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Preface

In the preface to his book Statistical Mechanics Made Simple Professor Daniel Mattis writes:

My own experience in thermodynamics and statistical mechanics, a half century ago
at M.I.T., consisted of a single semester of Sears, skillfully taught by the man himself.
But it was a subject that seemed as distant from “real” physics as did poetry or French
literature.1

This frank but discouraging admission suggests that thermodynamics may not be a course eagerly
anticipated by many students – not even physics, chemistry or engineering majors – and at com-
pletion I would suppose that few are likely to claim it was an especially inspiring experience. With
such open aversion, the often disappointing performance on GRE2 questions covering the subject
should not be a surprise. As a teacher of the subject I have often conjectured on reasons for this
lack of enthusiasm.

Apart from its subtlety and perceived difficulty, which are probably immutable, I venture to guess
that one problem might be that most curricula resemble the thermodynamics of nearly a century
ago.

Another might be that, unlike other areas of physics with their epigrammatic equations – Newton’s,
Maxwell’s or Schrödinger’s – which provide accessibility and direction – thermal physics seems to
lack a comparable unifying principle.3 Students may therefore fail to see conceptual or method-
ological coherence and experience confusion instead.

With those assumptions I propose in this book alternatives which try to address the disappointing
experience of Professor Mattis and undoubtedly others.

Thermodynamics, the set of rules and constraints governing interconversion and dissipation of en-
ergy in macroscopic systems, can be regarded as having begun with Carnot’s (1824) pioneering paper
on heat-engine efficiency. It was the time of the industrial revolution, when the caloric fluid theory
of heat was just being questioned and steam-engine efficiency was, understandably, an essential
preoccupation. Later in that formative period Rudolf Clausius introduced a First Law of Thermo-
dynamics (1850), formalizing the principles governing macroscopic energy conservation.

Microscopic models were, at the time, largely ignored and even regarded with suspicion, to the point
where scientific contributions by some proponents of such interpretations were roundly rejected by

1Daniel Mattis, Statistical Mechanics Made Simple World Scientific Publishing, Singapore (2003).
2Graduate Record Examination: standardized graduate school admission exam.
3R. Baierlein, A central organizing principle for statistical and thermal physics? Am. J. Phys. 63, 108 (1995).
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the editors of esteemed journals. Even with the intercession in support of kinetic models by the
respected Clausius (1857), they stubbornly remained regarded as over-imaginative, unnecessary
appeals to invisible, unverifiable detail – even by physicists. A decade later when Maxwell (1866)
introduced probability into physics bringing a measure of statistical rigor to kinetic (atomic) gas
models there came, at last, a modicum of acceptance.

Within that defining decade the already esteemed Clausius (1864) invented a novel, abstract quan-
tity as the centerpiece of a Second Law of Thermodynamics, a new principle – which he named
entropy – to forever change our understanding of thermal processes and, indeed, all natural pro-
cesses. Clausius offered no physical interpretation of entropy, leaving the matter open to intense
speculation. Ludwig Boltzmann, soon to be a center of controversy, applied Maxwell’s microscopic
probability arguments to postulate a statistical model of entropy based on counting discrete “atomic”
configurations referred to – both then and now – as “microstates".4 However, Boltzmann’s ideas on
entropy, which assumed an atomic and molecular reality, were far from universally embraced – a
personal disappointment which some speculate led to his suicide in 1906.

Closing the book on 19th-century thermal physics, J. W. Gibbs reconciled Newtonian mechanics
with thermodynamics by inventing statistical mechanics5 based on the still mistrusted presumption
that atoms and molecules were physical realities. In this indisputably classic work, novel statistical
“ensembles” were postulated to define thermodynamic averages, a statistical notion later adopted in
interpreting quantum theories. Shortcomings and limited applicability of this essentially Newtonian
approach notwithstanding, it provided prescient insights into the quantum mechanics, whose full
realization was still a quarter century in the future.

Quantum mechanics revolutionized physics and defines the modern scientific era. Developing in par-
allel with it, and synergistically benefiting from this reshaped scientific landscape, thermal physics
has come to occupy a rightful place among the pillars of modern physics.

Quantum mechanics’ natural, internally consistent unification of statistics with microscopic mechan-
ics immediately suggests the possibility of a thermodynamics derived, in some way, from microscopic
quantum averages and quantum probabilities. But thermodynamic systems are not simply the iso-
lated quantum systems familiar from most quantum mechanics courses. Thermodynamics is about
macroscopic systems, i.e. many-particle quantum systems that are never perfectly isolated from the
remainder of the universe. This interaction with the “outside” has enormous consequences which,
when taken into account quantitatively, clarifies the essence of thermodynamics.

Many thermal variables may then be approached as macroscopic quantum averages and their asso-
ciated thermal probabilities as macroscopic quantum probabilities, the micro-to-macro translation
achieved in part by an entropy postulate. This approach gives rise to a practical organizing prin-
ciple with a clear pedagogical path by which thermodynamics’ structure attains the epigrammatic
status of “real physics".

Thermal physics is nevertheless frequently taught in the spirit of its utile 19th-century origins,
minimizing both 20th- and 21st-century developments and, for the most part, disregarding the
beauty, subtlety, profundity and laboratory realities of its modern rebirth – returning us to Pro-
fessor Mattis’ reflections. In proposing a remedy for his justifiable concerns, the opening chapter

4Boltzmann’s “microstates" suggested to Planck (1900) what eventually became the quantization he incorporated
into his theory of electromagnetic radiation.

5J. W. Gibbs, The Elementary Principles of Statistical Mechanics, C. Scribner, New York (1902).
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introduces a moderate dose of quantum-based content, for both review and, hopefully, to inspire
interest in and, eventually, better understanding of thermodynamics. The second chapter develops
ideas that take us to the threshold of a thermodynamics that we should begin to recognize. In
Chapter 6 thermodynamics flies from a quantum nurtured nest, ready to take on challenges of
modern physics.

Students and practitioners of thermodynamics come from a variety of disciplines. Engineers,
chemists, biologists and physicists all use thermodynamics, each with practical or scientific con-
cerns that motivate different emphases, stress different legacies and demand different pedagogical
objectives. Since contemporary university curricula in most of these disciplines integrate some mod-
ern physics, i.e. quantum mechanics – if not its mathematical details at least its primary concepts
and aims – the basic thermodynamic ideas as discussed in the first two chapters should lie within
the range of students of science, engineering and chemistry. After a few chapters of re-acquaintance
with classic thermodynamic ideas, the book’s remaining chapters are dedicated to applications of
thermodynamic ideas developed in Chapter 6 in practical and model examples for students and
other readers.

Parts of this book first appeared in 1997 as notes for a course in thermal physics designed as a com-
ponent of the revised undergraduate physics curriculum at Oregon State University. An objective
of this revision was to create paradigmatic material stressing ideas common to modern understand-
ings and contemporary problems. Consequently, concepts and dynamic structures basic to quantum
mechanics – such as hamiltonians, eigen-energies and quantum degeneracy – appear and play im-
portant roles in this view of thermal physics. They are used to maintain the intended “paradigm"
spirit by avoiding the isolation of thermal physics from developments of the past 100 years while,
hopefully, cultivating in students and teachers alike a new perception of and appreciation for this
absolutely remarkable subject.

This work has been funded in part by NSF Grants: DUE 9653250, 0231194, 0837829.
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The atomistic nature of matter as conceptualized by the Greeks had, by the 19th century,
been raised by scientists to a high probability. But it was Planck’s law of radiation that
yielded the first exact determination of the absolute size of atoms. More than that, he
convincingly showed that in addition to the atomistic structure of matter there is a kind
of atomistic structure to energy, governed by the universal constant h. This discovery has
almost completely dominated the development of physics in the 20th-century. Without
this discovery a workable theory of molecules and atoms and the energy processes that
govern their transformations would not have been possible. It has, moreover, shaken the
whole framework of classical mechanics and electrodynamics and set science the fresh task
of finding a new conceptual basis for all of physics. Despite partial success, the problem is
still far from solved.

Albert Einstein, “Max Planck memorial service" (1948).
Original image, Einstein Archives Online, Jerusalem (trans. A. Wasserman)

Chapter 1

Introducing thermodynamics

1.1 The beginning

Thermodynamics has exceeded the scope and applicability of its utile origins in the industrial
revolution to a far greater extent than other subjects of physics’ classical era, such as mechanics and
electromagnetism. Unquestionably this results from over a century of synergistic development with
quantum mechanics, to which it has given and from which it has gained clarification, enhancement
and relevance, earning for it a vital role in the modern development of physics as well as chemistry,
biology, engineering, and even aspects of philosophy.

The subject’s fascinating history is intertwined with seminal characters who contributed much
to its present form – some colorful and famous with others lesser known, maligned or merely
ignored.

“Atomism" (i.e. molecular models), a source of early conflict, seems to have had Daniel Bernoulli

1
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as its earliest documented proponent when in 1738 he hypothesized a kinetic theory of gases.1

Although science – thermodynamics in particular – is now unthinkable without such models,
Bernoulli’s ideas were largely ignored and for nearly a century little interest was shown in mat-
ter as based on microscopic constituents. Despite a continuing atmosphere of suspicion, particle
models occasionally reappeared2,3 and evolved, shedding some of their controversy (Joule 1851)
while moving towards firm, accepted hypotheses (Kronig 1856). Adoption of kinetic models by
the respected Rudolf Clausius (1857) began to erode the skeptics’ position and encourage the new
statistical theories of Maxwell (1859) and Boltzmann (1872). At about the same time van der
Waals (1873), theorizing forces between real atoms and molecules, developed a sucessful equation
of state for non-ideal gases.4 Nevertheless, as the 20th-century dawned controversy continued only
slightly abated. J. J. Thomson’s discovery of the electron (1897) should have finally convinced
remaining doubters of matter’s microscopic essence – but it didn’t. The argument continued into
the 20th-century stilled, finally, by the paradigm shift towards “quantized" models.

It all started with Max Planck who in 19005,6 introduced quantized energy into theories of electro-
magnetic radiation – and Einstein7 who used quantized lattice vibrations in his ground-breaking
heat capacity calculation. But it would be another 25 years before the inherently probabilistic, mi-
croscopic theory of matter –quantum mechanics – with its quantum probabilities and expectation
values – would completely reshape the scientific landscape and permanently dominate most areas
of physics, providing a basis for deeper understanding of particles, atoms and nuclei while grooming
thermodynamics for its essential role in modern physics.

Thermodynamics is primarily concerned with mechanical, thermal and electromagnetic interactions
in macroscopic matter, i.e. systems with huge numbers of microscopic constituents (∼ 1023 particles).
Although thermodynamic descriptions are generally in terms of largely intuitive macroscopic vari-
ables, most macroscopic behaviors are, at their root, quantum mechanical. Precisely how the
classical measurement arises from quantum behavior has been a subject of some controversy ever
since quantum theory’s introduction. But it now seems clear that macroscopic systems are quantum
systems that are particularly distinguished by always being entangled (however weakly) with an
environment (sometimes referred to as a reservoir) that is also a quantum system. Although envi-
ronmental coupling may be conceptually simple and even uninteresting in detail, it has enormous
consequences for quantum-based descriptions of macroscopic matter, i.e. thermodynamics.8

1D. Bernoulli, Hydrodynamica (1738).
2J. Herapath, “On the causes, laws and phenomena of heat, gases, gravitation", Annals of Philosophy 9, (1821).

Herapath’s was one of the early papers on kinetic theory, but rejected by the Royal Society, whose reviewer objected
to the implication that there was an absolute zero of temperature at which molecular motion ceased.

3J.J.Waterston, “Thoughts on the mental functions" (1843). This peculiar title was a most likely cause of its re-
jection by the Royal Society as “nothing but nonsense". In recognition of Waterston’s unfairly maligned achievement,
Lord Rayleigh recovered the original manuscript and had it published as “On the physics of media that are composed
of free and perfectly elastic molecules in a state of motion", Philosophical Transactions of the Royal Society A 183,
1 (1892), nearly 10 years after Waterston’s death.

4Van der Waals’ work also implied a molecular basis for critical points and the liquid-vapor phase transition.
5Max Planck,“Entropy and temperature of radiant heat", Ann. der Physik 1, 719 (1900).
6Max Planck, “On the law of distribution of energy in the normal spectrum", Ann. der Physik 4, 553 (1901).
7A. Einstein, “Planck’s theory of radiation and the theory of specific heat", Ann. der Physik 22, 180 (1907).
8Macroscopic behavior can be quite different from the behavior of individual constituents (atoms, molecules,

nuclei, etc.) As an example, the appearance of spontaneous bulk magnetism in iron (at temperatures below some
critical temperature Tc) is not a property of individual iron atoms but arises from large numbers of interacting iron
atoms behaving collectively.
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1.2 Thermodynamic vocabulary

A few general, large-scale terms are used in describing objects and conditions of interest in ther-
modynamics.

• System: A macroscopic unit of particular interest, especially one whose thermal properties
are under investigation. It may, for example, be a gas confined within physical boundaries or
a rod or string of elastic material (metal, rubber or polymer). It can also be matter that is
magnetizable or electrically polarizable.

• Surroundings: Everything physical that is not the system or which lies outside the system’s
boundaries is regarded as “surroundings". This may be external weights, an external at-
mosphere, or static electric and magnetic fields. The system plus surroundings comprise,
somewhat metaphorically, “the universe".

• Thermal Variables: A set of macroscopic variables that describe the state of the system.
Some variables are intuitive and familiar, such as pressure, volume, elongation, tension, etc.
Others may be less intuitive and even abstract – such as temperature – which, nevertheless,
also play important roles in thermodynamics. These will be discussed in detail in this and
later chapters.

• Thermal equilibrium: The final state attained in which thermal state variables that describe
the macroscopic system (pressure, temperature, volume, etc.) no longer change in time.9 It is
only at thermal equilibrium that thermodynamic variables are well defined. The time elapsed
in attaining equilibrium is largely irrelevant.

1.3 Energy and the First Law

James Joule’s classic contribution on the mechanical equivalent of heat and his theory of energy re-
allocation between a system and its surroundings10 (referred to as energy conservation) led Rudolph
Clausius11 to the historic First Law of Thermodynamics:

ΔU = Q −W . (1.1)

HereW is mechanical work done by the system and Q is heat (thermal energy) added to the system,
both of which are classical quantities associated with surroundings. In Clausius’ time controversy
about reality in atomic models left U with no definitive interpretation. But being the maximum work
which could be theoretically extracted from a substance it was initially called “intrinsic energy". As
kinetic (atomic) models gained acceptance (Clausius having played an influential role) U became the
mean kinetic energy of the system’s microscopic constituents or, more generally, as internal energy .
Although the change in internal energy, ΔU , is brought about by mechanical and thermal, i.e.

9There are, nevertheless, small departures from equilibrium averages, referred to as fluctuations, whose values are
also part of any complete thermodynamic description.

10James P. Joule, “On the existence of an equivalent relation between heat and the ordinary forms of mechanical
power", Phil. Mag. 27 205 (1850).

11R. Clausius, “On the moving force of heat, and the laws regarding the nature of heat", Phil. Mag. 2 1-21,
102-119 (1851).
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classical, interactions, quantum mechanics provides a clear and specific meaning to ΔU as an average
change in energy of the macroscopic system as determined from kinetic, potential and interaction
energies of its microscopic constituents, clearly distinguishing it from other energy contributions.
The precise meaning and interrelation of this with similar macroscopic averages provides the basis
for thermodynamics.12

1.3.1 Thermodynamic variables defined

Some thermodynamic concepts and macroscopic variables are familiar from classical physics while
others arise simply from operational experience. Moving beyond this, quantum mechanics provides
definitions and context for not only internal energy U , but for other macroscopic (thermodynamic)
variables, placing them within a microscopic context that adds considerably to their meaning and
their role within thermal physics. The first law, in arraying Q and W (both classical) against ΔU
(quantum mechanical), highlights this intrinsic partitioning of macroscopic variables into “classi-
cal"(C ) vis-à-vis quantum (Q).

Examples of Q-variables – macroscopic variables having microscopic origins13 – are:

• internal energy: hop [energy of the system’s microscopic constituents – kinetic plus potential];

• pressure: pop = −(
∂hop

∂V
) [pressure arising from a system’s internal constituents];

• electric polarization: Pop;

• magnetization: Mop;

• elongation (length): χop;

• particle number: Nop.
14

Examples of C-variables – classical (macroscopic) variables that exist apart from microscopic me-
chanics15 – are:

• temperature: T ;

• volume: V ;

• static magnetic fields: B or H;

• static electric fields: E or D;16

• elastic tension: τ ;

12Macroscopic “averages" will be discussed in Chapter 2.
13These are defined by quantum operators.
14Variable particle number is essential for thermodynamic descriptions of phase transitions, chemical reactions and

inhomogeneous systems. However, the particle number operator is not a part of Schrödinger’s fixed particle number
theory, though it appears quite naturally in quantum field theories. Implementing variable particle number requires
operators to create and destroy them and operators to count them.

15These are not defined by quantum operators.
16Electromagnetic radiation fields are, on the other hand, representable by quantum field operators Bop and Eop

obtained from a quantum electromagnetic vector potential operator Aop. This will be discussed in Chapter 14, the
chapter on radiation theory.
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• chemical potential: μ.17

Interaction energy

Most Q-variables listed above appear from interaction terms added to hop. The following are
examples of such variables and their interactions.

a. Tension τ applied to an elastic material produces a “conjugate" elongation χ, as described
by an interaction operator18

Hχ
op = −τ ⋅χop . (1.2)

b. A static magnetic induction field B0 contributes an interaction operator (energy)

HMop = −mop ⋅B0 . (1.3)

Here mop represents a magnetic moment operator for elementary or composite particles.
The sum19,20

Mop = ∑
i

mop (i) , (1.4)

represents the total magnetization operator.

c. A static electric field E0 can contribute an interaction operator (energy)

HP
op = −p

op
⋅ E0 , (1.5)

where pop represents an electric dipole moment operator and

Pop = ∑
i

p
op
(i) (1.6)

represents the total polarization.21

d. An energy associated with creating “space" for the system

HWop = popV , (1.7)

with pop representing the system pressure and V the displaced volume.

17μ is an energy per particle and is associated with processes having varying particle number.
18The tension τ is said to be conjugate to the elongation χ. The variable and its conjugate comprise a thermody-

namic energy.
19The field B0 conjugate to mop is the field present prior to the insertion of matter. Matter itself may be

magnetized and contribute to an effective B.
20There are ambiguities in the thermodynamic roles of static fields, e.g. Maxwell’s local magnetic average B vs.

an external B0 and Maxwell’s local electric average E vs. external E0.
21The field E0 is conjugate to the electric dipole operator pop.
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e. An “open system" energy associated with particle creation and/or destruction is

HNop = −μNop , (1.8)

where the chemical potential μ (an energy per particle) is conjugate to a particle number
operator Nop. Chemical reactions, phase transitions and other cases with variable numbers
of particles of different species are examples of open systems.22

1.4 Quantum mechanics, the “mother of theories"

As out of place as rigorous quantum ideas might seem in this introduction to thermodynamics, it
is the author’s view that they are an essential topic for an approach that strives to bring unity of
structure and calculable meaning to the subject.

1.4.1 Introduction

Macroscopic variables such as pressure p, magnetization M , elastic elongation χ, particle num-
ber N , etc. – any (or all) of which can appear in thermodynamic descriptions of matter – have
microscopic origins and should be obtainable from quantum models. The question is: “how"?

Investigating the means by which microscopic models eventually lead to macroscopic quantities is
the aim of Chapters 2 and 6. Preliminary to that goal, this chapter reviews postulates, definitions
and rules of quantum mechanics for typical isolated systems.23 Particular attention is given to prob-
abilities and expectation values of dynamical variables (observables).24 This provides the basic rules,
language and notation to carry us into Chapter 2 where the question “What is thermodynamics?" is
raised, and then to Chapter 6 where the ultimate question “How does it arise?" is addressed.

In achieving this goal Chapter 2 will diverge somewhat from the familiar “wave mechanics" of
introductory courses and focus on a less-familiar but closely related quantum mechanical object
called the density operator , ρop. This quantity, although derived from a quantum state function,
goes beyond state function limitations by adding the breadth and flexibility critical for answering
most of our questions about thermodynamics. It is a “Yellow Brick Road" that will guide us from
the land of the Munchkins to the Emerald City25 – from the microscopic to the macroscopic – from
quantum mechanics to thermodynamics.

1.4.2 A brief review

The review starts with Schrödinger’s famous linear equation of non-relativistic quantum mechan-
ics:

Hopψ (x, t) = ih̵
∂ψ (x, t)

∂t
. (1.9)

22Variable particle number is intrinsic to thermal physics even though it may be suppressed for simplicity when
particle number is assumed constant.

23These are the systems described by Schrödinger theory.
24Most of this review material is assumed to be familiar from an earlier course in modern physics. If not, it is

recommended that you work alongside one of the many books on introductory quantum mechanics.
25L. Frank Baum, Wizard of Oz, Dover Publications, New York (1996).
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The solution to Eq.1.9 is the time-evolving, complex, scalar wavefunction ψ (x, t), which describes
the quantum dynamics of an isolated, fixed particle number, microscopic system.

In the widely used (and preferred) Dirac notation, Eq.1.9 is identical with

Hop ∣Ψ⟩ = ih̵
∂

∂t
∣Ψ⟩ , (1.10)

where ∣Ψ⟩ is the time-dependent state function, or “ket", corresponding to the wavefunction ψ (x, t),
i.e.

