asked to solve was to find the electrostatic potential due to a ring of charge. I was told that the ring had a radius R and a total charge Q. In order to solve this problem I started with the general equation:

$$
\begin{equation*}
V(\vec{r})=\frac{1}{4 \pi \epsilon_{0}} \sum_{i=1}^{N} \frac{q_{i}}{\left|\vec{r}-\overrightarrow{r_{i}}\right|} \tag{1}
\end{equation*}
$$

Where q_{i} is the individual charge, $\left|\vec{r}-\overrightarrow{r_{i}}\right|$ is the distance between the point we are measuring the potential at (\vec{r}) and the charge $\left(\overrightarrow{r_{i}}\right) ; \epsilon_{0}$ is the permittivity of free space.

Dr. Manogue gave us the next equation which was V for a linear charge distribution

$$
\begin{equation*}
V(\vec{r})=\frac{1}{4 \pi \epsilon_{0}} \int \frac{\lambda\left(\overrightarrow{r^{\prime}}\right)\left|d \overrightarrow{r^{\prime}}\right|}{\left|\vec{r}-\overrightarrow{r^{\prime}}\right|} \tag{2}
\end{equation*}
$$

Where $\overrightarrow{r^{\prime}}$ is the position of the piece of charge, and $\left|d \overrightarrow{r^{\prime}}\right|$ is the little distance used to integrate around the ring.I also knew the charge distribution was constant, so I had:

$$
\begin{equation*}
\lambda=\frac{Q}{2 \pi R} \tag{3}
\end{equation*}
$$

After plugging this into Eqn (2) I had:

$$
\begin{equation*}
V(\vec{r})=\frac{1}{4 \pi \epsilon_{0}} \frac{Q}{2 \pi R} \int \frac{\left|d \overrightarrow{r^{\prime}}\right|}{\left|\vec{r}-\overrightarrow{r^{\prime}}\right|} \tag{4}
\end{equation*}
$$

I used cylindrical coordinates because of the geometry of the ring. In this system $\left|d \overrightarrow{r^{\prime}}\right|$ becomes $R d \phi^{\prime}$ and the limits of integration then become $[0,2 \pi]$. Applying this to Eqn (4) yeilds:

$$
\begin{equation*}
V(\vec{r})=\frac{1}{4 \pi \epsilon_{0}} \frac{Q}{2 \pi} \int_{0}^{2 \pi} \frac{d \phi^{\prime}}{\left|\vec{r}-\overrightarrow{r^{\prime}}\right|} \tag{5}
\end{equation*}
$$

Because \vec{r} and $\overrightarrow{r^{\prime}}$ won't always point in the same direction, I needed to write them out explicitly. Using the solution from our homework assignment to write out $\left|\vec{r}-\overrightarrow{r^{\prime}}\right|$ in cartesian coordinates converted to polar components I had:

$$
\begin{equation*}
V(r, \phi, z)=\frac{1}{4 \pi \epsilon_{0}} \frac{Q}{2 \pi} \int_{0}^{2 \pi} \frac{d \phi^{\prime}}{\sqrt{\left(r^{2}+R^{2}+z^{2}-2 r R \cos \left(\phi-\phi^{\prime}\right)\right.}} \tag{6}
\end{equation*}
$$

This is an elliptic integral that can be evaluated numerically with computer software. I was then asked to find an expression for V along the z-axis. This makes r equal to 0 and Eqn (7) becomes:

$$
\begin{equation*}
V(r=0, \phi, z)=\frac{1}{4 \pi \epsilon_{0}} \frac{Q}{2 \pi} \int_{0}^{2 \pi} \frac{d \phi^{\prime}}{\sqrt{R^{2}+z^{2}}} \tag{7}
\end{equation*}
$$

This is easily integrable to give:

$$
\begin{equation*}
V(r=0, \phi, z)=\frac{Q}{4 \pi \epsilon_{0}} \frac{1}{\sqrt{R^{2}+z^{2}}} \tag{8}
\end{equation*}
$$

I was then prompted to expand this in a power series to approximate V at points very close to zero. After recognizing that I needed to use the power series

$$
\begin{equation*}
(1+c)^{p}=1+p c+\frac{p(p-1)}{2!} c^{2}+\ldots \tag{9}
\end{equation*}
$$

I factored out an R from the denominator so that $c \ll 1$. I then had:

$$
\begin{equation*}
V=\frac{Q}{4 \pi \epsilon_{0} R}\left(1+\frac{z^{2}}{R^{2}}\right)^{-\frac{1}{2}} \tag{10}
\end{equation*}
$$

Using Eqn (10) and recognizing that $p=-\frac{1}{2}$ and $c=\frac{z^{2}}{R^{2}}$, I obtained the following:

$$
\begin{equation*}
V(z)=\frac{Q}{4 \pi \epsilon_{0} R}\left(1-\frac{z^{2}}{2 R^{2}}+\frac{3 z^{4}}{8 R^{4}}+\ldots\right) \tag{11}
\end{equation*}
$$

I learned that applying information to get the equation you want is really hard, and that you have to know a lot of tricks or else you will get stuck along the way. I discovered that working in a group can also make things a lot easier, because up until this assignment I didn't have much difficulty with our group activities.

