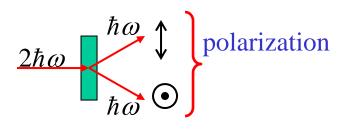


Nonlocality: The spin correlation persists even if the two particles are well separated and have no interaction.

Example:

- (i) Decay of η meson into muon pair: $\eta \rightarrow \mu^+ + \mu^-$
- (ii) Parametric down conversion in nonlinear crystal



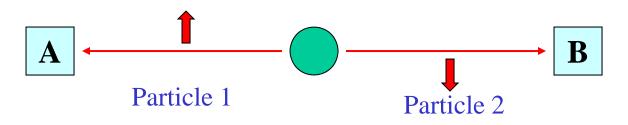
Spin-Singlet States

$$\begin{split} |\psi\rangle &= \frac{1}{\sqrt{2}} \left(\left| \uparrow \downarrow \right\rangle - \left| \downarrow \uparrow \right\rangle \right) = \frac{1}{\sqrt{2}} \left(\left| \uparrow \right\rangle \otimes \left| \downarrow \right\rangle - \left| \downarrow \right\rangle \otimes \left| \uparrow \right\rangle \right) \\ &= \frac{1}{\sqrt{2}} \left[\frac{1}{\sqrt{2}} \left(\left| \uparrow \right\rangle_x + \left| \downarrow \right\rangle_x \right) \otimes \frac{1}{\sqrt{2}} \left(\left| \uparrow \right\rangle_x - \left| \downarrow \right\rangle_x \right) - \frac{1}{\sqrt{2}} \left(\left| \uparrow \right\rangle_x - \left| \downarrow \right\rangle_x \right) \otimes \frac{1}{\sqrt{2}} \left(\left| \uparrow \right\rangle_x + \left| \downarrow \right\rangle_x \right) \right] \end{split}$$

$$= \frac{1}{\sqrt{2}} \left[\frac{1}{2} \left(\left(\uparrow \right)_{x} \otimes \left| \uparrow \right\rangle_{x} - \left| \uparrow \right\rangle_{x} \otimes \left| \downarrow \right\rangle_{x} + \left| \downarrow \right\rangle_{x} \otimes \left| \uparrow \right\rangle_{x} - \left| \downarrow \right\rangle_{x} \otimes \left| \downarrow \right\rangle_{x} \right) \right]$$
$$- \frac{1}{2} \left(\left(\uparrow \right)_{x} \otimes \left| \uparrow \right\rangle_{x} + \left| \uparrow \right\rangle_{x} \otimes \left| \downarrow \right\rangle_{x} - \left| \downarrow \right\rangle_{x} \otimes \left| \uparrow \right\rangle_{x} - \left| \downarrow \right\rangle_{x} \otimes \left| \downarrow \right\rangle_{x} \right) \right]$$
$$= - \frac{1}{\sqrt{2}} \left(\left(\uparrow \right)_{x} \otimes \left| \downarrow \right\rangle_{x} - \left| \downarrow \right\rangle_{x} \otimes \left| \uparrow \right\rangle_{x} \right) = \frac{e^{i\pi}}{\sqrt{2}} \left(\left(\uparrow \right)_{x} \otimes \left| \downarrow \right\rangle_{x} - \left| \downarrow \right\rangle_{x} \otimes \left| \uparrow \right\rangle_{x}$$

$$=\frac{e^{i\pi}}{\sqrt{2}}\left(\left|\uparrow\downarrow\right\rangle_{x}-\left|\downarrow\uparrow\right\rangle_{x}\right) = \frac{e^{i\phi_{n}}}{\sqrt{2}}\left(\left|\uparrow\downarrow\right\rangle_{n}-\left|\downarrow\uparrow\right\rangle_{n}\right)$$

Spin correlation in a spin-singlet state



(i) Measurement of particle 1 spin, $S_{l,z}$

$$\Rightarrow \text{ wave vector collapse } |\psi\rangle = \frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle \right) \Rightarrow |\uparrow\downarrow\rangle$$

⇒ Determine particle 2 spin state instantly even if two particles are macroscopically separated.

(ii) Measurement of
$$S_z$$
 and $S_x |\psi\rangle = \frac{1}{\sqrt{2}} \left(\uparrow \downarrow \rangle - |\downarrow\uparrow\rangle \right) = \frac{1}{\sqrt{2}} \left(\uparrow \downarrow \rangle_x - |\downarrow\uparrow\rangle_x \right)$

- A measures S_z and B measures S_x : completely random correlation
- A measures S_x and B measures S_x : 100 % (opposite sign) correlation
- A makes no measurement \rightarrow B's measurements are random.

Measurement even in local system determines state of whole system.

2. Einstein's locality principle and Bell's inequality

Einstein's locality principle

The real factual situation of the system S_2 is independent of what is done with the system S_1 , which is spatially separated from the former. *"Einstein-Podolsky-Rosen (EPR) paradox"*

Model to explain the spin-correlation measurement w/o violating the locality principle

A: particle 1	B: particle 2		
(z+, x+)	\leftrightarrow	(<i>z</i> -, <i>x</i> -)	25%
(<i>z</i> +, <i>x</i> -)	\leftrightarrow	(z-, x+)	25%
(<i>z</i> -, <i>x</i> +)	\leftrightarrow	(<i>z</i> +, <i>x</i> -)	25%
(<i>z</i> -, <i>x</i> -)	\leftrightarrow	(z+, x+)	25%

- When we measure S_z , we do not measure S_x , and vice versa.
- \Rightarrow Impossible to determine S_z and S_x simultaneously

B's result is predetermined independently of A's choice as to what to measure.