⟨x ∣ Ψ⟩ ≡ ψ (x, t) . (1.11)

Here ∣x⟩ is an “eigen-ket" of the position operator with x ≡ x1,x2 . . . ,xN the coordinates of an
N -particle system. As indicated in Eq.1.11, the wavefunction ψ (x, t) is merely the “ket" ∣Ψ⟩ in a
coordinate representation.26 Hop is the hamiltonian operator (inspired by classical dynamics). A
hamiltonian operator for a case with only internal particle dynamics may, for example, be writ-
ten

hop =Top + Vop , (1.12)

where Top and Vop are kinetic energy and potential energy operators, respectively.27 Additional
interaction terms Hint

op such as Eqs.1.2 → 1.8 may appear, depending on the physical situation, in
which case

Hop = hop +Hint
op . (1.13)

The quantum statefunction ∣Ψ⟩ (see Eq.1.11) has no classical counterpart and is, moreover, not even
a measurable! But it is nevertheless interpreted as the generating function for a statistical descrip-
tion of the quantum system – including probabilities, statistical averages (expectation values) and
fluctuations about these averages. It contains, in principle, all that is knowable about the isolated,
microscopic system.28

Devising an arbitrary but reasonable quantum knowledge scale, say

1⇒ all knowledge , (1.14)
0⇒ no knowledge , (1.15)

and using this scale to calibrate “information", Schrödinger’s quantum state function has informa-
tion value 1.29 Unless there is some quantum interaction with the surroundings (i.e. the system is
no longer isolated) ∣Ψ⟩ will retain information value 1 indefinitely.30,31

26The “ket" ∣Ψ⟩ is an abstract, representation-independent object. Its only dependence is t, time.
27Vop is assumed to also include particle-particle interactions.
28Whereas probabilities are derivable from the system statefunction, the reverse is not the case – statefunctions
∣Ψ⟩ cannot be inferred from measurement.

29In Chapter 2 we will introduce a more solidly based mathematical measure of “information", extending this
arbitrary scale.

30The isolated system state function is a quantity of maximal information. The system’s isolation assures that no
information will “leak" in or out.

31Macroscopic complexity has relaxed absolute reliance on a detailed many-body quantum description of a macro-
scopic system. Even at this early point we can forsee that exact (or even approximate) knowledge of the macroscopic
(many-body) quantum state-function (even if that were possible – which it is not) is unnecessary for macroscopic
descriptions.
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An energy expectation value – an observable – is defined (in terms of the wavefunction) by

⟨H (t)⟩ = ∫ dxψ∗ (x, t)Hopψ (x, t) , (1.16)

where ψ∗ (x, t) is the complex conjugate of the wavefunction ψ (x, t). In the more convenient Dirac
notation

⟨H⟩ = ⟨Ψ ∣Hop∣Ψ⟩ , (1.17)

where ⟨Ψ ∣, the conjugate to ∣Ψ⟩, is called a “bra". The energy expectation value (sometimes called
average value) is often a measurable32 of physical interest.

But neither Eq.1.16 nor Eq.1.17 represent thermodynamic state variables. In particular, ⟨h⟩ = ⟨Ψ ∣hop∣Ψ⟩
is not macroscopic internal energy U , the centerpiece of the First Law. This is a crucial point that
will be further addressed in Chapter 2 when we inquire specifically about thermodynamic vari-
ables.

In quantum mechanics, each of nature’s dynamical observables (e.g. momentum, position, energy,
current density, magnetic moment, etc.) is represented by an hermitian operator. (An hermitian
operator satisfies the condition Ω†

op = Ωop, where † is the symbol for hermitian conjugation. In
matrix language hermiticity means Ω† = (Ω⋆)T = Ω, where (Ω⋆)T is the complex conjugate-
transpose of the matrix Ω.)33

The quantum theory postulates an auxiliary eigenvalue problem for Ωop (which represents a typical
hermitian operator)

Ωop∣ωn⟩ = ωn∣ωn⟩ , (1.18)

with n = 1,2,3, . . ., from which the spectrum of allowed quantum observables ωn (called eigenvalues)
is derived. The ωn are real numbers34 and ∣ωn⟩ are their corresponding set of complex eigenfunctions.
(For simplicity we assume the eigenvalues are discrete.) The specific forms required for dynamical
hermitian operators will be introduced as the models require.

1.5 Probabilities in quantum mechanics

According to the Great Probability Postulate of quantum mechanics, the Schrödinger state function ∣Ψ⟩
is a generator of all probability information about an isolated quantum system with fixed number
of particles.35 Using the complete orthonormal set of eigenfunctions determined from Eq.1.18, a
state function ∣Ψ⟩ can be expressed as a linear coherent superposition36

∣Ψ⟩ = ∑
n

∣ωn⟩⟨ωn∣Ψ⟩ , (1.19)

where the coefficients
p (ωn, t) = ⟨ωn∣Ψ⟩ (1.20)

32The value of this measurable is the average of a very large number of identical measurements on identical systems
with identical apparatus.

33In the following discussion Ωop is used as a generic symbol for operators representing observables.
34The hermitian property of quantum mechanical operators assures that the eigenvalues will be real numbers.
35The state function ∣Ψ⟩ depends on time t so that all quantities calculated from it will – in principle – also depend

on time.
36This is the famous linear superposition theorem.



1.6. CLOSING COMMENTS 9

are complex probability amplitudes. Coherence as used here implies phase relations among the
terms in the sum which leads to characteristic quantum interference effects.

The probability that a measurement outcome will be ωn is given by

P (ωn, t) = ∣⟨ωn∣Ψ⟩∣2 (1.21)
= ⟨ωn∣Ψ⟩⟨Ψ ∣ωn⟩ . (1.22)

The eigenfunction ∣ωn⟩ acts, therefore, as a statistical projector in the sense that with some ap-
propriate measuring device it projects out from the state function ∣Ψ⟩ the statistical probability of
measuring ωn. The probabilities P (ωn, t) are normalized in the usual probabilistic sense, i.e.

∑
n

P (ωn, t) = 1, (1.23)

which corresponds to state function normalization

⟨Ψ ∣Ψ⟩ = 1 . (1.24)

1.5.1 Expectation values

If the probability of observing the measurable value ωn is P (ωn, t), then its expectation (average)
value ⟨ω⟩ is, as in ordinary statistics,

⟨ω⟩ = ∑
n

ωnP (ωn, t) (1.25)

= ∑
n

ωn⟨ωn∣Ψ⟩⟨Ψ ∣ωn⟩ . (1.26)

For the important special case of energy of an isolated (microscopic) system, where

Hop∣En⟩ = En∣En⟩ , (1.27)

with En the allowed eigen-energies (eigenvalues) and ∣En⟩ the corresponding eigenfunctions, the
energy expectation value for the state ∣Ψ⟩ is

⟨E⟩ = ∑
n

En⟨En∣Ψ⟩⟨Ψ ∣En⟩ (1.28)

= ∑
n

EnP (En, t) , (1.29)

which is equivalent to Eq.1.17.

The expectation value of any hermitian observable Ωop is, for a microscopic system,

⟨Ω⟩ = ⟨Ψ ∣Ωop ∣Ψ⟩ . (1.30)

1.6 Closing comments

The main points in this chapter are as follows.
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1. Schrödinger’s wavefunctions yield quantum probabilities and quantum expectation values (av-
erages). But, contrary to expectations, these measurables are NOT macroscopic state vari-
ables of thermodynamics. Temporarily putting aside this letdown, the issue will be discussed
and resolved in the next chapters.

2. Schrödinger state functions are capable of generating all dynamical information that can be
known about the physical system. They can be said to have “information content" 1 and are
called pure states. From these few clues it should be apparent that “information" is a term
with relevance in quantum mechanics and, ultimately, in thermodynamics.

The reader is encouraged to consult the ever-growing number of fine monographs on quantum
mechanics (far too many to list here).



If someone says that he can think or talk about quantum physics without becoming dizzy,
that shows only that he has not understood anything whatever about it.

Murray Gell-Mann, Thinking Aloud: The Simple and the Complex",
Thinking Allowed Productions, Oakland, California (1998)

Chapter 2

A road to thermodynamics

2.1 The density operator: pure states

Results from Chapter 1 can, alternatively, be expressed in terms of a density operator ρop which is
defined (in Dirac notation) as

ρop = ∣Ψ⟩⟨Ψ ∣ (2.1)

where the Dirac “ket", ∣Ψ⟩ is a pure Schrödinger state function, and the Dirac “bra" ⟨Ψ ∣ is its
conjugate. Density operator ρop is clearly hermitian with matrix elements – the density matrix – in
some complete basis ∣ωi⟩

ρij = ⟨ωi∣Ψ⟩⟨Ψ ∣ωj⟩ , (2.2)

whose diagonal elements

ρii =∣⟨Ψ ∣ωi⟩∣2 (2.3)

are identical with the probabilities of Eq.1.21

ρii =P (ωi) . (2.4)

An introduction to properties of the density operator1 (matrix) will demonstrate that this object’s
value is not merely that of an alternative to the wave equation description in the previous chapter,
but that it is capable of defining and accommodating a broader class of quantum states – in
particular, states which are not pure, i.e. states for which information2 content is less than 1. This
generalization is a huge stride towards realizing thermodynamics.3

1Also called the Statistical Operator
2A brief discussion about information appeared in Chapter 1.
3Moreover, the density operator (matrix) can be a measurable. See: R. Newton and B. Young, “Measurability of

the spin density matrix", Annals of Physics 49, 393 (1968); Jean-Pierre Amiet and Stefan Weigert, “Reconstructing
the density matrix of a spin s through Stern-Gerlach measurements: II", J. Phys. A 32, L269 (1999).

11
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2.1.1 Traces, expectations and information

If Aop is an operator and its matrix representation is

Aij = ⟨φi∣Aop∣φj⟩ , (2.5)

then its trace TrAop is defined as the sum of its diagonal matrix elements in the orthonormal basis
∣φi⟩4

TrAop = ∑
i

⟨φi∣Aop ∣φi⟩ . (2.6)

The expectation value ⟨Ω⟩ in terms of the pure state density operator ρop is

⟨Ω⟩ =
∑
α
⟨φα∣ρopΩop∣φα⟩

∑
α
⟨φα∣ρop∣φα⟩

, (2.7)

where ∣φα⟩ is any complete set of states. Using Eq.2.6, this can be condensed to

⟨Ω⟩ = TrρopΩop

Trρop
. (2.8)

Since ∣Ψ⟩ is normalized,

Trρop = ∑
α

⟨φα∣ρop∣φα⟩ (2.9)

= ∑
α

⟨φα∣Ψ⟩⟨Ψ ∣φα⟩ (2.10)

= ∑
α

⟨Ψ ∣φα⟩⟨φα∣Ψ⟩ (2.11)

= ⟨Ψ ∣Ψ⟩ (2.12)

= 1 , (2.13)

reducing Eq.2.8 to
⟨Ω⟩ = TrρopΩop , (2.14)

where completeness of ∣φα⟩ has been applied. Using as a basis ∣ωn⟩ (the eigenfunctions of Ωop)
Eq.2.14 becomes, as expected,

⟨Ω⟩ =∑
n

ωn ∣⟨Ψ ∣ωn⟩∣2 , (2.15)

where, as discussed in Chapter 1,

P (ωn) = ∣⟨Ψ ∣ωn⟩∣2 (2.16)

is the probability of finding the system in an eigenstate ∣ωn⟩.
4The trace of a matrix is independent of the orthonormal basis in which the matrix is expressed.
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The probability P (ωn) is easily shown to be expressible as

P (ωn) = Tr {ρop∣ωn⟩⟨ωn∣} . (2.17)

The brief introduction to information in Chapter 1 is now carried a step further by defining a new
quantity, purity I,

I = Trρop2 , (2.18)

as a way to measure information.5 The pure state, Eq.2.1, now has purity (information)

I = Trρopρop = ∑
α

⟨φα∣Ψ⟩⟨Ψ ∣Ψ⟩⟨Ψ ∣φα⟩ (2.19)

= ∑
α

⟨Ψ ∣φα⟩⟨φα∣Ψ⟩⟨Ψ ∣Ψ⟩ (2.20)

= ⟨Ψ ∣Ψ⟩ (2.21)

= 1, (2.22)

in agreement with the idea of maximal information on the arbitrary scale devised in Chapter 1. The
pure state density operator ρop carries complete quantum information (I = 1) about an isolated
microscopic system, in the same way as does its corresponding state function ∣Ψ⟩, but within a
more useful framework. (The best is still to come!) The density operator has an equation of motion
found by using the time derivative of the state operator,

∂ρop

∂t
= ( ∂

∂t
∣Ψ⟩) ⟨Ψ ∣ + ∣Ψ⟩ (⟨Ψ ∣ ∂

∂t
) (2.23)

= (− i

h̵
Hop∣Ψ⟩) ⟨Ψ ∣ + ∣Ψ⟩ (⟨Ψ ∣

i

h̵
Hop)

= i

h̵
(ρopHop −Hopρop)

= i

h̵
[ρop,Hop] , (2.24)

which, in practical terms, is equivalent to Schrödinger’s equation.6

2.2 Mixed states

At this point it might seem that not much has been gained by introducing the density operator. So
why bother?

Keeping in mind that our interest is in macroscopic quantum systems whose states are inextricably
entangled with those of a quantum environment, the density operator provides a logical foundation
for describing environmental “mixing" and its consequences.7 Although it seems that mixing can

5This is not the only way “information" can be defined. A more thermodynamically relevant definition will be
expanded upon in Chapter 6.

6The hamiltonian Hop is the full system hamiltonian.
7Even if at some initial time a state starts out pure with maximal information, interactions with the environment

quickly destroy that purity – the larger the system the more rapid the loss of purity.
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only irreparably complicate matters, in fact it ultimately reveals the essence of thermodynamics,
bringing its meaning into focus.

Pure quantum states, which evolve according to Schrödinger’s equation, can be individually pre-
pared and then classically combined by some (mechanical) process or apparatus.8 This combined
configuration cannot be a solution to any Schrödinger equation and is no longer a pure state de-
scribed by a state function, say ∣Ψ (ξ)⟩. It can, however, be described by a density operator – in
particular a mixed state density operator ρMop – defined by

ρMop = ∑
j

∣ψ(j)⟩wj ⟨ψ(j)∣ (2.25)

with
∑
j

wj = 1 , (2.26)

where the wj are real, classical, probabilities that the jth pure state density operator ∣ψ(j)⟩⟨ψ(j)∣
contributes to Eq.2.25. The sum in Eq.2.25 is not an example of the superposition principle. It
is not equivalent to or related to any linear coherent superpositions (with phase relationships)
that exhibit quantum interference. Eq.2.25 represents an ensemble of systems, ∣ψ(j)⟩, combined
according to classical probabilities wj with no phase relationships.

2.2.1 Example

Consider ions with spin +1/2 in a pure Schrödinger state ∣Ψ1/2⟩ which can be expressed as a linear
coherent superposition (the superposition principle)

∣Ψ1/2⟩ = ∣ϕ+1/2⟩⟨ϕ+1/2∣Ψ1/2⟩ + ∣ϕ−1/2⟩⟨ϕ−1/2∣Ψ1/2⟩ (2.27)

where ∣ϕ+1/2⟩ and ∣ϕ−1/2⟩ are the complete set of spin 1/2 eigenstates quantized along the z -axis.

Figure 2.1: Stern-Gerlach apparatus with filter.

The quantum probability an ion will be found in a +1/2 spin eigenstate is

P (+1/2) = ∣⟨ϕ+1/2 ∣ Ψ1/2⟩∣
2

(2.28)

8A Stern-Gerlach “machine" is such an apparatus. See Example 2.2.1.
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while the quantum probability an ion will be found in a −1/2 spin eigenstate is

P (−1/2) = ∣⟨ϕ−1/2 ∣ Ψ1/2⟩∣
2
. (2.29)

After passing the beam through a magnetic field gradient, (Stern-Gerlach apparatus) ions in the
pure ∣ϕ±(1/2)⟩ states will emerge deflected along a pair of divergent trajectories with probabilities
w+ 1

2
= 1

2
and w− 1

2
= 1

2
with w+ 1

2
+w− 1

2
= 1.

Following this, each of the separated ion beams is itself deflected by, for example, a uniform static
magnetic field, with one of the beams, say the ∣ϕ−1/2⟩, first passing through a purpose designed
filter that diminishes its intensity to one-half its initial value. Then, by incoherently (classically)
mixing the redirected pure ∣ϕ+1/2⟩ and ∣ϕ−1/2⟩ states, a new, single beam is reconstituted. Clearly
there is no single Schrödinger state function for the reconstituted beam. But a mixed state density
operator, as in Eq.2.25, is possible with

ρ
± 1

2
op =

2

3
∣ϕ+ 1

2
⟩⟨ϕ+ 1

2
∣ + 1

3
∣ϕ− 1

2
⟩⟨ϕ− 1

2
∣ . (2.30)

This is an incoherent (non-interfering) ensemble sum. There are no phase relationships between
different pure state contributions.

2.2.2 Mixed state properties

The mixed state density operator has several properties that coincide with those of the pure state
density operator. For example:

1. Using Eqs.2.25 and 2.26 it is easy to show that the mixed state density operator has the
normalization property

TrρMop = 1 . (2.31)

2. The average value of the observable Ωop for the mixed state is

⟨Ω⟩ = TrρMopΩop. (2.32)

3. In the mixed state the probability of measuring the observable ωs is

P (ωs) = Tr {ρMop ∣ωs⟩⟨ωs∣} . (2.33)

4. Following the steps for deriving Eq.2.24, the mixed state density operator has an equation of
motion

∂ρMop

∂t
= i

h̵
[ρMop,Hop] . (2.34)
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2.2.3 Macroscopic consequences

Macroscopic systems are always quantum coupled to their surroundings, i.e. many-particle quantum
systems entangled with their quantum environment. It is here that distinctive characteristics of the
mixed state density operator cause it to emerge as the correct object for describing macroscopic
(thermodynamic) systems.

Expanding the pure state ∣Ψ⟩ in a linear coherent superposition of system eigenstates ∣ωi⟩

∣Ψ⟩ = ∑
i

∣ωi⟩⟨ωi∣Ψ⟩ (2.35)

its corresponding density operator is

ρop = ∑
i

∣⟨ωi∣Ψ⟩∣2 ∣ωi⟩⟨ωi∣ +∑
i≠j
∣ωi⟩ρij⟨ωj ∣ (2.36)

whose off-diagonal terms are typical of quantum interference.

The density operator formulation accomodates an approach in which a system, such as defined
by Eq.2.35, interacts with a quantum environment resulting in an entangled system-environment
density operator. Later, the uninteresting and unmeasurable environmental degrees of freedom are
identified and summed (traced) out leaving a reduced density operator consisting of two compo-
nents:

• The first component is a mixed state density operator ρsop of the system alone – independent
of the environment

ρsop = ∑
i

∣⟨ωi∣Ψ⟩∣2∣ωi⟩⟨ωi∣ . (2.37)

Here P (ωi) = ∣⟨ωi∣Ψ⟩∣2 are the probabilities of Eq.2.16 for which

∑
i

P (ωi) = 1 . (2.38)

Clearly ρsop has less than complete system information.

• The second component is a sum of off-diagonal interference terms containing a system-environment
interaction dependent factor that rapidly decays with time. This term represents information
“lost" to the environment.

The density operator sum of Eqs.2.37 represents an ensemble of pure system states having all the
mixed state properties exhibited in Eqs.2.31 - 2.34.

With the loss of non-diagonal interference terms the reduced density operator has crossed a bound-
ary from pure quantum results (displaying interference) into a classical regime with no quantum
interference. This is the meaning and consequence of entangled environmental decoherence.9,10,11,12

Using ρsop macroscopic system averages can now – in principal – be calculated.
9E. Joos and H. D. Zeh, “The emergence of classical properties through interaction with the environment", Z.

Phys. B 59, 223 (1985).
10E. Joos, H. D. Zeh, et. al. Decoherence and the Appearance of a Classical World in Quantum Theory, Springer,

Berlin (2003).
11W. H. Zurek, “Decoherence and the transition to the classical", Phys. Today 44, 36-44 (1991).
12Maximilian Schlosshauer, Decoherence and the Quantum to Classical Transition, Springer, New York (2007).
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The equation of motion for the density operator ρsop is found by the method leading to Eq.2.34 and
gives

∂ρsop

∂t
= i

h̵
[ρsop,Hop] . (2.39)

Since we are interested in thermal equilibrium, i.e. thermodynamic variables are not, on average,
changing in time, we also require

∂ρsop

∂t
= 0 . (2.40)

It therefore follows that at thermal equilibrium

[ρsop,Hop] = 0 , (2.41)

i.e. the mixed state density operator ρsop and the quantum mechanical hamiltonian Hop commute,
guaranteeing that the density operator and the hamiltonian have the same set of macroscopic
eigenstates. Specifically basing Eq.2.35 on the linear superposition generated from the eigenstates
of

Hop∣Es⟩ = Es∣Es⟩, (2.42)

where Es are macroscopic system eigen-energies and ∣Es⟩ are corresponding eigenstates, entangled
environmental coupling reduces Eq.2.37 to a specific thermal density operator

ρτop = ∑
s

P (Es)∣Es⟩⟨Es∣ , (2.43)

which commutes with Hop as required and where P (Es) are probabilities the macroscopic system
has eigen-energies Es.13

2.2.4 Thermodynamic state functions(?)

Applying the hamiltonian of Eq.1.12 the spectrum of macroscopic internal eigen-energies14 can be
found from

hop∣εs⟩ = εs∣εs⟩ . (2.44)

Furthermore with these eigen-states a thermal density operator can be constructed

ρτop = ∑
s

P (εs)∣εs⟩⟨εs∣ (2.45)

from which, in principle, we can find

1. Internal energy U

U = Trρτophop (2.46)

= ∑
s

εsP (εs) . (2.47)

13In non-equilibrium thermodynamics
∂ρτop

∂t
≠ 0, which requires evaluation of Eq.2.39. This equation can be studied

by a systematic thermodynamic perturbation theory.
14Internal energy is generally taken to be the kinetic and potential energy of constituent particles. Total energy,

on the other hand, reflects energy contributions from all interactions.
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2. Internal pressure p

p = Trρτop (−
∂hop

∂V
) . (2.48)

3. Internal Energy Fluctuations ⟨(ΔU)2⟩

⟨(ΔU)2⟩ =Trρτop (hop − ⟨hop⟩)2 (2.49)

=⟨h2
op⟩ − ⟨hop⟩2 . (2.50)

Thermodynamics is beginning to emerge from quantum theory. However, there remains an obstacle – no
measurement or set of independent measurements can reveal ρτop, suggesting that ρτop are unknow-
able! Is this fatal? The question is addressed in Chapter 6.

2.3 Thermal density operator ρτ
op and entropy

Macroscopic quantum systems are entangled with an environment. As a result:

1. They are not isolated.

2. They are not representable as pure Schrödinger states.

3. They “leak" information to their environment.

As defined in Eq.2.1815,16 purity covers the range of values

0 < I = Tr (ρτop)
2 ≤ 1 (2.51)

(see Appendix A).

