Ungraded Quiz

Consider the two processes described below.

Process \#1 Five moles of an ideal gas are initially confined in a one-liter cylinder with a movable piston, at a temperature of 300 K. Slowly the gas expands against the movable piston, while the cylinder is in contact with a thermal reservoir at 300 K . The temperature of the gas remains constant at 300 K while the volume increases to two liters.

Process \#2 A thin plastic sheet divides an insulated two-liter container in half. Five moles of the same ideal gas are confined to one half of the container, at a temperature of 300 K . The other half of the container is a vacuum. The plastic divider is suddenly removed and the gas expands to fill the container. Because it is a free expansion of an ideal gas (no work is done on or by the gas), the final temperature of the gas is also 300 K .

Process \#3 The same cylinder as in process \#1 is thermally insulated and then allowed to slowly expand, starting at 300 K , to twice its original size (two liters).

1. Are $\Delta S_{\text {isothermal }}, \Delta S_{\text {free }}$ and $\Delta S_{\text {adiabatic }}$, the change in entropy of the gas for each process, positive, negative, or zero? Please explain your reasoning.
2. Is $\Delta S_{\text {isothermal }}$ greater than, less than, or equal to $\Delta S_{\text {free }}$? How do each of these compare with $\Delta S_{\text {adiabatic }}$? Please explain.
3. Are $\Delta S_{\text {surr-isothermal }}, \Delta S_{\text {surr-free }}$ and $\Delta S_{\text {surr-adiab }}$, the change in entropy of the surroundings for each process, positive, negative, or zero? Please explain.
by David Roundy
© DATE David Roundy