Bell's inequality: spin measurement on direction of three unit vectors

	Population	A: particle 1		B: particle 2
e _a ↑	N_1	(<i>a</i> +, <i>b</i> +, <i>c</i> +)	\leftrightarrow	(<i>a</i> -, <i>b</i> -, <i>c</i> -)
\mathbf{e}_{c}	N_2	(<i>a</i> +, <i>b</i> +, <i>c</i> −)	\leftrightarrow	(<i>a</i> -, <i>b</i> -, <i>c</i> +)
	N_3	(<i>a</i> +, <i>b</i> -, <i>c</i> +)	\leftrightarrow	(<i>a</i> -, <i>b</i> +, <i>c</i> -)
	N_4	(<i>a</i> +, <i>b</i> −, <i>c</i> −)	\leftrightarrow	(<i>a</i> -, <i>b</i> +, <i>c</i> +)
	N_5	(<i>a</i> -, <i>b</i> +, <i>c</i> +)	\leftrightarrow	(<i>a+,b-,c-</i>)
• e _b	N_6	(<i>a</i> -, <i>b</i> +, <i>c</i> -)	\leftrightarrow	(<i>a</i> +, <i>b</i> -, <i>c</i> +)
(1, 1) $(1, 1, 1)$	N_7	(<i>a</i> -, <i>b</i> -, <i>c</i> +)	\leftrightarrow	(<i>a+,b+,c-</i>)
$(x, y) \rightarrow (a, b, c)$	N_8	(<i>a</i> -, <i>b</i> -, <i>c</i> -)	\leftrightarrow	(<i>a</i> +, <i>b</i> +, <i>c</i> +)

If A measures (a+, b-), number of particles $N_3 + N_4$

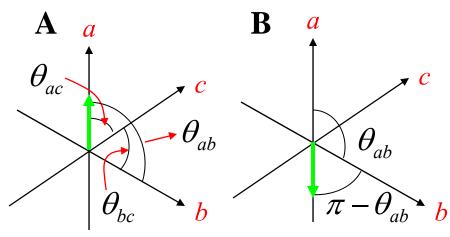
Since $N_i \ge 0$, $N_3 + N_4 \le (N_2 + N_4) + (N_3 + N_7)$

P(a+; b+): probability that observer A measures a+ and observer B measures b+

$$P(a+;b+) = \frac{N_3 + N_4}{\sum_{i=1}^8 N_i}, \quad P(a+;c+) = \frac{N_2 + N_4}{\sum_{i=1}^8 N_i}, \quad P(c+;b+) = \frac{N_3 + N_7}{\sum_{i=1}^8 N_i}$$

 $\Rightarrow P(a+;b+) \le P(a+;c+) + P(c+;b+)$ Bell's inequality (from locality principle)

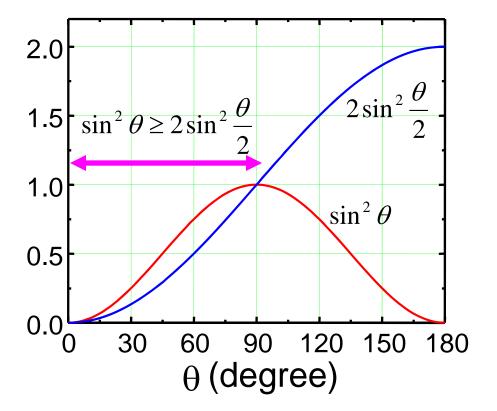
Quantum mechanics and Bell's inequality



A (particle 1) $a + \Rightarrow$ B (particle 2) a -

$$P(a+;b+) = \frac{1}{2}\cos^2\left(\frac{\pi - \theta_{ab}}{2}\right) = \frac{1}{2}\sin^2\left(\frac{\theta_{ab}}{2}\right)$$

Bell's inequality $P(a+;b+) \leq P(a+;c+) + P(c+;b+)$ $\Rightarrow \frac{1}{2}\sin^{2}\frac{\theta_{ab}}{2} \leq \frac{1}{2}\sin^{2}\frac{\theta_{ac}}{2} + \frac{1}{2}\sin^{2}\frac{\theta_{cb}}{2}$ Assume $\theta_{ab} = 2\theta, \ \theta_{ac} = \theta_{cb} = \theta$ $\Rightarrow \sin^{2}\theta \leq 2\sin^{2}\frac{\theta}{2}$ not true for $0 < \theta < \pi/2$!!!



Quantum Theory vs. Locality Principle

- QM predictions are not compatible with Bell's inequality.
- Experiments confirms that Bell's inequality can be violated in such a way that QM predictions are correct.
- Despite the nonlocality, no transmission of useful information by spin-correlation: No violation of principles of relativity.
- Nonlocality of spin-correlation (entanglement): Quantum information theory