Now, beginning an adventurous progression, purity is replaced by an alternative logarithmic scale

s = − lnTr (ρτop)
2
, (2.52)

which, according to Eq.2.51, now covers the range 0 ≤ s < ∞, where

s = 0⇒ complete information , (2.53)
s > 0⇒missing information . (2.54)

Finally, a more physically based alternative to purity (see Appendix B) is defined as

F = −κTr ρτop lnρτop (2.55)

15The following result is proved in Appendix A.
16Zero “purity" means that all outcomes are equally likely.
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where κ is a real, positive scale constant.17 It covers the same range as s but with different
scaling:

F = 0 ≡ complete information (biased probabilities)⇒ pure state ,
F > 0 ≡ incomplete information (unbiased probabilities)⇒mixed state .

Although as introduced here F appears nearly identical to the quantity Gibbs called entropy, it
is not yet the entropy of thermodynamics. As in Example 2.2 of Subsection 2.3.1 below (and
everywhere else in this book), only the maximum value assumed by F , i.e. Fmax, can claim
distinction as entropy.

Even quantum mechanics’ exceptional power offers no recipe for finding ρτop (see Eq. 2.43). Over-
coming this obstacle requires that we look outside quantum mechanics for a well reasoned postulate
whose results accord with the measurable, macroscopic, physical universe. This is the subject of
Chapter 6.

2.3.1 Examples

Example 2.1

Consider a density matrix

ρ = ( 1 0
0 0

) . (2.56)

After matrix multiplication

(ρ)2 = ( 1 0
0 0

)( 1 0
0 0

)

= ( 1 0
0 0

) , (2.57)

so its corresponding purity I = Tr (ρ)2 is

I =Tr (ρ)2 (2.58)

=1 , (2.59)

corresponding to total information – a pure state (totally biased probabilities.) As introduced in
Eq.2.55,

F/κ = −Tr ρ lnρ , (2.60)

whose evaluation requires a bit of analysis.
17In thermodynamics κ→ kBT (Boltzmann’s constant× temperature.)
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If f (M) is a function of the operator or matrix M, then its trace Tr f (M) can be evaluated by
first assuming that the function f (M) implies a power series in that matrix. For example

eM = 1 +M + 1

2
M2 +⋯ . (2.61)

Then, since the trace of an operator (matrix) is independent of the basis in which it is taken, the
trace can be written

Tr f (M) = ∑
m

⟨m∣f (M) ∣m⟩ , (2.62)

where the matrix ⟨m∣f (M) ∣m⟩ is in the basis that diagonalizes M,

M∣m⟩ = μm∣m⟩ , (2.63)

with μm the eigenvalues of M and ∣m⟩ its eigenfunctions. Referring to Eq.2.56 we see ρ is already
diagonal with eigenvalues {0,1}. Therefore18

F

κ
= −{1 × ln (1) + 0 × ln (0)} (2.64)

= 0 , (2.65)

corresponding to a pure state – maximal information (totally biased probabilities).

Example 2.2

Now consider the density matrix

ρ =
⎛
⎜⎜
⎝

1

2
0

0
1

2

⎞
⎟⎟
⎠

(2.66)

for which matrix multiplication gives

(ρ)2 =
⎛
⎜⎜
⎝

1

2
0

0
1

2

⎞
⎟⎟
⎠

⎛
⎜
⎝

1

2
0

0
1

2

⎞
⎟
⎠

=
⎛
⎜⎜
⎝

1

4
0

0
1

4

⎞
⎟⎟
⎠

. (2.67)

Therefore its purity I is

Tr (ρ)2 = 1/2 , (2.68)

18 lim
x→0

x lnx = 0.
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which corresponds to a mixed state with less than maximal information. The matrix of Eq.2.66,
which is already diagonal with eigenvalues {1/2,1/2}, has

F

k
= −{1/2 × ln (1/2) + 1/2 × ln (1/2)} (2.69)

= ln 2 (2.70)

also implying missing information – not a pure state. Moreover, for a 2-dimensional density matrix
F/k = ln 2 is the highest value F/k can attain. This maximal value, Fmax/k = ln 2, describes
least biased probabilities. Furthermore, Fmax is now revealed as the entropy of thermodynamics
– the quantity invented by Clausius,19 interpreted by Boltzmann20 and formalized by Gibbs and
especially von Neumann.21,22 (see Appendix B.)

Problems and exercises

2.1 In a two-dimensional space a density matrix (hermitian with Trρ = 1) is

ρ = ( α X
X∗ 1 − α

)

a. Calculate F/κ = −Trρ lnρ as a function of α and X.

b. Find α and X that minimizes F/κ. What is Fmin/κ?

c. Find α and X that maximizes F/κ. What is the entropy Fmax/κ? (See Section 2.3.1).

2.2 In a three-dimensional space a density matrix (hermitian with Trρ = 1) is

ρ =
⎛
⎜
⎝

α1 X Y
X∗ α2 Z
Y ∗ Z∗ 1 − α1 − α2

⎞
⎟
⎠
.

Find X,Y,Z,α1 and α2 that maximizes F/kB . What is the entropy Fmax/kB?

2.3 Consider two normalized pure quantum states:

∣ψ1⟩ =
1√
3
∣ + ½⟩ + ı

√
2/3 ∣ − ½⟩ (2.71)

∣ψ2⟩ =
1√
5
∣ + ½⟩ − 2√

5
∣ − ½⟩ . (2.72)

where ∣ + ½⟩ and ∣ − ½⟩ are orthonormal eigenstates of the operator Sz.

Let them be incoherently mixed by some machine in equal proportions, i.e. w1 = w2 = 1/2.
19R. Clausius, The Mechanical Theory of Heat, with its Applications to the Steam-Engine and to the Physical

Properties of Bodies, John Van Voorst, London (1867).
20Ludwig Boltzmann, “Über die Mechanische Bedeutung des Zweiten Hauptsatzes der Wärmetheorie", Wiener

Berichte 53, 195-220 (1866).
21John von Neumann,Mathematical Foundations of Quantum Mechanics, Princeton University Press (1996).
22Entropy was also introduced in a context of digital messaging information by Claude Shannon, “A mathematical

theory of communication", Bell System Technical Journal, 27, 379-423, 623-656 (1948).
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a. Find the two dimensional density matrix (in the basis ∣ + ½⟩, ∣ − ½⟩) corresponding to this
mixed state.

b. Find the average value ⟨Sz⟩ in a measurement of the mixed state’s Sz spin components.

c. Find F/κ for this mixed state.

2.4 Consider two normalized pure quantum states:

∣ψ1⟩ =
1√
3
∣ + ½⟩ + ı

√
2/3 ∣ − ½⟩ (2.73)

∣ψ2⟩ =
1√
5
∣ + ½⟩ − 2√

5
∣ − ½⟩ . (2.74)

where ∣ + ½⟩ and ∣ − ½⟩ are orthonormal eigenstates of the operator Sz.

Let them be incoherently mixed by some machine such that: w1 = 1/3,w2 = 2/3.
a. Find the two dimensional density matrix (in the basis ∣ + ½⟩, ∣ − ½⟩) corresponding to this

mixed state.

b. Find the average value ⟨Sz⟩ in a measurement of the mixed state’s Sz spin components.

c. Find F/κ for this mixed state.



... there is in the physical world one agent only, and this is called Kraft [energy]. It may
appear, according to circumstances, as motion, chemical affinity, cohesion, electricity,
light and magnetism; and from any one of these forms it can be transformed into any of
the others.

Karl Friedrich Mohr, Zeitschrift für Physik (1837).

Chapter 3

Work, heat and the First Law

3.1 Introduction

Taking respectful note of Professor Murray Gell-man’s epigraphic remark in Chapter 2, a respite
from quantum mechanics is in order. Therefore the discussion begun in Chapter 1 is continued with
a restatement of the First Law of Thermodynamics:

ΔU = Q −W , (3.1)

where U is internal energy, a thermodynamic state function with quantum foundations. In this
chapter the “classical" terms W (work) and Q (heat) are discussed, followed by a few elementary
applications.

3.1.1 Work, W

Work W is energy transferred between a system and its surroundings by mechanical or electrical
changes at its boundaries. It is a notion imported from Newton’s mechanics with the defini-
tion

W = ∫ F ⋅ dr , (3.2)

where F is an applied force and dr is an infinitesimal displacement. The integral is carried out
over the path of the displacement.

Work is neither stored within a system nor does it describe any state of the system. Therefore
ΔW ?= Wfinal −Winitial has absolutely no thermodynamic meaning!

23
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Incremental work, on the other hand, can be defined as d−W , with finite work being the inte-
gral

W = ∫ d−W . (3.3)

The bar on the d is an essential reminder that d−W is not a true mathematical differential and that
the integral in Eq.3.3 depends on the path.1

Macroscopic parameters are further classified as:

• extensive – proportional to the size or quantity of matter (e.g. energy, length, area, volume,
number of particles, polarization, magnetization);

• intensive – independent of the quantity of matter (e.g. force, temperature, pressure, density,
tension, electric field, magnetic field).

Incremental work has the generalized meaning of energy expended by/on the system due to an
equivalent of force (intensive) acting with an infinitesimal equivalent of displacement (extensive)
which, in accord with Eq.3.2, is written as the “conjugate" pair,

d−W =∑
j

Fj
,

intensive

extensive
-
dxj , (3.4)

where Fj is generalized force and dxj is its conjugate differential displacement. If work takes
place in infinitesimal steps, continually passing through equilibrium states, the work is said to be
quasi-static and is distinguished by the representation d−WQS .

Examples of conjugate “work" pairs: intensive ↔ d(extensive) are:

• pressure (p) ↔ volume ( dV ) ;

• tension (τ ) ↔ elongation ( dχ) ;

• stress (σ) ↔ strain ( dε) ;

• surface tension (Σ) ↔ surface area ( dAS) ;

• electric field (E) ↔ electric polarization ( dP ) ;

• magnetic field (B) ↔magnetization ( dM);2

• chemical potential (μ) ↔ particle number ( dN) .

(It is often helpful in thermodynamics to think of mechanical work as the equivalent of raising and
lowering weights external to the system.)

Finite work, as expressed by Eq.3.3, depends on the details of the process and not just on the
process end-points.

1Work is not a function of independent thermal variables so that d−W cannot be an exact differential.
2The fields used in accounting for electric and magnetic work will be further examined in Chapter 11.
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The sign convention adopted here3 is

d−W > 0⇒ system performs work (d−Wgas
by = p dV ) ,

d−W < 0⇒ work done on the system (d−Wgas
on = −p dV ) .

3.1.2 Heat, Q

Heat Q is energy transferred between a system and any surroundings with which it is in diathermic
contact. Q is not stored within a system and is not a state of a macroscopic system. Therefore
ΔQ ?= Qfinal −Qinitial has no thermodynamic meaning! On the other hand, incremental heat is
defined as d−Q, with finite heat Q as the integral

Q = ∫ d−Q . (3.5)

Finite heat depends on the details of the process and not just the integral’s end points.

The bar on the d is an essential reminder that d−Q is not a function of temperature or any other

independent variables. It is not a true mathematical differential so “derivatives" like d−Q
dT

have
dubious meaning.

Processes for which Q = 0, either by thermal isolation or by extreme rapidity (too quickly to
exchange heat), are said to be adiabatic.

3.1.3 Temperature, T

Temperature is associated with a subjective sense of “hotness" or “coldness". However in thermo-
dynamics temperature has empirical (objective) meaning through thermometers – e.g. the height
of a column of mercury, the pressure of an ideal gas in a container with fixed volume, the electrical
resistance of a length of wire – all of which vary in a way that allows a temperature scale to be de-
fined. Since there is no quantum hermitian “temperature operator", a formal, consistent definition
of temperature is elusive. But it is achievable in practice through thermal measurements4 showing,
with remarkable consistency, how and where it thermodynamically appears and that it measures
the same property as the common thermometer.

3.1.4 Internal energy, U

As discussed in Chapter 1, internal energy U is a state of the system. Therefore ΔU does have
meaning and dU is an ordinary mathematical differential5 with

ΔU = U(B) − U(A) =
B

∫
A

dU , (3.6)

3In the case of pressure and volume as the conjugate pair.
4This subject will be discussed in Chapter 6.
5It is called an exact differential.
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where A and B represent different macroscopic equilibrium states. Clearly, ΔU depends only on the
end-points of the integration and not on any particular thermodynamic process (path) connecting
them.

3.2 Exact differentials

All thermodynamic state variables are true (exact) differentials with change in value as defined in
Eq.3.6. Moreover, state variables are not independent and can be functionally expressed in terms
of other state variables. Usually only a few are needed to completely specify any state of a system.
The precise number required is the content of an important result which is stated here without
proof:

The number of independent parameters needed to specify a thermodynamic state is
equal to the number of distinct conjugate pairs (see Section 3.1.1) of quasi-static work
needed to produce a differential change in the internal energy – plus ONE.6

For example, if a gas undergoes mechanical expansion or compression, the only quasi-static work is
mechanical work, d−WQS = p dV . Therefore only two variables are required to specify a state. We
could then write the internal energy of a system as a function of any two other state parameters.
For example, we can write U = U (T,V ) or U = U (p, V ). To completely specify the volume of a
gas we could write V = V (p, T ) or even V = V (p,U) . The choice of functional dependences is
determined by the physical situation and computational objectives.

If physical circumstances dictate particle number changes, say by evaporation of liquid to a gas
phase or condensation of gas to the liquid phase, or chemical reactions where atomic or molecular
species are lost or gained, a thermodynamic description requires “chemical work" d−WQS = −μ dN ,
where dN is an infinitesimal change in particle number and μ is the (conjugate) chemical potential.
Chemical potential μ is an intensive variable denoting energy per particle while particle number N is
obviously an extensive quantity. For cases where there is both mechanical and chemical work,

d−WQS = p dV − μ dN , (3.7)

three variables are required and, for example, U = U (T,V,N) or U = U (p, V, μ).
Incorporating the definitions above, an incremental form of the First Law of Thermodynamics
is

dU = d−Q− d−W . (3.8)

3.3 Equations of state

Equations of state are functional relationships among a system’s equilibrium state parameters –
usually those that are most easily measured and controlled in the laboratory. Determining equa-
tions of state, by experiment or theory, is often a primary objective in practical research, for then

6The ONE of the plus ONE originates from the conjugate pair T and dS, where S is entropy, about which much
will be said throughout the remainder of this book. T dS can be thought of as quasi-static thermal work.
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thermodynamics can fulfill its role in understanding and predicting state parameter changes for
particular macroscopic systems.

The following are samples of equations of state for several different types of macroscopic systems.
Their application is central in the Examples subsections below.

1. Equations of state for gases (often called gas laws) take the functional form f(p, V, T ) = 0,
where p is the equilibrium internal gas pressure, V is the gas volume, T is the gas temperature
and f defines the functional relationship. For example, a gas at low pressure and low particle
density, n = N/V , where N is the number of gas particles (atoms, molecules, etc.), has the
equation of state

p − (N/V )kBT = 0 (3.9)

or, more familiarly (the ideal gas law),

pV = NkBT , (3.10)

where kB is Boltzmann’s constant.7,8

2. An approximate equation of state for two- and three-dimensional metallic materials is usually
expressed as g(σ, ε, T ) = 0, where σ = τ/A is the stress, ε = (� − �0)/ �0 is the strain,9 T is the
temperature and A is the cross-sectional area. An approximate equation of state for a metal
rod is the Hookian behavior

ε = κσ , (3.11)

where κ is a material-specific constant.

3. An equation of state for a uniform one-dimensional elastomeric (rubber-like) material has the
form Λ(τ, χ, T ) = 0, where τ is the equilibrium elastic tension, χ is the sample elongation, T
is the temperature and Λ is the functional relationship. For example, a rubber-like polymer
that has not been stretched beyond its elastic limit can have the simple equation of state

τ −K Tχ = 0 , (3.12)

or

σ −K ′Tε = 0 , (3.13)

where K and K ′ are material-specific elastic constants.10,11

4. Dielectrics with no permanent polarization in weak polarizing electric fields have an equation
of state

P i = ∑
j

αij (T )Ej , (3.14)

7For a derivation of the ideal gas law see Chapter 7.
8For gases under realistic conditions Eq.3.10 may be inadequate requiring more complicated equations of state.

Nevertheless, because of its simplicity and “zeroth order" validity, the ideal gas “law" is pervasive in models and
exercises.

9� is the stretched length and �0 is the unstretched length
10H. M. James and E. Guth, “Theory of elastic properties of rubber", J. Chem. Phys. 11, 455-481 (1943).
11Comparing these equations of state with Eq.3.11 suggests a physically different origin for rubber elasticity. This

will be explored in Chapter 10.
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where P i is an electric polarization vector component, αij(T ) is the temperature-dependent
electric susceptibility tensor and Ej is an electric field component.12

In stronger fields equations of state may acquire nonlinear terms,13 such as

P i = ∑
j

α
(1)
ij (T )Ej +∑

j,k

α
(2)
ijk(T )EjEk . (3.15)

5. Non-permanently magnetized materials which are uniformly magnetized in weak magnetic
fields are described by the equation of state

M = χM(T )B0 , (3.16)

where M is the magnetization vector, χM(T ) is a temperature-dependent magnetic sus-
ceptibility tensor and B0 is the existing magnetic induction field prior to insertion of the
sample.14,15

3.3.1 Examples I

Quasi-static reversible work

A gas is confined in a cylinder by a frictionless piston of negligible mass and cross-sectional area A.
The gas pressure p is counteracted by a pile of fine sand of total mass m resting on the piston
(see Figure 3.1) so that it is initially at rest. Neglecting any atmospheric (external) force acting on
the piston, the downward force exerted by the sand is initially Fsand

0 = mg. Therefore the initial
equilibrium gas pressure pgas0 is

pgas0 = mg

A
. (3.17)

Sand is now removed “one grain at a time", allowing the gas to expand in infinitesimal steps,
continually passing through equilibrium states. Moreover, it is conceivable that at any point a
single grain of sand could be returned to the pile and exactly restore the previous equilibrium
state. Such a real or idealized infinitesimal process is called quasi-static. A quasi-static process, by
definition, takes place so slowly that the system (in this example a gas) passes through equilibrium
states with an equation of state always relating pressure, volume and temperature.

Note: If, as in this case, the previous state can be restored by an infinitesimal displacement – with
no dissipation of energy – the process is also said to be reversible.16

QUESTION: Assuming the quasi-static expansion also takes place isothermally at temperature TR,
what work is done by the gas in raising the piston from h1 to h2?

12Is this an external electric field or some average local internal electric field? How do Maxwell’s fields fit in here?
This will be addressed in Chapter 11. For the present, we assume that the sample is ellipsoidal in which case the
internal and external electric fields are the same.

13Robert W. Boyd, Nonlinear Optics, Academic Press, San Diego CA (2003).
14Magnetism and magnetic work will be discussed in Chapter 11.
15Solid-state physics textbooks often express Eq.3.16 in terms of an external magnetic field H.
16Not all quasi-static processes are reversible but all reversible processes are quasi-static. Reversibility implies no

friction or other energy dissipation in the process.
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Figure 3.1: Quasi-static reversible work. A piston loaded down with a pile of fine sand.

SOLUTION:

At all stages of the quasi-static expansion equilibrium is maintained with gas pressure pgas and
temperature TR related by, say, the ideal gas law. Therefore incremental work done by the gas
is

d−WQS = pgas dV (3.18)

= N kB TR

V
dV . (3.19)

Integrating Eq.3.19 along an isothermal path (as pictured in Figure 3.2) gives

WQS = N kB TR

V2=Ah2

∫
V1=Ah1

dV

V
(3.20)

= N kB TR ln (V2/V1) (3.21)

= N kB TR ln (pgasf /pgas0 ) . (3.22)

Irreversible work

Instead of a restraining sand pile, the piston is now pinned a distance h1 above the bottom of
the cylinder (See Figure 3.3). At the same time a constant atmospheric pressure Patm exerts an
external force Fatm on the piston,

Fatm = Patm A.
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Figure 3.2: p − V diagram for an isothermal quasi-static process.

Quickly extracting the pin frees the piston, allowing the gas to expand rapidly and non-uniformly.
After things quiet down the gas reaches an equilibrium state, the piston having moved upward
a distance � = h2 − h1 with a final gas pressure pgasf = Patm. This isothermal process is charac-
terized by a finite expansion rate and system (gas) non-uniformity. It is neither quasi-static nor
reversible.17

QUESTION: What isothermal work is done by the rapidly expanding gas in raising the piston a
distance �?

SOLUTION:

The gas expands irreversibly so that during expansion a gas law does not apply. But initially the
gas has equilibrium pressure pgas0 with volume V0,

V0 =
NkBT

pgas0

. (3.23)

After the piston ceases its erratic motion it returns to rest with the gas in equilibrium at atmospheric
pressure,

pgasf = Patm , (3.24)

with volume

Vf =
NkBT

Patm
. (3.25)

17All real processes in nature are irreversible. Reversibility is a convenient idealization for thermodynamic modeling.



3.3. EQUATIONS OF STATE 31

Figure 3.3: Irreversible work. A gas-filled piston initially pinned at height h1.

During expansion the gas lifts the piston against a constant force Fatm (equivalent to raising a
weight mg = Fatm in the Earth’s gravitational field).18 The incremental, irreversible work done by
the confined gas (the system) is

d−W = Patm dV (3.26)

which, with constant Patm, is integrated to give

W = Patm (Vf − V0) . (3.27)

With Eqs. 3.23 and 3.25

W = NkBT [1 − Patm

pgas0

] . (3.28)

Quasi-static irreversible work

A gas is confined by a piston whose position is again secured by a “pin". The piston is exposed to
atmospheric pressure P atm and the initial gas pressure is p0 > P atm. Removing the “pin" allows
the gas to expand with the piston’s upward movement opposed by both the atmosphere and a
wedge of variable friction (see Figure 3.4). The wedge “conspires" with the external atmosphere to
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friction

Figure 3.4: Quasi-static irreversible work. A piston slowed by a frictional wedge.

create an approximately quasi-static expansion. However, as a result of friction the expansion is
irreversible.

QUESTION: Regarding the gas alone as the system and assuming the process is isothermal, what
work is done by the quasi-statically expanding gas?

SOLUTION:

Gas pressure pgas quasi-statically lifts the piston against the combined force F atm + F friction. In-
cremental work done by the gas, assumed ideal, is

d−WQS =pgas dV

=NkBT

V
dV , (3.29)

which after integration becomes

WQS = NkBT ln(Vf

V0
) (3.30)

= NkBT ln( p0
P atm

) . (3.31)

Examining the same process from another point of view, take as the system the combined piston,
gas and frictional wedge. The sole external force acting on this system is the constant atmospheric

18The piston starts at rest and returns to rest. There is no change in the piston’s kinetic energy.
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pressure P atm. Therefore the work done by the system against the atmosphere is

Wsys = P atm (Vf − V0) (3.32)

or

Wsys = NkBT (1 − P atm

p0
) . (3.33)

The work done by the frictional wedge is the difference

Wfriction = NkBT [(1 − P atm

p0
) − ln( p0

P atm
)] , (3.34)

which is negative for either upward (p0 > P atm) or downward (p0 < P atm) movement of the piston
(as shown in Figure 3.5), underscoring irreversibility of the process.

Figure 3.5: Work Wfrict done by the frictional wedge .

3.3.2 Examples II

A loaded rubber band

A mass 2m, affixed to the end of a vertically stretched massless rubber band, rests a distance h1

(rubber band length �1) above a table. When half the mass is suddenly removed the rubber band
rapidly contracts causing the remaining mass m to rise. After oscillating for a while it finally comes
to rest a distance h2 (h2 > h1) (rubber band length �2) above the table. (See Figure 3.6.)
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Figure 3.6: A loaded, constrained rubber band when suddenly released rapidly contracts.

QUESTION 1: What is the work done by the rubber band?

SOLUTION:

After returning to rest the work done (not quasi-static) by the rubber band (work
done by the system) in raising the weight m (against gravity) is

W = −mgΔ� , (3.35)

where Δ� = �2 − �1 < 0.
QUESTION 2: What is the change in the rubber band’s internal energy?

SOLUTION:

Since the process takes place rapidly it is irreversible. Moreover, there is not enough
time for the rubber band to lose heat to the surroundings and the process can be
regarded as adiabatic. Using the First Law

ΔU = +mgΔ� . (3.36)

The rubber band loses internal energy.

QUESTION 3: This time to counteract rubber elasticity the total mass 2m is restrained to rise
slowly (quasi-statically) but isothermally. What is the work done by the contracting
rubber band?
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SOLUTION:

We can safely use an equilibrium tension (an elastic state parameter) which acts to
raise the weight. The incremental quasi-static elastic work done by the system is

d−WQS = −τ dχ , (3.37)

where dχ is the differential of elastic extension. Using the “rubber" equation of state,
Eq.3.12, and integrating over the range of extension χ

WQS = −K ′ T

0

∫
−Δ�

χ dχ (3.38)

= K ′ T (Δ�)2 . (3.39)

A compressed metal rod

A metal rod, cross-sectional area A, is suddenly struck by a sledgehammer subjecting it to a
transient but constant compressive (external) force F which momentarily changes the rod’s length
by Δ� = �f − �0 < 0.
QUESTION 1: What is the work done on the rod during the interval that its length decreases by

∣Δ�∣?
SOLUTION:

Sudden compression of the rod implies that it does not pass through equilibrium
states so an equilibrium internal stress in the bar σ = f/A is not defined. But the
mechanical work done on the rod by the constant compressive force is, however,

W = −F Δ� . (3.40)

QUESTION 2: On the other hand, if the rod could be compressed infinitely slowly (perhaps by a
slowly cranked vise) the rod’s internal stress is a well-defined equilibrium property
and the quasi-static incremental work done by the system (i.e. the rod) is

d−WQS = −V σ dε , (3.41)

where V is the rod’s volume, σ is the internal stress and dε = ( d�/�) defines the
differential strain.

What is the work done by the rod?

SOLUTION:

We could now apply an approximate equation of state, such as Eq.3.11, and get

WQS = −V
εf

∫
ε0

(ε/κ) dε (3.42)

= −(V /2κ) (ε2f − ε20) . (3.43)
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3.4 Heat capacity

An infinitesimal of thermal energy d−QQS quasi-statically entering or leaving a system generally
produces an infinitesimal change in temperature dT

d−QQS = Cα dT (constant α) . (3.44)

(Exceptions are certain first-order phase transitions, such as boiling of water or melting of ice.) The
proportionality constant between the two infinitesimals, Cα, together with the list of state variables,
α, that are fixed during the quasi-static process, is called heat capacity at constant α.19 The units
of heat capacity are energy-K−1. Specific heats are alternative intensive quantities, having units
energy-K−1 per unit mass or energy-K−1 per mole.

3.4.1 Heat transfer at constant volume

If heat is transferred at constant volume20, by the “definition" in Eq.3.44,

d−QQS = CV dT (constant volume). (3.45)

Heat capacities can be equivalently expressed in terms of partial derivatives of state parameters.
For example, if a gas performs only quasi-static mechanical work, the infinitesimal First Law for
the process is

dU = d−QQS − p dV , (3.46)

where p dV is quasi-static incremental work done by the gas (system.) Since for this case U can be
expressed in terms of two other thermal parameters, choose U = U (T,V ) so that its total differential
is

dU = (∂U
∂V
)
T

dV + (∂U
∂T
)
V

dT (3.47)

and Eq.3.46 can then be rewritten

d−QQS = [(
∂U
∂V
)
T
+ p] dV + (∂U

∂T
)
V

dT . (3.48)

Thus, for an isochoric (constant volume) path, i.e. dV = 0,

d−QQS = (
∂U
∂T
)
V

dT (3.49)

and from Eq.3.45

CV = (
∂U
∂T
)
V

. (3.50)

19The term heat capacity is a legacy from early thermodynamics when heat was regarded as a stored quantity.
Although we now know better, the language seems never to have similarly evolved.

20And constant particle number.
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3.4.2 Heat transfer at constant pressure

Thermodynamic experiments, especially chemical reactions, are often carried out in an open atmo-
sphere where the pressure is constant. In such cases we define

d−QQS = Cp dT (constant pressure). (3.51)

Expressing Cp as the partial derivative of a state parameter requires introducing a new, abstract,
state variable. Here again the infinitesimal First Law description of the quasi-static process is

dU = d−QQS − p dV . (3.52)

But this time, using

d (pV ) = p dV + V dp , (3.53)

Eq.3.52 can be rewritten as

d−QQS = d (U + pV ) − V dp . (3.54)

Defining

H = U + pV , (3.55)

where H – also a state function – is called enthalpy ,21 permits recasting a “new" differential
“law":

d−QQS = dH − V dp . (3.56)

Then, expressing H in terms of T and p, i.e. H = H (T, p) so that a total differential is

dH = (∂H
∂p
)
T

dp + (∂H
∂T
)
p
dT , (3.57)

for an isobaric (constant pressure) path, i.e. dp = 0,

d−QQS = (
∂H

∂T
)
p
dT (3.58)

and we have the definition of Cp in terms of state variables

Cp = (
∂H

∂T
)
p
. (3.59)

Heat capacity measurements play a surprisingly important role in exploring microscopic properties
of matter. The unexpectedly small low temperature heat capacity of diamond led to a quantum
theory to the solid state. Equations of state, together with heat capacities, can offer a complete
thermal picture of most matter.

21Enthalpy is one of several defined state variables that are introduced to simplify specific thermodynamic con-
straints. In this case the constraint is constant pressure. Others will be introduced as needed.
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3.4.3 Examples III

Ideal monatomic gas

An ideal monatomic gas, volume V0, temperature T0, is confined to a cylinder with diathermic walls
by a frictionless, movable piston. The external face of the piston is exposed to the atmosphere at
pressure P0. A transient pulse of heat is injected through the cylinder walls causing the gas to
expand against the piston until it occupies a final volume Vf .

QUESTION 3.1: What is the change in temperature of the gas?

SOLUTION:

At the beginning and end of the expansion the system is in equilibrium so that an equation of state
applies, i.e. initially P0 V0 = NkBT0 and finally P0 Vf = NkBTf . Therefore

ΔT = P0ΔV

NkB
, (3.60)

where ΔT = Tf − T0 and ΔV = Vf − V0.

QUESTION 3.2: How much heat Q was in the pulse?

SOLUTION:

The gas will expand turbulently, i.e. irreversibly, against constant atmospheric pressure P0 (an
external “weight") so that incremental work done by the expanding gas is

d−W = P0 dV . (3.61)

Applying the First Law
Q =ΔU + P0 ΔV (3.62)

and using Eqs.3.47, 3.50 and 3.60 together with the ideal gas property (∂U
∂V
)
T
= 0, gives the internal

energy change

ΔU =CV ΔT (3.63)

= CV P0ΔV

NkB
. (3.64)

Thus the injected heat is

Q =( CV
NkB

+ 1)P0ΔV , (3.65)

where Eqs.3.62 and 3.64 have been used. Using another ideal gas property22

Cp − CV = NkB (3.66)

22This well known result is stated, for now, without proof.
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and the definition

γ = Cp/CV , (3.67)

Eq.3.65 can be expressed as

Q = γ

γ − 1P0 ΔV . (3.68)

A steel wire

A steel wire, length L and radius ρ is held with zero tension τ between two firmly planted rigid
vertical posts, as shown in Figure 3.7. The wire, initially at a temperature TH , is then cooled to a
temperature TL.

Figure 3.7: A wire held between firmly planted rigid vertical posts.

QUESTION 3.3: Find an expression for the tension τ in the cooled wire.

SOLUTION:

The thermodynamic state variables used for describing elastic behavior in the steel wire (or rod)
are stress σ = τ/A, where A is the wire’s cross-sectional area, and strain ε = (� − �0)/�0, where �
and �0 are the wire’s stretched and unstretched lengths. These are the same variables referred to
in elastic work (see Eq.3.41) and in the elastic equation of state (see Eq.3.16).

In the present situation the rigid posts constrain the length of the wire to remain constant so that
a decrease in temperature is expected to increase the strain (tension) in the wire. Referring to
Section 3.2, consider a functional dependence of strain ε = ε(T,σ), which are the physically relevant
state variables for the wire, and take the total differential

dε = ( ∂ε

∂T
)
σ
dT + ( ∂ε

∂σ
)
T

dσ . (3.69)

The partial derivatives represent physical properties of the system under investigation for which
extensive numerical tables can be found in the literature or on the web.23 For example, in

23See, for example, http://www.periodictable.com/Properties/A/YoungModulus.html.
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Eq.3.69

( ∂ε

∂T
)
σ
= αL , (3.70)

where αL is the coefficient of linear thermal expansivity, and

( ∂ε

∂σ
)
T
= 1

E
T

, (3.71)

where E
T

is the isothermal Young’s modulus.

Thus we can write
dε = αL dT + 1

ET
dσ , (3.72)

and since the length of the wire is constant, i.e. dε = 0, we have

0 = αL dT + 1

ET
dσ . (3.73)

Finally, assuming αL and ET are average constant values, integration gives

Δσ = σ(TL) − σ(TH) = −αL ET (TL − TH) , (3.74)

and from the definition of stress given above, τ(TH) = 0 and

τ(TL) = −AαLET (TL − TH) (3.75)

= πr2αLET (TH − TL) . (3.76)

An adiabatically expanding gas

QUESTION 3.4: A gas is allowed to rapidly expand from an initial state (p0, V0, T0) to a final state
(pf , Vf , Tf). What is the final state?

SOLUTION:

A rapid process can be regarded as taking place adiabatically, Q = 0. Applying the infinitesimal
First Law we have

0 = dU + d−W . (3.77)

Since U is a state variable the integral

ΔU = ∫ dU (3.78)

is path (i.e. process) independent. Therefore integrating Eq.3.77 gives

0 =∫ dU + ∫ d−W (3.79)

=ΔU + ∫ d−W (3.80)
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which depends only on equilibrium end-points. So the equilibrium end-points can be connected by
a unique quasi-static process

0 =
pf ,Vf ,Tf

∫
p0,V0,T0

[ dU + p dV ] . (3.81)

Then with dU as in Eq.3.47

0 =
pf ,Vf ,Tf

∫
p0,V0,T0

{[(∂U
∂V
)
T
+ p] dV + (∂U

∂T
)
V

dT} . (3.82)

So far the result is general (any equation of state). For simplicity assume the gas is ideal (see
Eq.3.10) and apply the ideal gas property24

(∂U
∂V
)
T
= 0 (3.83)

to find

0 =
pf ,Vf ,Tf

∫
p0,V0,T0

{[NkBT

V
] dV + CV dT} , (3.84)

which implies25

0 = [NkBT

V
] dV + CV dT . (3.85)

This differential equation separates quite nicely to give upon integration

NkB ln(Vf

V0
) = CV ln(T0

Tf
) (3.86)

or

(Vf

V0
)
NkB

= (T0

Tf
)
CV

(3.87)

which with Eqs.3.66 and 3.67 becomes26

(Vf

V0
)
γ−1

= (T0

Tf
) . (3.88)

The filling problem: atmospheric gas filling an evacuated vessel

An insulated, rigid, very narrow-necked vessel is evacuated and sealed with a valve. The vessel rests
in an atmosphere with pressure P0 and temperature T0 (Figure 3.8). The valve is suddenly opened
and air quickly fills the vessel until the pressure inside the vessel also reaches P0.

24This useful ideal gas result is the basis of a later problem.
25Note that the integral still represents Q which is not a state variable.
26This ideal gas expression is not an equation of state.
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QUESTION: If the air is treated as an ideal gas, what is the temperature Tf of the air inside the
vessel immediately after equilibrium is attained?

SOLUTION:

In this problem we introduce the strategy of replacing an essentially open system (the number of
molecules inside the vessel is not constant) with a closed system (the gas is conceptually bounded
by a movable piston that seals the neck and, ultimately the closed vessel below, as in Figure 3.8).
This notional replacement is a common trick in thermodynamics and we take the opportunity to
illustrate it here.

Figure 3.8: Evacuated, insulated vessel in an atmosphere with pressure P0 and temperature T0.

Physically, the narrow neck separates the air inside the vessel from the air outside the vessel, the
latter maintained at constant pressure P0 by the infinite atmosphere. The strategy is to replace the
external atmosphere with a piston that forces outside air across the narrow neck into the vessel by
applying the constant external pressure P0, as shown in Figure 3.9.
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� ��

�� �� �

Figure 3.9: Evacuated vessel filling under pressure P0.

Focus attention on a small, fixed amount of air being forced into the vessel by the conjectured
piston, say N molecules at pressure P0 and temperature T0 occupying a small volume v0. Therefore
in forcing these molecules through the valve the piston displaces the volume v0. The work done on
the N molecules by the constant pressure piston is

Wby thepiston = ∫ d−W (3.89)

= P0Δv (3.90)
= P0v0 . (3.91)

Therefore the work done by the N molecules of gas is

Wby thegas = −P0v0 . (3.92)

Once the N molecules get to the other side of the valve and enter the evacuated rigid-walled vessel,
they do no work.27 Therefore the total work done by the gas is

Wtotal = −P0 v0 + 0 . (3.93)

Applying the First Law to the N molecules while approximating this sudden process as adia-
batic28

0 =ΔU +Wtotal (3.94)
27This is evident since no weights are raised or lowered.
28Too fast to allow heat exchange with the external atmosphere or heat to leak outside the vessel.
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or

0 = −P0v0 +
f

∫
0

dU . (3.95)

Choosing to write U = U (V,T ) the total differential is

dU = (∂U
∂T
)
V

dT + (∂U
∂V
)
T

dV . (3.96)

Since

(∂U
∂T
)
V
= CV (3.97)

and for an ideal gas

(∂U
∂V
)
T
= 0 (3.98)

we have

P0v0 = CV (Tf − T0) . (3.99)

Then with the ideal gas equation of state

NkBT0 = CV (Tf − T0) (3.100)

followed by Eqs.3.66 and 3.67, this becomes

Tf = γT0 . (3.101)

At room temperature (T0 = 300 K) and for an ideal monatomic gas (γ = 5/3), Eq.3.101 gives
Tf = 500 K, indicating a substantial rise in temperature for the gas streaming into the vessel.

3.5 Concluding remarks

In this hiatus from quantum mechanics we have resumed the discussion of classical thermodynamics,
emphasizing the distinction between U and purely classical “work" W and “heat" Q.

Chapter 4 pauses to develop some mathematical skills essential for thermodynamic applications.

Problems and exercises

3.1 Isothermal compressibility κT is defined as

κT = −
1

V
(∂V
∂p
)
T

. (3.102)
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a. Describe in words the meaning of κT .

b. Find κT for an ideal gas.

c. A more descriptive gas law is the van der Waals equation

(p + aN2

V 2
)(V −Nb) = NkBT , (3.103)

where the constant b describes volume excluding short-range repulsion between gas molecules
and the constant a takes account of long-range intermolecular attraction. Find κT for a van
der Waals gas.

3.2 A thick rubber band diameter d is fastened between two rigid vertical posts a distance L apart.
When the temperature is T0 the rubber band has positive tension τ0.

Assuming rubber has an equation of state

σ =K Tε (3.104)

at what temperature T1 will the tension be 0.9τ0?

3.3 An ideal gas expands adiabatically from the state (V0, p0) to the state (Vf , pf). Show that the
work done by the expanding gas is

W = (p0V0 − pfVf)
γ − 1 , (3.105)

where

γ = CpCv
. (3.106)

3.4 The constant volume heat capacity for a hypothetical nearly ideal gas is, at low temperature,

CV = a + bT , (3.107)

where a and b are constants. Show that for an adiabatic, reversible expansion of the gas carried
out at low temperature

pV γ ≈ exp{(b/a)T} (3.108)

with

γ = CpCv
. (3.109)

3.5 Although the heat capacity at constant volume is

CV = (
∂U
∂T
)
V

, (3.110)
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show that for the heat capacity at constant pressure

Cp ≠ (
∂U
∂T
)
p

(3.111)

by proving that

Cp = (
∂U
∂T
)
p
+ pV α , (3.112)

where α is the volume thermal expansivity

α = 1

V
(∂V
∂T
)
p
. (3.113)

Note: The heat capacity at constant pressure is

Cp = (
∂H

∂T
)
p

(3.114)

where enthalpy H is defined as

H = U + pV . (3.115)



To those who do not know Mathematics it is difficult to get across a real feeling as to the
beauty, the deepest beauty of nature. ... If you want to learn about nature, to appreciate
nature, it is necessary to understand the language that she speaks in.

Richard Feynman, The Character of Physical Law, MIT Press (1967)

Chapter 4

A mathematical digression

4.1 Thermodynamic differentials

In thermodynamics the equilibrium state of a system is described by macroscopic variables, say
U , p, T, V, .., which can roughly be classified as:

• Variables that are readily measurable in a laboratory such as p, V, T,Cv, etc.;

• Variables that are less accessible to direct measurement, e.g. U , H , and others, soon to be
introduced.

The choice of variables is generally from among those that appear in thermodynamic laws, those
that can be measured or controlled in laboratories (such as appear in equations of state) and those
defining process constraints, i.e. isothermal, isobaric or adiabatic. Since physics of interest involves
changes in equilibrium macroscopic states, we must study differential relationships among them.
Assuming a state variable φ (x, y, z), where x, y, z are also (independent) state variables, these
relationships have the mathematical form

dφ (x, y, z, . . .) = (∂φ
∂x
)
y,z,...

dx + (∂φ
∂y
)
x,z,...

dy + (∂φ
∂z
)
x,y,...

dz . . . , (4.1)

where

(∂φ
∂x
)
y,z,...

, (∂φ
∂y
)
x,z,...

, (∂φ
∂z
)
x,y,...

(4.2)

are partial derivatives, i.e. derivatives with respect to x, y, z, . . . , with the remaining independent
variables held constant. In thermodynamics the variables that are held constant dictate specific

47
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experimental conditions and must be retained in all expressions. They are not merely inconvenient
baggage that one is free to carelessly misplace.

Several mathematical rules associated with differentials and partial differentiation especially useful
in thermodynamics are introduced in this chapter and then applied in sample scenarios.

4.2 Exact differentials

4.2.1 Exactness

Finite changes in thermal state parameters, e.g. ΔU , depend only on final and initial state values
and not on the path or process driving the change. This independence defines “exactness" of a
differential. More generally, exactness of any thermal parameter, say Y , means that the closed
circuit integral ∮ dY satisfies the closed path condition

∮ dY = 0 . (4.3)

Even though integrals corresponding to finite work ∫ d−W =W and finite heat ∫ d−Q = Q have
macroscopic meaning, as stressed earlier W and Q are not state parameters and do not have
exact differentials, i.e. ∮ d−W ≠ 0 and ∮ d−Q ≠ 0. That is the meaning of the bar on the d.

A class of thermodynamic identities called Maxwell relations arise from exactness. They play
an important role in problem solving strategies by replacing “unfriendly" partial derivatives – i.e.
those that do not obviously represent accessible measurables – with equivalent “friendly" partial
derivatives that contain heat capacities or state variables that appear in equations of state. For
example, measured values of the following partial derivatives, called response functions, are found
in tables of physical properties of materials1 and can be placed in the “friendly" category:

κT = −V (
∂p

∂V
)
T

, isothermal bulk modulus , (4.4)

βT = −
1

V
(∂V
∂p
)
T

, isothermal compressibility , (4.5)

αp =
1

V
(∂V
∂T
)
p
, coefficient of thermal expansion. (4.6)

Several elastic coefficients previously encountered in Chapter 3 may also be found in tables. Partial
derivatives in the “unfriendly" category will appear in our analyses and are certain to be recognized.
Methods for dealing with them are introduced later in the chapter.

4.2.2 Euler’s criterion for exactness

If M =M(x, y) is a differentiable function of the independent variables x and y whose total differ-
ential is

dM = A (x, y) dx +B (x, y) dy , (4.7)
1See, for example, D.R. Lide (ed.), Chemical Rubber Company Handbook of Chemistry and Physics, CRC Press,

Boca Raton, Florida, USA (79th edition, 1998).
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where by definition

A (x, y) =(∂M
∂x
)
y

(4.8)

and

B (x, y) =(∂M
∂y
)
x

, (4.9)

then according to Green’s theorem

∮ dM = ∮ [A (x, y) dx +B (x, y) dy] (4.10)

=∬
R

[(∂B
∂x
)
y
− (∂A

∂y
)
x

] dx dy , (4.11)

where R is some two-dimensional region completely enclosed by the integration path. Then if

(∂B
∂x
)
y
= (∂A

∂y
)
x

(4.12)

it follows that
∮ dM = 0 (4.13)

i.e., M is exact. Conversely, if M is exact, i.e. is a thermodynamic state function, then

(∂B
∂x
)
y
= (∂A

∂y
)
x

. (4.14)

4.2.3 Entropy – A thermal introduction

Consider the case of a gas expanding quasi-statically, for which the First Law says

∫ d−QQS = ∫ dU + ∫ p dV (4.15)

where p is the gas pressure. In Chapter 1 it was argued, as a matter of definition, that ∫ d−QQS

must depend on the process path, i.e. ∮ d−QQS ≠ 0. Delving deeper, this claim is tested with Euler’s
criterion for exactness.

Beginning with Eq.3.48, as applied to an ideal gas,

d−QQS = (
∂U
∂T
)
V

dT + p dV (4.16)

= CV dT + NkBT

V
dV . (4.17)
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Then applying Euler’s criterion we find

(∂CV

∂V
)
T
= 0 (4.18)

and

( ∂

∂T

NkBT

V
)
V
≠ 0 . (4.19)

So for this basic test case d−QQS fails the exactness test and, revisiting old news, d−QQS is not a true
differential.

What may be a surprise however, is that exactness can be “induced" by the expedient of introducing
an integrating factor 1/T , in which case Eq.4.17 becomes

d−QQS /T = (CV /T ) dT + (NkB
V
) dV . (4.20)

Now applying Euler’s criterion

( ∂

∂T
[NkB

V
])

V
= 0 (4.21)

and

(∂CV /T
∂V

)
T

= 0 . (4.22)

The “revised" integrand
d−QQS

T
does pass Euler’s test,

∮
d−QQS

T
= 0 , (4.23)

and can therefore be integrated to yield the same result over any path in the T,V plane. The
integrating factor 1/T generates a “new" thermodynamic state function S, with

dS = d−QQS

T
. (4.24)

S is entropy, the same quantity invoked in Chapter 2 but within a different narrative.2 In ad-
dition, the quasi-static adiabatic process (d−QQS /T = 0) is equivalent to dS = 0 – an isenthalpic
process.

Having identified the new state function S, the incremental First Law for a fixed number of particles
becomes

d−QQS

T
= dS = dU

T
+ p

T
dV (4.25)

2Admittedly, this formal emergence of entropy doesn’t reveal “meaning" – a subject with a long and contentious
history – and its thermal introduction is only for an ideal gas. But its generality, independent of the working
substance, will be established in Chapter 6 with an axiomatic rendering that confers both “meaning" and power.
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or equivalently

dU = T dS − p dV , (4.26)

which is called the thermodynamic identity. In the case of variable particle number the identity
becomes

dU = T dS − p dV + μ dN (4.27)

from which

(∂U
∂S )V,N

=T (4.28)

(∂U
∂V
)
S,N

= − p (4.29)

( ∂U
∂N

)
V,S
=μ . (4.30)

Furthermore, writing S = S(U , V,N) and taking its total differential

dS = (∂S
∂U )V,N

dU + ( ∂S
∂V
)
U,N

dV + ( ∂S
∂N

)
U,V

dN (4.31)

gives, in association with Eq.4.27,

(∂S
∂U )V,N

= 1

T
(4.32)

( ∂S
∂V
)
U,N

= p

T
(4.33)

( ∂S
∂N

)
U,V

= − μ

T
. (4.34)

Eq.4.32 may be used to define “temperature", even though it is not an especially intuitive or
transparent definition.3

With the introduction of thermodynamic identities (Eqs.4.26 and 4.27) “unfriendly" partial deriva-
tives can now be “friended", i.e. recast into more practical forms involving only variables that
appear in an equation of state or heat capacities, as a few examples will show.

The definition of enthalpy , Eq.2.44, evolves into something resembling Eq.4.26, with

dS = d−QQS

T
= dH

T
− V

T
dp (4.35)

or equivalently

dH = T dS + V dp . (4.36)

3However it is useful in defining “negative temperature," which will be discussed in Chapter 9.
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Finally, if the internal energy differential in Eq.4.26 is replaced by its general First Law expression
(which includes irreversibilty), i.e. dU = d−Q− d−W , then the entropy differential is

dS = 1

T
d−Q+ [d

−WQS − d−W
T

] . (4.37)

Since quasi-static (reversible) work is the maximum work available in any thermodynamic process,
i.e. d−WQS ≥ d−W , for any real (irreversible) processes,

dS ≥ d−Q
T

, (4.38)

which is, in essence, the Second Law of Thermodynamics.

4.3 Euler’s homogeneous function theorem

A function ϕ (x, y, z) is homogeneous of order n if

ϕ (λx,λy, λz) = λn ϕ (x, y, z) . (4.39)

Euler’s homogeneous function theorem states: If ϕ (x, y, z) is homogeneous of order n then

x(∂ϕ
∂x
)
y,z
+ y (∂ϕ

∂y
)
x,z

+ z (∂ϕ
∂z
)
x,y
= nϕ (x, y, z) . (4.40)

This seemingly abstract theorem4 has several important thermodynamic implications. For example
consider the internal energy U as a function of the extensive variables S, V and N (see Eq.3.7), i.e.
U = U (S, V,N). Since S, U , V and N are extensive they scale according to

U (λS, λV, λN) = λU (S, V,N) . (4.41)

i.e. U (S, V,N) is a homogeneous function of order 1. Applying Euler’s homogeneous function
theorem, (see Eq.4.40),

S (∂U
∂S )V,N

+ V (∂U
∂V
)
S,N

+N ( ∂U
∂N

)
S,V

= U (S, V,N) . (4.42)

Then, from Eqs.4.28 and 4.29

U = S T − V p + μN , (4.43)

where

μ = ( ∂U
∂N

)
S,V

(4.44)

is the chemical potential. Note that p, T and μ are intensive state variables conjugate to the
extensive state variables V , S and N , respectively.

4A proof of the theorem is in Appendix C.
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4.4 A cyclic chain rule

In addition to the familiar chain rule of partial differentiation, i.e.

(∂z
∂x
)
s
(∂x
∂y
)
s

= (∂z
∂y
)
s

(4.45)

there is the following cyclic chain rule.

Consider a function M(x, y) and its total differential

dM =(∂M
∂x
)
y
dx + (∂M

∂y
)
x

dy (4.46)

from which, with the additional independent variables m and n, it follows that

(∂M
∂m

)
n
=(∂M

∂x
)
y
( ∂x

∂m
)
n
+ (∂M

∂y
)
x

( ∂y

∂m
)
n
. (4.47)

With the replacements m→ x and n→M

0 = (∂M
∂x
)
y
+ (∂M

∂y
)
x

(∂y
∂x
)
M

(4.48)

which is reorganized as

(∂x
∂y
)
M

= −
(∂M

∂y
)
x

(∂M
∂x
)
y

. (4.49)

This is often written as a “chain rule"5

(∂x
∂y
)
M

(∂M
∂x
)
y
( ∂y

∂M
)
x
= −1 . (4.50)

4.4.1 Examples

Free expansion: the cyclic chain rule

A gas, assumed ideal with a fixed number of particles and initially at temperature T0, is confined
to volume V0 in a partitioned insulated rigid cylinder (See Figure 4.1). The unoccupied part, also
with volume V0, is initially evacuated.

The partition spontaneously begins to leak and the gas surges into the formerly unoccupied part,
eventually coming to equilibrium by uniformly occupying the entire cylinder.

5This simple (but not obvious) bit of mathematics is useful in thermodynamic problem solving.



54 CHAPTER 4. A MATHEMATICAL DIGRESSION

Figure 4.1: Free expansion chamber.

QUESTION 4.1 What is the change in temperature of the gas?

SOLUTION

Since the cylinder is rigid the surging gas does no work. (The expanding gas does not raise or lower
any “weights" in the surroundings.) Moreover, the cylinder is insulated so that during the process
Q = 0. (Regarding the expansion as rapid will lead to the same conclusion.) With

Q = 0 and W = 0 (4.51)

the First Law, ΔU = Q −W , says
ΔU = 0 ; (4.52)

i.e. internal energy is constant.

This constant U process is called a free expansion. Since U is constant it follows that dU = 0, so
taking U = U (T,V ) its total differential is

dU = (∂U
∂T
)
V
dT + (∂U

∂V
)
T
dV = 0 (4.53)

and the temperature change we are looking for is

dT = −
(∂U
∂V
)
T

(∂U
∂T
)
V

dV . (4.54)

Applying the cyclic chain rule (see Eq.4.49) to this result we get

dT = (∂T
∂V
)
U

dV . (4.55)

The partial derivative is one of the “unfriendly" kind referred to earlier. The objective now is
relating it to a “friendly" partial derivative that corresponds to laboratory measurables.
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Using the thermodynamic identity, Eq.4.26, apply the Euler exactness criterion to the differential
dS, (see Eq.4.25), in the following way;

⎛
⎜
⎝

∂ ( 1T )
∂V

⎞
⎟
⎠
U

=
⎛
⎜
⎝

∂ ( pT )
∂U

⎞
⎟
⎠
V

(4.56)

which is differentiated to give

− 1

T 2
(∂T
∂V
)
U
= − p

T 2
(∂T
∂U )V

+ 1

T
( ∂p

∂U )V
. (4.57)

Applying the “ordinary" chain rule to the last term on the right-hand side and then substituting
Eq.3.50 (CV ), Eq.4.57 becomes

(∂T
∂V
)
U
= 1

CV
[p − T ( ∂p

∂T
)
V
] , (4.58)

which is now in terms of measurable quantities. Finally, applying the ideal gas equation of state
we arrive at6

1

CV
[p − T ( ∂p

∂T
)
V
] = 0 , (4.59)

and we see from Eq.4.55 that an ideal gas undergoing a free expansion remains at constant tem-
perature.

QUESTION 4.2 What is the entropy change of the expanded gas?

SOLUTION

Focusing directly on S we write S = S (U , V ) and then take the total differential

dS = (∂S
∂U )V

dU + ( ∂S
∂V
)
U

dV . (4.60)

Since for the free expansion dU = 0,

dS = ( ∂S
∂V
)
U

dV . (4.61)

Then, from Eq.4.33

dS = p

T
dV . (4.62)

Then using the ideal gas equation of state

dS = NkB
V

dV . (4.63)

6The analysis can be applied to any gas equation of state.
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Since the expansion is from V0 to 2V0, this is integrated to give

ΔS =S (2V0) − S (V0) = NkB

2V0

∫
V0

dV

V
(4.64)

=NkB ln
2V0

V0
(4.65)

=NkB ln 2 . (4.66)

If the gas was more realistically described by the van der Waal’s equation of state,

(p + N2a

V 2
)(V −Nb) = NkBT , (4.67)

where a and b are constants characteristic of the gas, would ΔT and ΔS be different from the ideal
gas case?7

Exactness and line integration

The integral in Eq.4.20, which arises from the example of adiabatic expansion in Chapter 3 is, for
convenience, reproduced here,

0 =
pf ,Vf ,Tf

∫
p0,V0,T0

{[NkB
V
] dV + CV

T
dT} . (4.68)

This integral represents adiabatic reversibility, i.e. dS = 0, an isentropic expansion. Unlike its
irreversible counterpart Eq.3.84, this integral is exact. All paths connecting the end points are
equivalent (the virtue of exactness), a property that can be exploited by line integration along any
path connecting the integration end points (V0, T0 → Vf , Tf). It is, however, good strategy to choose
a simple path of straight lines as shown in Figure 4.2 – integrating first along constant T and then
along constant V . Along constant T we have dT = 0 and what survives is the integral (the first leg
of the path)

I1 =
Vf ,T0

∫
V0,T0

NkB
V

dV (4.69)

= NkB ln
Vf

V0
. (4.70)

The second leg of the path is along constant V as shown in the diagram. Along this leg dV = 0, so
this contribution is

I2 =
Vf ,Tf

∫
Vf ,T0

CV

T
dT (4.71)

= CV ln
Tf

T0
. (4.72)

7This is assigned as a problem.
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�

Figure 4.2: Line paths of the “exact" integral.

Summing the two contributions

I1 + I2 = NkB ln
Vf

V0
+CV ln

Tf

T0
= 0 , (4.73)

which is identical to Eq.3.86, in Chapter 3.

4.5 Entropy and spontaneous processes

Example 1

As in Chapter 3 (Eqs.3.18-3.20), consider an ideal gas, initially with volume V0 and pressure p0,
confined in a cylinder by a massless, frictionless piston. The piston, although itself massless, is
exposed to the atmosphere and loaded with a pile of fine sand that is slowly removed allowing
the piston to rise quasi-statically and attain final gas volume Vf and final pressure patm identical
to the surrounding atmosphere. The gas and surroundings are maintained at temperature T0.
QUESTION 4.5.1 What is the entropy change of the “universe?"

SOLUTION
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Applying the first law to find QQS , the heat absorbed quasi-statically from the surroundings by the
gas. With pressure pgas

QQS =
Vf

∫
V0

pgasdV (4.74)

=
Vf

∫
V0

NkBT0

V
dV (4.75)

=NkBT0 ln
Vf

V0
. (4.76)

Therefore the entropy change of the surroundings is

ΔSsurr = −
QQS

T0
(4.77)

= −NkB ln
Vf

V0
. (4.78)

To find the entropy change of the gas we write, at constant temperature,

dS =( ∂S
∂V
)
T
dV . (4.79)

But since

( ∂S
∂V
)
T
=( ∂p

∂T
)
V

(4.80)

the entropy change of the ideal gas is

ΔSgas =
Vf

∫
V0

( ∂p

∂T
)
V
dV (4.81)

=NkB ln
Vf

V0
. (4.82)

Therefore8 the entropy change of the “universe" is, for this quasi-static, reversible process,

ΔSuniverse =ΔSgas +ΔSsurroundings (4.83)
=0 . (4.84)

8A way to arrive at Eq.4.80 starts from

dU = T dS − p dV

followed by Euler’s exact condition

( ∂p
∂S )V = −(

∂T

∂V
)
S

and an application of the cyclic chain rule.
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Example 2

An ideal gas is confined in a cylinder by a massless, frictionless piston. The piston is pinned some
distance above the bottom of the cylinder while exposed to constant atmospheric pressure Patm

(see Figure 3.3). The initial state of the gas is V0, T0, p0 > Patm. The gas and surroundings are
maintained at temperature T0. (See Chapter 3, Eqs.3.23-3.28).

Frictionlessly extracting the pin frees the piston and allows the gas to expand non-uniformly against
the atmosphere, eventually reaching an equilibrium state with a final gas pressure pgasf = Patm.
The process – characterized by a finite expansion rate and system (gas) non-uniformity – is neither
quasi-static nor reversible.9

QUESTION 4.5.2 What is the entropy change of the “universe"?

SOLUTION

Applying the First Law, the heat extracted from the surroundings by the isothermally expanding
gas is

Q =PatmΔV , (4.85)

where ΔV is the change in volume of the ideal gas

ΔV =NkBT0 (
1

Patm
− 1

p0
) . (4.86)

Therefore

Q =NkBT0P
atm ( 1

Patm
− 1

p0
) (4.87)

and the entropy change of the surroundings is

ΔSsurroundings = −
Q
T0

(4.88)

= −NkB (1 −
Patm

p0
) . (4.89)

Applying Eqs.4.79-4.82 the entropy change of the expanding ideal gas is

ΔSgas = −NkB ln(P
atm

p0
) . (4.90)

Therefore the entropy change of the “universe" is

ΔSuniverse =ΔSgas +ΔSsurroundings (4.91)

=NkB [ln(
p0

Patm
) + (P

atm

p0
− 1)] . (4.92)

9All real processes in nature are irreversible.
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As shown in Figure 4.3 the entropy of the “universe" increases no matter if P atm > p0, in which
case the piston will drop, or if P atm < p0, in which case the piston will rise. Both are spontaneous
events and for each ΔSuniverse > 0.

universe

Figure 4.3: ΔSuniverse after the “pin" is extracted.

Example 3

An uncovered mug holding 250 g of hot coffee at 95 C sits in a room with air temperature 20 C.
The coffee slowly cools, eventually coming to room temperature.

QUESTION 4.5.3 What is the change of entropy for the universe (coffee + surroundings)?

SOLUTION

1. First, what is the change in entropy of the coffee?

Note that the coffee’s entropy change takes place at constant pressure (the air in the room
remains at constant pressure.) Knowing the initial coffee temperature and final equilibrium
“universe" temperature, we wish to find ΔS in this constant pressure process. With the
typical strategy of expressing what we want to know, i.e. ΔS, in terms of what we can know,
i.e. T and p, we choose to write S = S(T, p) and take the total differential

dS = (∂S
∂T
)
p
dT + (∂S

∂p
)
T

dp . (4.93)
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With constant pressure, i.e. dp = 0, we only need to evaluate

dS = (∂S
∂T
)
p
dT , (4.94)

where

T (∂S
∂T
)
p
= Cp . (4.95)

Therefore Eq.4.94 is

dS = 1

T
Cp dT (4.96)

or

dS = 1

T
m⟨cp⟩ dT , (4.97)

where m is the mass and ⟨cp⟩ is an average specific heat per unit mass. Assuming that for
the coffee ⟨cp⟩ = 4184Jkg−1K−1 is independent of temperature

ΔScoffee =m⟨cp⟩ ln(
Tf

T0
) (4.98)

= 0.25 kg ⋅ 4184 Jkg−1 K−1 ⋅ ln(293 K
368 K

) (4.99)

= −238 Jkg−1 . (4.100)

The entropy of the coffee decreases.

2. Coffee + surroundings = “the universe"; so having found the entropy change of the coffee we
need to find the entropy change of the surroundings. Apart from receiving heat from the coffee,
the surroundings are an infinite reservoir with volume, temperature and pressure remaining
constant. So we can apply the First Law to the constant volume (zero work) surroundings

Qsur =ΔUsur . (4.101)

Taking Qcoffee as the heat leaving the coffee, −Qcoffee = Qsur. Then writing for the surround-
ings U = U(V,S) and taking the total differential (with dV = 0)

dUsur = (
∂Usur
∂Ssur

)
V

dSsur (4.102)

= Tsur dSsur , (4.103)

where Eq.4.32 has been used. After integration we have

ΔSsur =
−Qcoffee

Tsur
. (4.104)
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To find Qcoffee the First Law is applied to the coffee where we get, assuming negligible liquid
volume change,

Qcoffee =ΔUcoffee (4.105)
= Cp(T0 − Tf) (4.106)
=m⟨cp⟩(T0 − Tf) (4.107)

Finally, using this result in Eq.4.104

ΔSsur =m⟨cp⟩
Tf − T0

Tf
(4.108)

= 0.25 kg ⋅ 4184J ⋅ kg−1 ⋅ K−1 ⋅ 75 K/293 K (4.109)

= 268 J ⋅ K−1 (4.110)

so that

ΔSuniv =ΔScoffee +ΔSsur (4.111)

= −238 J ⋅ K−1 + 268 J ⋅ K−1 (4.112)

= 30 J ⋅ K−1 . (4.113)

The entropy of the universe increases in this, and any other spontaneous process. Cooling
a mug of hot coffee by leaving it in a cool room is a spontaneous (irreversible) process, i.e.
the entropy increase of the universe is a quantitative measure of its feasibility. The reverse
process – the now cool coffee taking energy from the room to restore its original hot state –
without some outside intervention – can “never" happen! That is the substance of the Second
Law.

Examples 2 (Eq.4.84) and 3 (Eq.4.92) describe irreversible processes such as occurr in nature
whereas Example 1 (Eq.4.113) describes the idealized quasi-static, reversible processes often in-
voked in thermodynamic models.

The Second Law

ΔSuniverse ≥ 0 . (4.114)

is a measure of nature’s propensity for processes to proceed, when there is no outside intervention,
in a particular direction.

4.6 Thermal engines

A thermal engine is a device that operates in a cycle, during which:

1. a working substance absorbs heat QH from an energy source with which it is in thermal
contact, resulting in thermodynamic changes to the working substance;

2. the working substance exhausts heat QL to an energy sink, also resulting in thermodynamic
changes to the working substance;
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3. external mechanical work W can be realized;

4. the working substance returns to its initial thermodynamic state, so the change in any state
function per working substance cycle is zero, e.g. ΔU = 0.

Earliest 18th-century engines of various designs used steam exclusively as the working substance by
condensing the steam to cause a partial vacuum, assisting external atmospheric pressure in driving
a piston. Steam’s only active role was to force the piston back to its starting position. In 1799
Richard Trevithick introduced a more efficient and compact high-pressure steam engine to directly
drive the piston, which was the forerunner of the portable transportation engine. The steam-driven
industrial revolution had begun.

However, engines of all designs were very inefficient, requiring large quantities of coal for little useful
work output.

From the quest for improved efficiency evolved a new science, thermodynamics, created in 1824 by
Sadi Carnot.10,11

Because of friction and turbulence, real engines are complicated irreversible devices. But their cycle
can be modeled as ideal with accuracy sufficient to estimate their efficiency of operation η, defined
as the ratio of mechanical work done WQS to the heat absorbed from an energy source QH , in each
quasi-static engine cycle,

η = WQS

QH
. (4.115)

Typical modern engines are of the combustion design in which burning fuel injects heat into a
working substance which then expands against a piston to perform work. To return to its initial
state, the expanded working substance must, at some point in the cycle, exhaust heat to a sink
(usually the atmosphere or a nearby body of water). Exhausting heat to a sink is the step in the
cycle which guarantees that the efficiency of any thermodynamic engine is less than 1.

4.6.1 Carnot’s engine

The ideal Carnot engine (see Figure 4.4) operates between an energy source, in which the working
substance (in this case an ideal gas) absorbs heat QH isothermally at high temperature TH (short
dashed curve), and an energy sink, into which heat QL is isothermally exhausted at a low temper-
ature TL (solid curve). The long dash curves which close the Carnot cycle are adiabats in which no
heat enters or leaves the working substance.

10S. Carnot, Reflections on the Motive Power of Fire, Dover (1960).
11S. S. Wilson, “Sadi Carnot", Scientific American 245, 102-114 (1981).
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Figure 4.4: An ideal Carnot engine cycle drawn in the P − V plane.

To calculate the engine efficiency (see Eq.4.115) the work done in a cycle is determined by dividing
the cycle into its four component paths:
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Work from an ideal gas Carnot cycle

1→ 2

Apply the First Law:
d−QH = dU + d−W1→2 .
Take
dU = (∂U

∂T
)
V

dT + ( ∂U
∂V
)
T

dV .

Along an isotherm dT = 0 and for an ideal gas
( ∂U
∂V
)
T
= 0 .

Therefore along the isotherm
dU = 0
and
W1→2 = QH .

2→ 3

Apply the First Law:
d−Q2→3 = dU + d−W2→3.
Along the adiabat
d−Q2→3 = 0 .
For the ideal gas
dU = CV dT .
From this segment
W2→3 = CV (TH − TL) .

3→ 4

Apply the First Law:
d−Q3→4 = dU + d−W3→4 .
Following the arguments used along 1→ 2 isotherm,
W3→4 = −∣QL∣ .

4→ 1

Apply the First Law:
d−Q4→1 = dU + d−W4→1 .
Following the 2→ 3 adiabat arguments,
W4→1 = CV (TL − TH) .

Work performed in the cycle is therefore

W =W1→2 +W2→3 +W3→4 +W4→1 (4.116)
= ∣QH ∣ − ∣QL∣ . (4.117)

with the Carnot efficiency (see Eq.4.115)

η = 1 − ∣QL∣
∣QH ∣

. (4.118)
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In terms of working substance state variables (here assumed an ideal gas),

∣QH ∣ =
V2

∫
V1

p dV (4.119)

= NkBTH

V2

∫
V1

dV

V
(4.120)

= NkBTH ln
V2

V1
(4.121)

and

−∣QL∣ =
V4

∫
V3

p dV (4.122)

= NkBTL

V4

∫
V3

dV

V
(4.123)

= NkBTL ln
V4

V3
. (4.124)

Therefore the efficiency is

η = 1 + TL

TH

ln (V4/V3)
ln (V2/V1)

. (4.125)

But along the adiabats 2→ 3

TL

∫
TH

CV
dT

T
= −NkB

V3

∫
V2

dV

V
(4.126)

and 4→ 1

TH

∫
TL

CV
dT

T
= −NkB

V1

∫
V4

dV

V
, (4.127)

which are integrated to give

V4

V1
= V3

V2
. (4.128)

Therefore the Carnot efficiency expressed in Eq.4.125 becomes

η = 1 − TL

TH
. (4.129)

This result is consistent with the Kelvin-Planck statement of the Second Law of Thermodynam-
ics:
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It is impossible to construct an engine such that heat is cyclically extracted from a
reservoir at high temperature with the sole effect of performing mechanical work. (In
some part of the cycle heat must be exhausted and engine efficiency must be less than 1.)

A hypothetical Carnot engine with operating temperatures TH ∼ 600 K and TL ∼ 300 K would have
an efficiency η ∼ 50%.12

4.6.2 The Carnot cycle and entropy

Any reversible engine cycle can be divided into infinitesimal Carnot segments (adiabats and isotherms)
as shown in Figure 4.5.

Figure 4.5: An arbitrary quasi-static (reversible) engine cycle is divided into a series of infinitesimal
Carnot cycles, a single one of which is shown on the left.

Combining Eqs.4.118 and 4.129 we have the result for a complete Carnot engine cycle

−∣QH ∣
TH

+ ∣QL∣
TL

= 0 , (4.130)

12The Carnot engine is the most efficient engine operating between two fixed temperatures.
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which applied to the infinitesimal Carnot engine cycle in the subdiagram of Figure 4.5 becomes

−∣d
−QH ∣
TH

+ ∣d
−QL∣
TL

= 0 . (4.131)

Summing this expression for the sequence of infinitesimal Carnot cycles (which reconstruct the
pictured arbitrary reversible cycle) gives

∮
d−QQS

T
= 0 . (4.132)

Thus,
1

T
is an integrating factor that makes d−QQS exact, confirming, even for an arbitrary sub-

stance, the redefinition

d−QQS

T
= dS . (4.133)

For the complete working substance cycle ΔS = 0 .

Problems and exercises

4.1 A cube of lead 1 m on each side is to be slowly lowered from the sea surface 3 × 103 m down to
the site of a deep drilling oil spill. The surface water temperature is 23 C while the sea water
temperature at the oil well head is 4 C. The mean density of sea water is 1035 kg m−3.

Find the volume of the lead cube when it reaches well-head depth.

Isothermal compressibility of Pb:

κT = −
1

V
(∂V
∂p
)
T

= 2.3 × 10−6 atm−1 . (4.134)

Linear thermal expansivity of Pb:

α = 1

L
(∂L
∂T
)
p
= 2.9 × 10−5 K−1 . (4.135)

4.2 A van der Waals gas at temperature T0 is confined by a partition to half of an insulated rigid
cylinder with total volume 2V (See Figure 4.1). The unoccupied part, with volume V , is initially
evacuated.

The partition spontaneously self-destructs and the gas surges into the formerly unoccupied
part, eventually coming to equilibrium by uniformly occupying the entire cylinder.

(a) What is the change in temperature of the van der Waals gas?

(b) What is the change in entropy of the van der Waals gas?



4.6. THERMAL ENGINES 69

4.3 The isothermal compressibility of a gas is defined as

κT = −
1

V
(∂V
∂p
)
T

, (4.136)

while the adiabatic compressibility is defined as

κS = −
1

V
(∂V
∂p
)
S
. (4.137)

Show that

κT =
Cp
CV

κS . (4.138)

4.4 The velocity of sound in a gas is given by

c2s =
BS
ρ

, (4.139)

where ρ is the density of the gas

ρ = Nμ

V
, (4.140)

and BS is the adiabatic bulk modulus defined by

BS = −V (
∂p

∂V
)
S

, (4.141)

with N the number of gas molecules, μ the mass per molecule and S the entropy.

Show that for an ideal gas at temperature T the sound velocity is given by

c2s =
γkBT

μ
, (4.142)

where

γ = CpCV
. (4.143)

4.5 N molecules of an ideal gas undergo the cycle A→ B → C → A as shown in the p − V diagram
of Figure 4.6. The curve A→ B is an isotherm at temperature Th. When the gas is in the state
(p2, V1) the temperature is Tc.

a. Show that the net heat Q added to the gas during the cycle is

Q = NkB [Th ln(
Th

Tc
) − (Th − Tc)] . (4.144)
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b. Find the engine efficiency.

p

p

p
2

1

VV2V1

T

Tc

h

A

C B

Figure 4.6: p − V diagram for problem 4.5.

4.6 A body of mass m with specific heat Cp at temperature 500 K is brought into contact with an
identical body at temperature 100 K, with both bodies isolated from their surroundings. After
a while the systems come to thermal equilibrium. Show that the change in entropy ΔS of the
total system is

ΔS =mCp ln (9/5) . (4.145)



Rudolph Clausius obtained distinction by mathematical calculations based on the
dynamical theory of heat – calculations which, it is claimed, show the necessity of a
Creator and the possibility of miracles.

Obituary notice, New York Times, 26 Aug. 1888

Chapter 5

Thermodynamic potentials

5.1 Introduction

Thermodynamic processes can by design or by nature take place under conditions in which particular
macroscopic parameters – e.g. temperature, pressure, volume, magnetic field, entropy, particle
number – are kept constant. For an experimentalist, holding some variables constant, such as
entropy or internal energy, is inconvenient or exceptionally difficult, while other variables, such as
pressure and temperature, are easier or more natural to fix. Therefore, in addition to an energy
potential U (internal energy) which accommodates constant extensive variables S, V and N , other
potential functions are introduced which are adapted to fixing other variables.

5.1.1 Internal energy U

The differential

dU = T dS − p dV + μ dN , (5.1)

a consequence of the First Law of Thermodynamics, is called a fundamental equation or the ther-
modynamic identity. With U = U (S, V,N), the total differential is

dU = (∂U
∂S )V,N

dS + (∂U
∂V
)
S,N

dV + ( ∂U
∂N

)
S,V

dN . (5.2)

Correspondences between Eqs.5.1 and 5.2 give the following:

(∂U
∂S )V,N

= T , (5.3)

(∂U
∂V
)
S,N

= −p (5.4)

71
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magnetic B0 ⋅ dM
electric E 0 ⋅ dP
elastic τ ⋅ dχ
surface Σ dAS

strain σ dε
particle number μ dN
Earth’s gravity mgz dN

Table 5.1: Here B0 is the magnetic field prior to insertion of matter, M is the magnetization, E 0

is an electric field prior to insertion of matter, P is electric polarization, τ is elastic tension, χ is
elastic elongation, Σ is surface tension, AS is surface area, σ is stress, ε is strain, μ is the chemical
potential, N is the number of particles, m is the mass of a particle, g is the acceleration due to
gravity and z is the particle’s distance above the earth’s surface.

and

( ∂U
∂N

)
S,V

= μ . (5.5)

Because partial derivatives of U with respect to S, V and N yield accessible thermal properties
of the system (in this case T , p and μ) they are called “natural variables" of U . Applying Euler’s
criterion to Eqs.5.3 and 5.4 gives the identity

(∂T
∂V
)
S,N

= −( ∂p
∂S )V,N

, (5.6)

which is called a Maxwell relation.1

Equation 5.1 contains only quasi-static mechanical work, p dV , and particle work, μ dN . But
thermodynamics also applies to other conjugate work pairs which can be included in the fundamental
equation, Eq.5.1.

For example, from Table 5.1,

dU = T dS − p dV + τ ⋅ dχ +B0 ⋅ dM + E0 ⋅ dP +Σ ⋅ dAs +σ dε + μ dN . (5.7)

Since U , S, V , χ, M , P, As, ε and N are extensive variables, a corresponding Euler equation can
be derived:

U = TS − pV + τ ⋅χ +B0 ⋅M + E0 ⋅ P +Σ ⋅As +σ ⋅ ε + μN . (5.8)

1In standard Maxwell relations the N is usually suppressed.
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5.1.2 Enthalpy H

Constant pressure is a common thermodynamic constraint, so common that to simplify isobaric
analysis the state variable enthalpy

H = U + pV (5.9)

is introduced. Enthalpy is a total energy in the sense of being the sum of:

• energy of the constituent particles U ;

• mechanical energy pV needed to provide physical space for these constituents.

Enthalpy may have been in use since the time of Clausius under different names and symbols, but
Gibbs’ “heat function", χ = ε + pV , seems to be its first formalization. As for the name enthalpy,
physicists are so conditioned to associate Kamerlingh Onnes with liquifying helium and discov-
ering superconductivity that it might be a surprise to learn that “enthalpy" is also his creation
(1901).2 The symbol H was proposed twenty years later by Alfred W. Porter3 to represent “heat
content".4

Taking the total differential of enthalpy we have

dH = dU + p dV + V dp . (5.10)

When combined with the fundamental equation, Eq.5.1,

dH = T dS + V dp + μ dN . (5.11)

With H = H (S, p,N), the total differential is

dH = (∂H
∂S )p,N

dS + (∂H
∂p
)
S,N

dp + (∂H
∂N

)
S,p

dN . (5.12)

Comparing this with Eq.5.11,

(∂H
∂S )p,N

= T , (5.13)

(∂H
∂p
)
S,N

= V (5.14)

and

(∂H
∂N

)
S,p
= μ , (5.15)

which affirms S, p and N as the natural variables of H .
2From the Greek enthalpos, which translates as “to warm within".
3A. W. Porter, Transactions of the Faraday Society 18, 139 (1922).
4Irmgard K. Howard, “H is for Enthalpy", Journal of Chemical Education 79, 697-698 (2002).
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Finally, applying Euler’s criterion to Eqs.5.13 and 5.14

(∂V
∂S )p,N

= (∂T
∂p
)
S,N

, (5.16)

which is another Maxwell relation.

5.1.3 Helmholtz potential F

The Helmholtz potential (Helmholtz free energy) F is formed to accommodate constant T , V and
N processes5 and is defined as

F = U − TS . (5.17)

The nature of this quantity is clarified by taking the total differential

dF = dU − T dS − S dT (5.18)

and replacing dU from the fundamental equation, Eq.5.1, to arrive at

dF = −S dT − p dV + μ dN. (5.19)

For a fixed number of particles at constant temperature,

− dF = p dV , (5.20)

where the right-hand side is quasi-static work. Since reversible (quasi-static, friction-free) work is
the maximum work that can be done by a system, the decrease in Helmholtz potential at constant
temperature is the maximum work a system can perform. Moreover, for a fixed number of particles
at constant T and V ,

dF = 0 , (5.21)

which is the “extremal" condition for equilibrium of a system under those conditions, i.e. when
dF = 0, F = Fmin, the equilibrium state.

Taking F = F (T,V,N) the total differential dF is

dF = (∂F
∂T
)
V,N

dT + (∂F
∂V
)
T,N

dV + ( ∂F
∂N

)
T,V

dN . (5.22)

Comparing this with Eq.5.19,

(∂F
∂T
)
V,N

= −S , (5.23)

(∂F
∂V
)
T,N

= −p (5.24)

5As well as all other extensive variables.
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and

( ∂F
∂N

)
T,V

= μ , (5.25)

affirming T , V and N as natural variables for F .

Applying Euler’s criterion to Eqs.5.23 and 5.24,

( ∂S
∂V
)
T,N

= ( ∂p

∂T
)
V,N

, (5.26)

a third Maxwell relation.

5.1.4 Gibbs potential G

The Gibbs potential (Gibbs free energy) G , defined as

G = U − TS + pV , (5.27)

accommodates experimental constraints on T , p and N . Differentiating Eq.5.27,

dG = dU − T dS − S dT + p dV + V dp , (5.28)

and substituting dU from Eq.5.1 its total differential is

dG = −S dT + V dp + μ dN . (5.29)

Writing G = G (T, p,N), a total differential is

dG = (∂G
∂T
)
p,N

dT + (∂G
∂p
)
T,N

dp + (∂G
∂N

)
T,p

dN , (5.30)

which, on comparison with Eq.5.29, gives

(∂G
∂T
)
p,N

= −S , (5.31)

(∂G
∂p
)
T,N

= V (5.32)

and

(∂G
∂N

)
T,p
= μ , (5.33)

confirming T , p and N as natural variables of G. Applying Euler’s criterion to Eqs.5.31 and 5.32,

(∂S
∂p
)
T,N

= −(∂V
∂T
)
p,N

, (5.34)
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which is a fourth Maxwell relation.

5.2 Enthalpy and throttling

A gas that is slowly forced under high pressure across a very narrow, perfectly insulated porous
plug (or valve), emerging on the other side at reduced pressure, is said to be throttled. For reasons
which will shortly be discussed, the process is applied in commercial refrigeration and liquefaction
of gases. To simplify the discussion, the normally “open" system (gas comes from a high-pressure

Figure 5.1: Gas forced across a porous plug.

reservoir and escapes to a low-pressure reservoir) is replaced by a “closed" system consisting of two
frictionless pistons, one maintaining the constant high pressure P0 and the other the constant lower
pressure Pf (See Figure 5.1). Fixing attention on a fixed amount of gas, say N molecules, the
high pressure piston forces the gas through the plug onto the low pressure piston. At the higher
constant pressure P0, the N molecules have a temperature T0 and occupy a volume V0. Therefore
the work W0 done on the gas by the high pressure piston in moving the N molecules through the
plug is

W0 = P0 V0 . (5.35)

At the lower pressure Pf the N molecules eventually occupy a volume Vf at temperature Tf so
that the work done by the N molecules as they emerge and push the piston outward is

Wf = Pf Vf . (5.36)

Therefore the total work done by the N molecules of gas is

Wf −W0 = PfVf − P0V0 . (5.37)

Applying the First Law to this adiabatic process,

Q = 0 =(Uf − U0) + (Wf −W0) (5.38)

and therefore

U0 + P0 V0 = Uf + Pf Vf , (5.39)
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which in terms of enthalpy is

H0 = Hf . (5.40)

The throttling process is isenthalpic.

Of principle interest in throttling is the temperature change it produces in the gas, if any. To further
investigate the process write the temperature as T = T (H , P ) and take the total differential

dT = ( ∂T
∂H

)
P

dH + (∂T
∂P
)
H

dP . (5.41)

The good news is that since dH = 0 we have, so far,

dT = (∂T
∂P
)
H

dP . (5.42)

The unfortunate news is that an “unfriendly" partial derivative (∂T /∂P )H =J must be evaluated.6

Typically, there is more than one way to do this. For now, start by writing Eq.5.11 as

dS = 1

T
dH − V

T
dP . (5.43)

Then, since S is exact, Euler’s criterion gives

⎛
⎜
⎝

∂ ( 1T )
∂P

⎞
⎟
⎠
H

= −
⎛
⎜
⎝

∂ (VT )
∂H

⎞
⎟
⎠
P

, (5.44)

which becomes, after differentiation,

(∂T
∂P
)
H
= T ( ∂V

∂H
)
P
− V ( ∂T

∂H
)
P

(5.45)

= [T (∂V
∂T
)
P
− V ]( ∂T

∂H
)
P

(5.46)

= [T (∂V
∂T
)
P
− V ]( 1

CP
) . (5.47)

It is easily verified that J = 0 for an ideal gas and, consequently, ΔT = 0. On the other hand, for any
real gas, e.g. a van der Waals gas, J can be positive or negative. If J > 0 the gas will cool whereas
if J < 0 the gas will warm. Specifically, below some inversion temperature Tinv (characteristic of
each gas) a gas will cool upon throttling while above Tinv it will warm. At atmospheric pressure
nitrogen (N2) has Tinv = 621 K and oxygen (O2) has Tinv = 764 K. On the other hand neon (Ne)
has Tinv = 231 K, and hydrogen (H2) has Tinv = 202 K (See Figure 5.2.)

6J is the Joule-Thomson coefficient.
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4

Figure 5.2: Joule-Thomson coefficients J for several gases at atmospheric pressure.

4He has an inversion temperature of 40 K. To liquify 4He, one must first cool it below 40 K and
then throttle it. At room temperature N2 and O2 will cool upon throttling whereas H2 and 4He
will warm.

5.3 Entropy and heat capacity

Low-temperature heat capacities are among those macroscopic phenomena that require quantum
explanations. For that reason they stand high on the list of important thermodynamic experiments.
Anomalous low-temperature values in diamond first suggested to Einstein (1905) that nature was
not as classical as was generally believed at the time, and he applied quantization – as proposed
by Planck (1900) – to develop the first quantum theory of solids 25 years before the arrival of a
generally accepted quantum mechanics.

The appearance of entropy in thermodynamics brings a welcome and important uniformity to heat
capacity definitions. Whereas in Chapter 2 we derived the result

CV = (
∂U

∂T
)
V

, (5.48)

we can instead, by applying the simple chain rule

(∂U
∂T
)
V
= (∂U

∂S
)
V
(∂S
∂T
)
V

(5.49)
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followed by Eq.5.3, arrive at

(∂U
∂T
)
V
=T (∂S

∂T
)
V

(5.50)

so that

CV =T (
∂S

∂T
)
V
. (5.51)

Similarly

Cp = (
∂H

∂T
)
p

(5.52)

= (∂H
∂S )p

(∂S
∂T
)
p

(5.53)

= T (∂S
∂T
)
p
. (5.54)

In general there is a single, convenient heat capacity definition:

Cα = T (∂S
∂T
)
α
. (5.55)

5.3.1 Relationship between Cp and CV

The entropy based relations Cp = T (∂S/∂T )p and CV = T (∂S/∂T )V put this problem on a level
footing. Considering the final objective, expressing the entropy as S = S(T, p) is one sensible choice.
Then

dS = (∂S
∂T
)
p
dT + (∂S

∂p
)
T

dp , (5.56)

which already contains a piece of the answer, i.e.

dS = Cp
T

dT + (∂S
∂p
)
T

dp . (5.57)

An equally sensible choice is S = S(T,V ), in which case

dS = (∂S
∂T
)
V

dT + ( ∂S
∂V
)
T

dV (5.58)

= CV
T

dT + ( ∂S
∂V
)
T

dV . (5.59)

Then combining Eqs.5.57 and 5.59 gives

(Cp − CV
T

)dT = [( ∂S
∂V
)
T
dV − (∂S

∂p
)
T

dp] . (5.60)

Next:
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1. applying the pair of Maxwell Relations, Eq.5.26 and Eq.5.34,

(Cp − CV
T

) dT = [( ∂p

∂T
)
V

dV + (∂V
∂T
)
p
dp] ; (5.61)

2. applying the cyclic chain rule to the first partial derivative on the right-hand side,

(Cp − CV
T

) dT = −(∂V
∂T
)
p
[( ∂p

∂V
)
T

dV − dp] ; (5.62)

3. noting that

dp = ( ∂p

∂V
)
T

dV + ( ∂p

∂T
)
V

dT ; (5.63)

we finally arrive with

(Cp − CV
T

) = (∂V
∂T
)
p
( ∂p

∂T
)
V

. (5.64)

For an ideal gas

(∂V
∂T
)
p
= NkB

p
(5.65)

and

( ∂p

∂T
)
V
= NkB

V
, (5.66)

which gives
Cp − CV = NkB , (5.67)

as stated in Eq.3.66, without proof.

Eq.5.64 is a result that can be applied to any gas law – for example, to the van der Waals equa-
tion.7

This type of result is not limited to gases. We will later derive a relation between CB (constant mag-
netic induction) and CM (constant magnetization) for magnetic systems, and between Cτ (constant
tension) and Cχ (constant elongation) for linear elastic systems.8

Problems and exercises

5.1 N molecules of an ideal gas at temperature T0 and volume V0 undergo an isothermal expansion
to a volume V1. What is the change in:

a. internal energy of the expanding gas?
7Also see problem 5.3.
8χ = ⟨χop⟩ is the mean elongation.
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b. enthalpy of the expanding gas?

c. Helmholtz potential of the expanding gas?

d. Gibbs potential of the expanding gas?

5.2 Show that for an ideal gas

a. (∂CV
∂p
)
T

= 0;

b. (∂Cp
∂V

)
T
= 0.

5.3 If a gas is not ideal but has the equation of state

p = NkBT

V
[1 + N

V
B (T )] , (5.68)

find expressions for:

a. (∂CV
∂p
)
T

;

b. (∂Cp
∂V

)
T

;

c. Cp − CV .

5.4 It is possible for a specific gas to emerge on the low-pressure side of a throttling plug at either
a lower or higher temperature than it had entering on the high-pressure side.

Show that for the van der Waals gas, whose equation of state is

(p + aN2

V 2
)(V −Nb) = NkBT , (5.69)

where a and b are gas specific temperature independent constants, that at temperature T0,
where

kBT0 =
2a

b
(V −Nb

V
)
2

, (5.70)

throttling produces no temperature change.
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Suppose we were asked to arrange the following in two categories – distance, mass,
electric force, entropy, beauty, melody. I think there are the strongest grounds for
arranging entropy alongside beauty and melody and not with the first three. Entropy is
found only when the parts are viewed in association, and it is by hearing or viewing the
parts in association that beauty and melody are discerned...The reason why this stranger
can pass itself off among the aborigines of the physical world is that...it has a measure
number associated with it.

A. Eddington, The Nature of the Physical World, Cambridge University Press (1928)

Chapter 6

Knowing the “unknowable"

6.1 Entropy – ticket to the Emerald City

Entropy S was introduced into thermodynamics by Rudolph Clausius1 as a cryptic state function
without a clear intuitive or physical interpretation. Still he maintained it to be the basis of a
sweeping new, abstract, universal physical principle:

In all spontaneous processes the entropy of a closed system (system + environment)
tends towards a maximum, i.e.

ΔS ≥ 0 . (6.1)

It was in his series of memoirs (1856-1865) on irreversible heat loss, i.e. inefficiency of heat engines,
that he chose the name entropy (Greek for “transformation") because it sounded similar to energy,
under the mistaken impression that the two were related.

Clausius’ principle, in which a particular state variable – entropy – always increases (or remains
constant) as a system and its surroundings (i.e. the “universe") evolve from one equilibrium state
to the next, is called the Second Law of Thermodynamics. The Second Law is not a conservation
rule. Moreover entropy is unlike objective observables so familiar in physics, such as mass, length,
velocity, energy, acceleration, etc. Instead, emotive analogies or proxies such as disorder, chaos and
disorganization – which point in the right direction – are reasonably applied.

1R. Clausius, “On the moving force of heat, and the laws regarding the nature of heat itself which are deducible
therefrom" (English translation of original), Phil. Mag. 2, 1-21, 102-119 (1851).

83
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The following encounter, said to have taken place in 1948, could serve to acknowledge entropy’s
subtle character.

Over half a century ago while creating a fledgling Information Theory, Claude Shannon (of Bell
Laboratories) sought advice from Princeton’s famous mathematician-physicist John von Neumann
in naming the function central to his [Shannon’s] (information) arguments:2

My greatest concern was what to call it. I thought of calling it information, but the
word is overly used. So I decided to call it uncertainty. When I discussed it with John
von Neumann, he had a better idea. Von Neumann told me – You should call it entropy,
for two reasons. In the first place your uncertainty function has been used in statistical
mechanics under that name, so it already has a name. In the second place, and more
important, even after nearly one hundred years nobody knows what entropy really is,
so in a debate you will always have the advantage.

Although entropy is not a part of quantum mechanics, it plays a key role in postulating a bridge
to thermodynamics.

6.2 The bridge

As a consequence of environmental decoherence, a “thermodynamic" density operator, ρτop

ρτop = ∑
s

P (Es) ∣Es⟩ ⟨Es∣ , (6.2)

emerges as – potentially – the quantity essential in the evolution to thermodynamics. For example,
using the macroscopic internal eigen-energies from

hop∣εs⟩ = εs∣εs⟩ (6.3)

the internal energy U enshrined in the First Law, could – in principle – be expressed as

U = Trρτophop (6.4)

or, equivalently, as

U =∑
s

εsP (εs) . (6.5)

This looks promising – but, alas, the P (εs) are unknown and, except in trivial cases, unknowable.
The emerging thermodynamic theory is not complete! Can it ever be?

An alternative is to replace the unknowable P (Es) by inferred “surrogates" P (Es) with which to
construct a “surrogate" thermal density operator ρ̂τop

ρ̂τop = ∑
s

P (Es)∣Es⟩⟨Es∣ (6.6)

2M. Tribus and E. McIrvine, “Energy and Information", Scientific American 225, p 179-188 (1971). Reproduced
with permission. Copyright 1971 SCIENTIFIC AMERICAN, a division of Nature America, Inc. All rights reserved.
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that describes behavior in accord with the macroscopic physical universe.

6.3 Thermodynamic hamiltonians

A simple dynamical situation would be the just discussed

Hop = hop , (6.7)

in which hop represents the internal energy (kinetic + potential+ interaction) of, say, a gas.3

If gas particles also have a magnetic moment and are in a local magnetic field B0 – the field prior
to insertion of matter4 – a macroscopic hamiltonian is

Hop = hop −Mop ⋅ B0 , (6.8)

where Mop represents macroscopic magnetization

Mop = ∑
i

mop (i) . (6.9)

If the particles are molecular dipoles with electric dipole moments p
op

in an electric field E0,
then

Hop = hop − Pop ⋅ E0 , (6.10)

where Pop represents the macroscopic electric polarization.

Euler’s fundamental equation, Eq.5.8, shows how other “thermodynamic" hamiltonians can be for-
mulated by adding physically relevant macroscopic operators (see Table 5.1). A more general result
is then5,6

Hop = hop + popV −σ ⋅ εop − τ ⋅χop − B0 ⋅Mop − E0 ⋅ Pop −Σ ⋅As
op − μNop . (6.12)

Since the extensive parameters describe a macroscopic system completely, Eq.6.12 contains all
relevant information to enable a model macroscopic system’s average total energy to be expressed
as

⟨Hop⟩ = Tr ρ̂τopHop . (6.13)

3The gas may be atoms or cold molecules (no internal modes) or even electrons.
4This subtle but important point will be discussed in detail in Chapter 11.
5Schrödinger’s non-relativistic wave mechanics is based on closed systems (fixed number of particles.) It makes

no provision for destroying and creating particles. Therefore a number operator is not accommodated within that
theory. Particle creation and destruction is, however, integral to quantum field theories so that number operators
play a natural role.

6The particle number operator Nop defines the eigenvalue equation

Nop ∣N⟩ = n ∣N ⟩ (6.11)

with eigenvalues n = 0, 1, 2, 3, . . ..
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But the inescapable question remains – what criteria can be devised for constructing the “best"
P(Es)? This question has no a-priori answer apart from a postulate that corresponds to time-
tested thermodynamics and describes the measurable universe.7

Towards this goal:

1. Minimize

⟨Hop⟩ =Tr ρ̃τopHop (6.14)

=∑
s

P̃ (Es)Es (6.15)

with respect to the P̃ (Es).8,9,10

2. With no a-priori basis for choosing the P̃ (Es) that minimizes Eq.6.15, they shall be chosen
without “fear or favor", i.e. with minimum bias11,12,13 (maximum uncertainty).

Recalling the function(al)14 F of Eq.2.55,

F [ρ] = −κTrρτop lnρτop , κ > 0 , (6.16)

as a measure of bias in a collection of probabilities,15 the function(al)

F [P̃ (E)] = −κ∑
s

P̃ (Es) ln P̃ (Es) , κ > 0 (6.17)

is taken to be a measure of bias in the probabilities P̃ (Es) and is maximized. (See Appendix
B.)

3. The P̃ (Es) are normalized

∑
s

P̃ (Es) = 1 . (6.18)

To meet these requirements a Lagrangian is formed:

L = −{κ∑
s

P̃ (Es) ln P̃ (Es) +∑
s

P̃ (Es)Es} − λ0∑
s

P̃ (Es) , (6.19)

7This not unlike Ludwig Boltzmann’s motivation in postulating S = kB lnW .
8L. H. Thomas, “The calculation of atomic fields", Proc. Cambridge Phil. Soc. 23, 542-548 (1927).
9E. Fermi, “Un Metodo Statistico per la Determinazione di alcune Prioprietà dell’Atomo", Rend. Accad. Naz.

Lincei 6, 602-607 (1927).
10E. H. Lieb, “Thomas-Fermi and related theories of atoms and molecules", Rev. Mod. Phys. 53, 603-641 (1981);

Errata 54, 311 (1982).
11J. N. Kapur,Maximum Entropy Models in Science and Engineering, John Wiley and Sons, New York (1989).
12E. T. Jaynes, “Information theory and statistical mechanics", Phys. Rev. 106, 620 (1957).
13R. Balian, “Incomplete descriptions and relevant entropies", Am. J. Phys. 67, 1078 (1999).
14
F is a function of functions, which is called a functional.

15See Appendix B.
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where λ0 is a Lagrange multiplier and the P̃ (Es) are varied until L is maximized, i.e. P̃ (Es) → P (Es).16
As discussed in Appendix B, with κ→ kBT a thermal Lagrangian is

L [P̃] = −{kB∑
s

P̃ (Es) ln P̃ (Es) + T −1∑
s

P̃ (Es)Es} − λ0∑
s

P̃ (Es) . (6.20)

Then with P̃→ P (least bias), it follows that F [P̃ (E)] →F [P (E)] = Fmax, and

S = −kB∑
s

P (Es) lnP (Es) , (6.21)

the entropy of thermodynamics.

6.4 Microcanonical (Boltzmann) theory

At the time Boltzmann published his ingenious entropy postulate (1864) skepticism about molecular
models continued almost unabated and classical mechanics was the only operative particle paradigm.
Yet his accomplishments were so radical and ahead of his time that it would take another 25 years
for them to be reformulated by Max Planck as quantization.

With our 150 year advantage, we illustrate a thermodynamic density operator ρ̂τop approach to
Boltzmann’s fundamental thermodynamic contribution.

Consider a many particle, closed system with:

• a fixed number of particles N ,

• a fixed volume V ,

• an isolated g0 -fold degenerate macroscopic eigen-energy ε0,α,

ε0,α ≡ {ε0,1 = ε0,2 = ε0,3 . . . = ε0,g0} . (6.22)

These effectively constitute Boltzmann’s “microcanonical" conditions. For this model system the
average hamiltonian (internal energy) is

U = ∑
s

α=1,2,⋯,g0

PB (εs,α) εs,α δs,0 , (6.23)

where PB (εs,α) is the probability that the system is in one of the degenerate macroscopic particle
states with eigen-energy εs,α. The Kronecker δs,α selects from within this spectrum a g0-fold
degenerate single value ε0,α. Therefore after summing over the index s, Eq.6.23 becomes

U =
g0

∑
α=1

PB (ε0,α) ε0,α . (6.24)

16This is equivalent to minimizing the Helmholtz potential, as in Section 5.1.3.
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The remaining sum over α covers the g0-fold degeneracy.17

To determine the surrogate probabilities PB(ε0,α) (i.e. ρ̂τop) a thermal Lagrangian L[P̃B] is pos-
tulated which, when maximized with respect to the P̃B(ε0,α), minimizes both macroscopic energy
[T rρ̃τopHop] and any “bias" (see Eq.6.20) in the choice of P̃B(ε0,α). In particular,

L[P̃B] = −kB
g0

∑
α=1

P̃B (ε0,α) ln P̃B (ε0,α) − T −1
g0

∑
α=1

P̃B (ε0,α) ε0,α − λ0

g0

∑
α=1

P̃B (ε0,α) , (6.25)

where λ0 is a Lagrange multiplier that insures normalized “surrogate" probabilities.18 The thermal
Lagrangian used here, and in the remaining examples of this book, is discussed and justified in
Appendix B.

If results from this procedure are in agreement with an observable macroscopic universe and with
time honored thermodynamics – whose validity is not in doubt – this Yellow Brick Road will have
guided us, at last, to the Emerald City.

[The procedure resembles a maximum entropy formalism of E.T. Jaynes.19,20 Jaynes formulation
is, fundamentally, a statistical method in cases of partial information (Bayesian statistics). It
adopts Gibbs-Shannon21 communication (information) theory (see Section 6.1) and is the basis of
the “information theory" approach to statistical mechanics applied by several authors.22,23,24 Here,
rather than pursuing alternative classical statistics, a reasoned path from quantum mechanics via
decoherence to ρ̂τop – and hence to thermal physics – is postulated.]

Differentiating25 the thermal Lagrangian with respect to the PB(ε0,α) and setting the resulting
expressions to zero we have

−kB (ln PB (ε0,α) + 1) − T −1ε0,α − λ0 = 0 ; α = 1, 2, 3, . . . g0 , (6.26)

where g0 is the degeneracy of the eigen-energy ε0,α. Solving for each of the probabilities PB(ε0,α)
we find

PB (ε0,α) = exp
⎧⎪⎪⎨⎪⎪⎩

(−T −1ε0,α − λ0)
kB

− 1
⎫⎪⎪⎬⎪⎪⎭

. (6.27)

Applying normalization

g0

∑
α=1

PB (ε0,α) =
g0

∑
α=1

exp

⎧⎪⎪⎨⎪⎪⎩

(−T −1ε0,α − λ0)
kB

− 1
⎫⎪⎪⎬⎪⎪⎭
= 1 (6.28)

17Boltzmann pictured “microstates" (classical configrations) contributing to a single classical “internal energy."
18The Internet is a rich source of tutorials on this powerful mathematical technique that is widely used in

physics and other technical fields. See for example: www.slimy.com/∼steuard/teaching/tutorials/Lagrange.html
and www.cs.berkeley.edu/∼ klein/papers/lagrange-multipliers.pdf

19E. T. Jaynes, "Information Theory and Statistical Mechanics", Phys. Rev. 106, 620 (1957).
20E. T. Jaynes, "Information Theory and Statistical Mechanics II", Phys. Rev. 108, 171 (1957).
21Claude E. Shannon, “Prediction and entropy." Bell System Tech. J., 30, 50 (1951).
22A. Katz, Principles of Statistical Mechanics, W.H. Freeman, San Francisco (1967).
23R. Baierlein, Atoms and Information Theory, WH Freeman, San Francisco (1971).
24Myron Tribus, Thermodynamics and Thermostatics, D. Van Nostrand Company Inc., New York (1961).
25The thermal Lagrangian is a functional of the P(ε) so the required process is functional differentiation as is done

in Lagrangian (classical) mechanics. However, in this uncomplicated case functional differentiation is a subtlety we
can pretend to be unaware of.
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which after summing α gives

g0 exp

⎧⎪⎪⎨⎪⎪⎩

(−T −1ε0 − λ0)
kB

− 1
⎫⎪⎪⎬⎪⎪⎭
= 1 . (6.29)

From Eq.6.27 the Boltzmann probabilities are therefore

PB (ε0,α) =
1

g0
(6.30)

and from Eqs.6.24 and 6.30 the (internal) energy is

U =
g0

∑
α=1

PB (ε0,α) ε0,α (6.31)

=
g0

∑
α=1

1

g0
ε0,α (6.32)

=ε0 . (6.33)

U is identified with the g0-fold degenerate macroscopic Boltzmann eigen-energy ε0. Finally, from
Eqs.6.30 and 6.21 the entropy is

S = − kB
g0

∑
α=1

PB (ε0,α) lnPB (ε0,α) (6.34)

= − kB
g0

∑
α=1

1

g0
ln

1

g0
(6.35)

=kB ln g0 . (6.36)

An imaginary trip to Vienna’s Zentralfriedhof cemetery finds a tombstone bearing Boltzmann’s
visage. Above the sculpture is carved his enduring formula for entropy S,

S = k log W (6.37)

where k was later to become kB , the Boltzmann constant26,27 and “log" is the natural logarithm.
Comparing Eqs.6.36 and 6.37, W (Boltzmann’s microstate number)28 corresponds to g0 – the
degeneracy of the eigen-energy ε0.29,30

If Boltzmann’s equation for entropy, Eq.6.37, is regarded here as the fundamental “equation of
motion" of thermodynamics then, in much the same way that the Lagrangian of classical mechan-
ics generates Newton’s Laws, the postulated thermal Lagrangian, Eq.6.25, generates Boltzmann’s

26Boltzmann’s constant is universally abbreviated kB .
27M. Planck seems to have been the first to write entropy in this form and k was initially called Planck’s constant.

Yes! Another one!
28W represents the German wahrscheinlichkeit (probability), i.e. W = 1

g0
.

29The logarithm in Boltzmann’s theory is consistent with the thermal Lagrangian postulate.
30Of course, Boltzmann knew nothing about quantum eigen-energies. The time for that was nearly half a century

off. His idea of degeneracy was “microstate" counting, i.e. classical “microscopic" configurations which corresponded
to a single classical internal energy.
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“equation of motion". This effectively provides a central organizing principle whose absence in
thermal and statistical Physics has already been duly noted by Baierlein.31

Eqs.6.36 and 6.37 provide relatively easily grasped insights into entropy:

• High degeneracy – more statistically equivalent states – means greater uncertainty (i.e., less
information) about any particular outcome → less “bias" (higher entropy).

• In evolving from configurations of high predictability (large “bias") to ones of low predictability
(minimum “bias") the entropy increases – the essence of the second law.

6.5 Gibbs’ canonical theory

J.W. Gibbs’ “canonical" theory32 may be seen as an extension of the microcanonical case for a
closed system (constant particle number) with many internal eigen-energies

hop∣εs⟩ = εs∣εs⟩ , (6.38)

some of which may be degenerate.

A thermal Lagrangian will again be taken as

L [P̃] = −kB∑
s

P̃ (εs) ln P̃ (εs) − T −1∑
s

P̃ (εs) εs − λ0∑
s

P̃ (εs) . (6.39)

Maximizing L [P̃] by (functionally) differentiating with respect to P̃ (εs) and setting the results to
zero we get the set of equations (one for each eigen-index s)

−kB [ln P (εs) + 1] − T −1εs − λ0 = 0 , s = 1,2,3, . . . , (6.40)

whose solutions are

P (εs) = exp{(
−T −1εs − λ0

kB
) − 1} . (6.41)

Defining β = 1
kB T

and then imposing normalization to eliminate λ0 gives the result

P (εs) =
exp (−βεs)
∑
σ
exp{−βεσ}

. (6.42)

Replacing the denominator in Eq.6.42 with

Z =∑
σ

exp (−βεσ) , (6.43)

31R. Baierlein, Am J. Phys. 63, 108 (1995).
32This is commonly called the “canonical ensemble". But quantum mechanics already brings with it an ensemble

interpretation, so an extra use of that term seems redundant.
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which is Gibbs’ partition function, we can write

P (εs) =
exp (−βεs)

Z . (6.44)

Note again that the sums are over all states, some of which may be degenerate. Explicitly accounting
for degeneracy in carrying out the the partition function sum33

Z =∑
σ′

g(εσ′)exp (−βεσ′) , (6.45)

where g(εσ′) is the degeneracy of the state ∣εσ′⟩.

6.6 Canonical thermodynamics

1. Internal Energy:

U = ⟨hop⟩ (6.46)

= ∑
s

εsP (εs) (6.47)

which is identical with

U = −∂ lnZ
∂β

. (6.48)

2. Entropy:

S = −kB∑
s

P (εs) lnP (εs) (6.49)

= −kB∑
s

exp (−βεs)
Z [−βεs − lnZ] (6.50)

= U
T
+ kB lnZ . (6.51)

Then with Eq.6.48

S = −kB β
∂

∂β
lnZ + kB ln Z (6.52)

and finally

S = −kBβ2 ∂

∂β
( 1
β
lnZ) . (6.53)

33The commonly used symbol Z arises from the German Zustandssumme – the sum over states, a reminder of
what has to be summed!



92 CHAPTER 6. KNOWING THE “UNKNOWABLE"

3. Pressure:

Since the pressure operator is pop = −(
∂hop

∂V
)
T

thermodynamic pressure is

p = ∑
s

−(∂εs
∂V
)
T
P (εs) (6.54)

where a volume dependence in εs (V ) is assumed known. Applying Eq.6.43 this is identical
to

p = 1

β
(∂ lnZ

∂V
)
T

. (6.55)

4. Helmholtz potential F :

From Eq.6.51 and the definition of the Helmholtz potential (see Eq.5.17) it follows that

F = − 1
β

ln Z , (6.56)

which from Eqs.6.53 and 6.55 follow the usual thermodynamic results

S = −(∂F
∂T
)
V

p = −(∂F
∂V
)
T

.

(6.57)

Although Z is not a measurable, it is among the most important quantities in statistical thermo-
dynamics.

6.7 Degeneracy and Z

The sum in Eq.6.45 is over discrete energies. State “multiplicity" (degeneracy) is taken into account
by the factor g(εs).
There are, generally, two sources of degeneracy:

1. Microscopic degeneracy: Generally arising from solutions to the eigenvalue problem

Hop∣Es⟩ = Es∣Es⟩ , (6.58)

in which several eigenstates, e.g. ∣E1⟩, ∣E2⟩, ∣E3⟩ . . . correspond the same eigen-energy. This
source of degeneracy will be referred to as internal degeneracy. For example the spin inde-
pendent s-states of the hydrogen atom are 1-fold degenerate (this is called non-degenerate).
If spin is included the s-states of the hydrogen atom are 2-fold degenerate.
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2. Macroscopic (configurational) degeneracy: Usually associated with systems composed of large
numbers of macroscopic, energetically equivalent, configurations, e.g. lattices. These degen-
eracies can usually be determined by combinatoric arguments.

6.7.1 Examples

Example 1

A simple model of a crystal consists of N sites, each occupied by an atom34 with spin 1

2
. With no

local magnetic field (B = 0) the two spin states, identified with quantum numbers sz = ±
1

2
(or as

cartoons, ↑, ↓), have identical eigen-energies, i.e. they are internally 2-fold degenerate.

In this case there is a combination of internal and configurational degeneracy. Since each atom is
2-fold degenerate, for N identical atoms the degeneracy factor is

g =2 × 2 × 2 × 2 . . . (6.59)

=2N . (6.60)

If, for definiteness, this state is taken to have energy E0 = 0, then according to Eq.6.45

Z =2N e−β×0 (6.61)

=2N . (6.62)

Since the entropy of a Gibbs system is

S = − kB β2 ∂

∂β
( 1
β
lnZ) (6.63)

we have

S =N kB ln 2 , (6.64)

which is, of course, identical with Boltzmann’s S = kB ln W .

If the atoms had higher internal degeneracy the entropy would increase – less statistical knowledge
(greater uncertainty). If the atoms were spin= 0 (non-degenerate) then g = 1 and the entropy would
be zero! i.e. statistical certainty – and the smallest possible entropy.

Example 2

Assume now that the S = 1

2
atoms are immersed in a weak but uniform local35 magnetic field B

so that the degeneracy is “lifted" (see Figure 6.1) with E↑ = γ B and E↓ = −γ B.36 If n↑ are in the
34Spin-spin interaction is neglected.
35The field at the atom site is taken to be the same as the field external to the sample before matter is inserted.
36γ = S g μB with S the intrinsic spin of the atom, g the electron g-factor and μB the Bohr magneton.
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Figure 6.1: Zeeman effect with spin-1
2

atoms in a weak magnetic field.

state E↑ and n↓ are in the state E↓, with N = n↑ + n↓ the total macroscopic system energy for any
configuration {n↑, n↓} is, with E0 = 0,

E = n↑γB − n↓γB . (6.65)

Although the states E↑ and E↓ are no longer internally degenerate, the N -atom system has config-
urational degeneracy which is determined by counting the number of unique ways N atoms can be
arranged with n↑ in the state E↑ and n↓ in the state E↓.

Among the N total atoms there are N ! permutations, no matter what the spin state. But not all
the permutations are unique arrangements of spins on sites. In fact, n↑! × n↓! are redundant and
must be divided out. Therefore the total configurational degeneracy for the particular macroscopic
energy E in Eq.6.65 is

g(N,n↑, n↓) =
N !

n↑ !n↓ !
. (6.66)

Consequently the partition function (sum over states) for the system in a magnetic field is

Z = ∑
n↑,n↓

n↑+n↓=N

N !

n↑ × n↓
exp [−β (n↑ − n↓)γB] , (6.67)

which is just the binomial expansion of

Z = (e−βγB + eβγB)N . (6.68)

The internal energy U of the system37

U = − ∂

∂β
lnZ (6.69)

=NγB eβγB − e−βγB

eβγB + e−βγB
, (6.70)

37Strictly speaking, with E0 = 0 the internal energy U = 0. The result given here is a magnetic energy.
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and from Eq.6.53 the entropy is

S = NkB {ln (eβγB + e−βγB) − βγB(e
βγB − e−βγB

eβγB + e−βγB
)} . (6.71)

Example 3

A simple model of a linear elastomer38 consists of a chain with N identical links each of length
� (See Figure. 6.2). The elastomer can be stretched under tension until its maximum length is
Lmax = N�. (A thin rubber band is an imperfect but helpful illustration.) In this simplified model
the linkage energies are very weak so that each molecule (link) can point either to the left or the
right – and only to the left or right – with negligible energy difference.39 Referring to Eq.6.45, the
partition function for this model depends only on configurational degeneracy.

Figure 6.2: Elastomer completely stretched under tension.

The fully extended polymer with length L = N� (See Figure 6.2) has only one possible configuration
(actually two, since the links can all point to the left or all to the right). If the tension is relaxed
the elastomer will retract to length L < Lmax as depicted in Figure 6.3.

Let nL be the number of left pointing links and nR be the number of right pointing links. For this
configuration the polymer length is

L = � ∣nR − nL∣ , (6.72)

where the magnitude defines the 2-fold left-right symmetry. The total number of links is obvi-
ously

N = nR + nL . (6.73)

There are N ! permutations among the N links. But not all are unique since any arrangements
with nR right-pointing links and nL left-pointing links are equivalent. So the number of distinct
elastomer configurations is

g(nL, nR) = 2 ×
N !

nL!nR!
, (6.74)

38An elastic polymer
39Although not without significant deficiencies, the model is useful for understanding unusual thermodynamic

properties of rubber and other elastic polymers.
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Figure 6.3: Depiction of “retraction" in an elastic chain.

where the factor 2 accounts for the left-right symmetry. Thus the partition function is simply

Z =
N

∑
nL,nR

nL+nR=N

g (nL, nR) (6.75)

= 2
N

∑
nL,nR

nL+nR=N

N !

nL!nR!
(6.76)

= 2 × 2N , (6.77)

and in accord with Eq.6.63 as well as Boltzmann’s fundamental result (applying Stirling’s formula,
Eq.7.26, to approximate the factorials in Eq.6.74)

S = (N + 1)kB ln 2 . (6.78)

Example 4

Consider a dilute (non-interacting) system of N two-level atoms with non-degenerate quantum
energy levels ε0 = 0 and ε1 = ε. When n0 atoms are in the ground state ε0 and n1 atoms are in the
excited state ε1 the macroscopic eigen-energies are

E = n0 × 0 + n1 ε . (6.79)

The number of distinct configurations (degeneracy) associated with n0 atoms in the lower energy
state and n1 atoms in the excited energy state is

g = N !

n0!n1!
(6.80)

so that the partition function is

Z =
N

∑
n0,n1

n0+n1=N

N !

n0!n1!
exp (−βn1ε) (6.81)

=(1 + e−βε)N . (6.82)
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Example 5

Ignoring spin, if the excited state of the N impurities in the last example was a hydrogenic 4-fold
degenerate (2s+2p) configuration with energy E = ε and the ground state was a non-degenerate 1s
state with energy E = 0, what would be the degeneracy g?

Generalizing to the case where n0 impurity atoms are in an r-fold degenerate ground state and n1

are in a s-fold degenerate excited state, with n0 + n1 = N ,

g = N !

n0!n1!
rn0sn1 . (6.83)

For this hydrogenic impurity

g = N !

n0!n1!
(1)n0 (4)n1 , (6.84)

and its partition function is

Z =
N

∑
n0,n1

n0+n1=N

N !

n0!n1!
(1)n0 (4)n1 e−n0β(0)e−n1βε (6.85)

=(1 + 4e−βε)N . (6.86)

Note: In the case of an arbitrary number of states with energies ε1, ε2, . . . , εm and degeneracies
s1, s2, . . . , sm with site occupancies n1, n2, . . . , nm,

g = N !

n1!n2! . . . nm!
sn1

1 sn2

2 . . . snm
m (6.87)

which is a generalized multinomial coefficient40 with a corresponding partition function

Z =
N

∑
n1,n2,...nm

n1+n2+...nm=N

N !

n1!n2! . . . nm!
sn1

1 sn2

2 , . . . , snm
m e−βε1n1e−βε2n2 . . . e−βεmnm (6.88)

=(s1e−βε1 + s2e
−βε2 . . . sme−βεm)N . (6.89)

Example 6

Consider a lattice of N identical one-dimensional quantum harmonic oscillators, each oscillator with
allowed eigen-energies

Ei = h̵ω0 (ni +
1

2
) (6.90)

40This result and its widely used generalizations can be found in M. Abramowitz and I. Segun, Handbook of
Mathematical Functions, Dover 1965, Chapter 24.
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where ω0 is the oscillator’s natural frequency, i = 1,2,3, . . . ,N and ni = 1,2,3, . . . ,∞ are the ith
oscillator’s allowed quantum numbers. The eigen-energies of the entire oscillator lattice are

E(n) =
N

∑
i=1
Ei (6.91)

= h̵ω0N

2
+ h̵ω0

N

∑
i=1

ni (6.92)

= h̵ω0N

2
+ h̵ω0n (6.93)

where n is the total lattice quantum number,41

n =
N

∑
i=1

ni . (6.94)

In principle, using Eq.6.93 the partition function could be written

Z =
∞

∑
n=0

g (N,n) exp [−βh̵ω0 (
N

2
+ n)] , (6.95)

where g (N,n) is the degeneracy of the lattice eigen-energy (see Eq.6.93).

Figure 6.4: Occupation representation for a lattice of N identical oscillators.

In Figure 6.4 the N oscillators are represented by N compartments created by N − 1 partitions
(shaded bars) while the quantum numbers ni are represented by n quasi-particles (grey bullets in
the boxes). The n quasi-particles are distributed in all possible ways in the N compartments. The
figure shows an arrangement of two kinds of objects – partitions and quasi-particles. The number
of distinct ways these42 can be arranged is

g (N,n) = (N − 1 + n)!
(N − 1)!n! , (6.96)

41Here we have the opportunity to introduce the idea of quasi-particles, which are notional particles used to
represent the energy excitations of fields. In this case the harmonic oscillator is represented by quasi-particles
identified with a “phonon" field, i.e. the quantum numbers n. Clearly these quasi-particles must be “notional" in the
sense that, even though there is a fixed number N of vibrating atoms, there is no similar quasi-particle number n
conservation.

42There are n quasi-particles, N − 1 partition walls and N − 1 + n total objects.
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which gives the partition function

Z =
∞

∑
n=0

(N − 1 + n)!
(N − 1)!n! exp [−βh̵ω0 (

N

2
+ n)] (6.97)

= e−
Nβh̵ω0

2
∞

∑
n=0

(N − 1 + n)!
(N − 1)!n! exp (−nβh̵ω0) . (6.98)

This sum is not a binomial expansion but may be approximated using Stirling’s asymptotic formula
(see Eq.7.26). (An alternative exact evaluation using the Euler Γ function

Γ (n) = (n − 1)! =
∞

∫
0

dt tn−1e−t (6.99)

is left to Chapter 9 where the harmonic oscillator is discussed.)

6.8 Closing comments

Boltzmann’s pre-quantum insight linked degeneracy (multiplicity) with entropy. But as indicated
here, Boltzmann’s conjecture follows, in principle, by applying the thermal Lagrangian postulate
introduced in this chapter in the special circumstance of a single, isolated, degenerate macroscopic
eigen-energy. Applying the same rule to a continuous spectrum of macroscopic eigen-energies leads
to Gibbs’ “canonical" case. With the thermal Lagrangian (least-biased postulate) thermal physics
becomes a direct consequence of macroscopic quantum theory.

Thermodynamics was a serious and practical science long before there was a quantum mechanics.
Doubtless, it will continue to be widely applied in its pragmatic, time-honored classical form by
engineers and chemists in which the role played by quantum mechanics may be of only academic
interest or of no interest at all.

But quantum mechanics lends modern thermodynamics its distinctive and profound character in
which microscopic models can be used as a basis for even the most exotic macroscopic systems.
This union has fashioned one of the most versatile and widely applied paradigms in modern sci-
ence.

Problems and exercises

6.1 A hypothetical macroscopic system hamiltonian hop has eigen-energies and eigenstates given
by

hop∣φj⟩ = φj ∣φj⟩ (6.100)

where the eigenvalues are

φj = jγ, j = 0,1,2, . . . ,∞ . (6.101)

Here γ is a positive constant and each eigenstate ∣φj⟩ is j-fold degenerate.
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a. Find Pj , the least biased, normalized (
∞
∑
j=1

Pj = 1) probability of the macroscopic outcome

φj = jγ.

b. What is the entropy of the hypothetical system?

c. Find the average value ⟨hop⟩ = Trρτop hop.

d. Find the mean uncertainty

⟨(Δhop)2⟩ = ⟨(hop − ⟨hop⟩)2⟩ (6.102)

6.2 DNA consists of a pair of molecular strands curled to form a double helix. With increasing tem-
perature the strands dissociate, unraveling the helix – i.e. the DNA “melts". (see Figure 6.5).
A simple model of DNA melting43 consists of two linked strands whose links – starting from
only one end of the chain – break up successively. For a link to break, all links to the left of it
must already be broken – like a single-ended zipper. The only interior link that can break is one
immediately adjacent to one that has already broken. The last link is considered unbreakable.

1.90

3.96

p

N

Figure 6.5: The melting DNA double helix showing p broken links in a chain of N total bonds.

Assuming the links 1,2, . . . , p − 1 are already broken, the energy required to break the pth link
is +ε. Unbroken links are taken to have energy 0. Each broken link has degeneracy Γ due to
the multitude of spatial orientations it can assume.

(a) Show that the DNA partition function is

Z = 1 − xN

1 − x
, (6.103)

where

x = Γ exp (−βε) (6.104)

with

β = 1

kBT
. (6.105)

43C. Kittel, “Phase transition of a molecular zipper", Am. J. Phys. 37, 917 (1969).
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(b) In this model an order parameter θ is defined as the average number of broken bonds, ⟨p⟩.
Show that

θ = NxN

xN − 1 −
x

x − 1 . (6.106)

(c) Plot θ vs. x for N = 1000 to demonstrate the transition and critical point at x = 1.
(d) Show that for Nε << 1 the entropy of “zipper" DNA is

S = θ lnΓ . (6.107)

Hint:

SN−1 = 1 + x + x2 + . . . + xN−1 (6.108)

= 1 − xN

1 − x
. (6.109)
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J. Willard Gibbs is probably the most brilliant person most people have never heard of.

Bill Bryson, A Short History of Nearly Everything, Broadway Publishing, NY (2003).

Chapter 7

The Ideal Gas

7.1 Introduction

An ideal gas is a collection of uncorrelated identical particles with negligible forces of interaction.1

These particles can be fundamental particles such as electrons, protons or neutrons or even quarks.
They can be more complex systems such as atoms, atomic nuclei or molecules. Particle specifics
determine, especially at low temperatures, details of their ideal gas behavior even without mutual
interactions. For example, in addition to the usual translational motion, molecules can rotate or
vibrate imparting additional properties to these ideal gases. Most interesting, however, are low
temperature behaviors associated with quantum mechanical properties.

Even before quantum mechanics had attained a generally accepted form, W. Pauli2 conjectured
that only a single electron can occupy a single-particle energy eigen-state – a restriction called the
Pauli exclusion principle (PEP).

The following year, E. Fermi3 and P. Dirac4 further showed that quantum mechanics required all
particles – depending on their intrinsic spin S, which can be integer or half-integer – belong to one
of two possible classes:

1. Particles with half-integer spin (S = 1
2
, 3
2
, 5
2
, . . .) obey the Pauli exclusion principle and are thus

called Fermi-Dirac (FD) particles, or fermions. Members of this class are quarks, electrons,
protons, neutrons and neutrinos, as well as their antiparticles, and many composite systems.
For example 3He is a composite of 2 protons, 2 electrons and 1 neutron, each with spin 1

2
. This

1Just enough interaction to eventually reach thermal equilbrium.
2W. Pauli, “On the connexion between the completion of electron groups in an atom with the complex structure

of spectra", Z. Phys. 31, 765 (1925).
3E. Fermi, “Sulla quantizzazione del gas perfetto monoatomico", Rend. Lincei 3, 145 (1926).
4P. Dirac, “On the theory of quantum mechanics," Proc. Royal Soc. A 112, 661 (1926).
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odd number aggregate insures that 3He has 1
2
-integer spin. Electrons (together with a uniform

positive background) constitute a gas of Fermi-Dirac particles.

2. Particles with integer spin (S = 0,1,2, . . .) have no eigen-state occupation restriction. Integer
spin particles are called Bose-Einstein (BE) particles, or bosons. Although most bosons are
composite systems, e.g. the H atom (1 proton and 1 electron), 4He (2 protons, 2 electrons and
2 neutrons) and mesons (a pair of spin 1

2
quarks), there are elementary particle bosons, e.g.

W ± and Z particles, carriers of the weak nuclear force and gluons which are associated with the
strong nuclear force. Also included is the γ ∶particle (photon) and the feverishly sought Higgs
boson H0. But in this era of boson condensate physics, composite boson systems, such as atoms
of Li7, Na23, K41, Rb85 and Rb87, are a focus of interest.

In the case of many-particle systems enormous differences exist between low-temperature behavior
of 3He (fermions) and 4He (bosons). These distinctions will be discussed in Chapters 15 and
16.

7.2 Ideal gas law

In the limit of low particle density and high temperature, ideal FD and BE gasses shed nearly all
their quantum properties so that century-and-a-half-old kinetic (classical) gas models successfully
describe much of their thermodynamic behavior, in particular the equation of state

pV = NkBT , (7.1)

where p is the gas pressure, N is a fixed number of particles, V the confining volume, T the gas
temperature and kB is Boltzmann’s constant.5 However, in the final analysis the quasi-classical
theory is internally inconsistent and must be rescued by quantum corrections.

Taking the opportunity to apply a thermal Lagrangian to a physical problem whose results (and
contradictions) are well known, gaseous atoms and molecules are modeled near room temperature
and atmospheric pressure as ideal and “quasi-classical". The “ideal gas" is so important in thermo-
dynamic pedagogy as well as for many low-order approximations that we forego absolute rigor for
the present, returning to the subject in Chapter 15 with a more credible approach.

7.3 Quasi-classical model

The single-particle microscopic hamiltonian operator for non-interacting particles is

hop = −
h̵2

2m
∇2 (7.2)

with an eigenvalue equation

hop∣εs⟩ = εs∣εs⟩ (7.3)

5A gas which obeys Eq.7.1 can be used as an operational thermometer in which T defines the absolute (K)
temperature scale.
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with εs the microscopic eigen-energies.

Consider now a low density system consisting of N independent particles each with mass m confined
to a volume V (no FD or BE occupation restrictions). Each particle can occupy any of the allowed
microscopic eigen-energies ε1, ε2, ε3, . . . with the corresponding macroscopic eigen-energies

E (n1, n2, n3, . . .) =n1ε1 + n2ε2 + n3ε3 + . . . , (7.4)

where n1 particles are in the state ε1, n2 particles are in the state ε2, etc., with a fixed total number
of particles

n1 + n2 + n3 + . . . = N . (7.5)

Guided by discussions in Chapter 6 the thermal Lagrangianis

L [P] = −kB
N

∑
n1,n2,n3,...=0,1,2...
n1+n2+...+nN=N

P (n1, n2, . . .) lnP (n1, n2, . . .)

− T −1
N

∑
n1,n2,n3,...=0,1,2...
n1+n2+...+nN=N

P (n1, n2, . . .)[n1ε1 + n2ε2 + n3ε3 + . . . + nN εN ]

− λ0

N

∑
n1,n2,n3,...=0,1,2...
n1+n2+...+nN=N

P (n1, n2, . . .) . (7.6)

With β = 1/kBT , maximizing L [P]

P (n1, n2, . . . nN) =
exp{−β(n1ε1 + n2ε2 + . . . + nN εN)}

N

∑
n1,n2,n3,...=0,1,2...
n1+n2+...+nN=N

exp{−β(n1ε1 + n2ε2 + . . . + nN εN)}
. (7.7)

The denominator is the partition function Z and the sums are over all states. Following the
procedure for calculating a partition function

Z =
N

∑
n1,n2,⋯=0,1,2,...
n1+n2+...=N

gN (n1, n2, . . .) exp{−β(n1ε1 + n2ε2 + . . . + nN εN)} (7.8)

where

gN (n1, n2, . . .) =
N !

n1!n2!n3! . . .
, (7.9)

is the configurational degeneracy of an N -particle state6 with macroscopic eigen-energies given
by Eq.7.4. Therefore

Z =
N

∑
n1,n2...=0,1,2,...
n1+n2+...=N

N !

n1!n2! . . .
exp{−β(n1ε1 + n2ε2 + . . . + nN εN)} (7.10)

6See Chapter 6.
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which is the expansion of

Z = (e−βε1 + e−βε2 + e−βε3 + . . .)N . (7.11)

Although Eq.7.11 is mathematically correct, the physical result is not ! For at its heart is a problem
in many-particle quantum mechanics with no rigorous semi-classical argument.7 Indeed, J. W.
Gibbs quickly realized that applying Eq.6.53 to Eq.7.11 did not result in an extensive entropy. To
correct this, the partition function was appended by an ad-hoc 1

N !
prefactor (known as the Gibbs

correction).8 With this correction, the partition function becomes

Z = 1

N !
(e−βε1 + e−βε2 + e−βε3 +⋯)N . (7.12)

7.4 Ideal gas partition function

Practical ideal gas results can be obtained from Eq.7.12 by applying the quantum mechanical energy
states of free particles confined to a cube9,10 of side L (volume V = L3),

εν =
h̵2

2m
(π
L
)
2

(ν2
x + ν2

y + ν2
z) , (7.13)

where νx, νy, νz = 1,2,3, . . . The eigen-energies in Eq.7.13 correspond to particles with purely trans-
lation modes, e.g. a monatomic gas or a polyatomic gas without vibrational, rotational or electronic
excitations.11

Using the energies in Eq.7.13 and the partition function, Eq.7.12,

Z = 1

N !

⎡⎢⎢⎢⎢⎢⎢⎣

∞

∑
νx,νy,νz=1

e
−β

h̵2

2m
(π
L
)(ν2

x + ν2
y + ν2

z)
⎤⎥⎥⎥⎥⎥⎥⎦

N

, (7.14)

which is

Z = 1

N !

⎡⎢⎢⎢⎢⎢⎢⎣

∞

∑
νx=1

e
−β

h̵2

2m
(νxπ

L
)
2⎤⎥⎥⎥⎥⎥⎥⎦

3N

. (7.15)

7This issue will be addressed in Chapter 15.
8The correction is a consequence of normalizing quantum many-particle state functions.
9Periodic boundary conditions are almost universally applied for free particles and fields. But in this problem we

choose the equivalent and probably more familiar “large 3-D box" boundary conditions.
10Lower dimensional systems, which are of considerable importance in modern materials science, might be dealt

with in an analogous way.
11These eigen-energies are also appropriate for ideal FD and BE quantum gases so long as FD and BE occupation

number restrictions are observed. FD and BE quantum gases have strikingly different partition functions, even with
the same allowed eigen-energies. (See Chapters 15 and 16.)



7.4. IDEAL GAS PARTITION FUNCTION 107

Substituting the new counting variable kx

kx =
πνx
L

(7.16)

implies

L

π
Δkx =Δνx . (7.17)

Since the quantities νj , . . . are the integers 1,2, . . . it follows that all Δνj ≡ 1 and the partition
function is

Z = 1

N !

⎡⎢⎢⎢⎢⎢⎢⎣

∞

∑
νx=1

Δνx e
−β

h̵2

2m
(νxπ

L
)
2⎤⎥⎥⎥⎥⎥⎥⎦

3N

→ 1

N !

⎡⎢⎢⎢⎢⎢⎢⎣

L

π

∞

∑
kx

Δkx e
−β

h̵2

2m
k2
x

⎤⎥⎥⎥⎥⎥⎥⎦

3N

. (7.18)

When the cube becomes large, i.e. L → ∞, it follows that Δkx → dkx, and the sum over Δkx in
Eq.7.18 can be replaced by the equivalent integral

Z = 1

N !

⎡⎢⎢⎢⎢⎢⎢⎣

L

π

∞

∫
0

dkx e
−β

h̵2

2m
k2
x

⎤⎥⎥⎥⎥⎥⎥⎦

3N

. (7.19)

Using the standard Gaussian integral result
∞

∫
0

dxe−αx
2

= 1

2

√
π

α
, (7.20)

the partition function is

Z = 1

N !
[ L

2π

√
2mπ

βh̵2
]
3N

(7.21)

= 1

N !
(nQV )N , (7.22)

where

nQ = (
m

2πh̵2β
)
3/2

(7.23)

is the quantum concentration – a particle density parameter that measures the gas’s degree of
dilution. In particular, if n/nQ << 1, where n = N/V is the particle concentration, then the gas is
sufficiently dilute for the quasi-classical ideal gas result Eq.7.21 to apply. If, on the other hand,
n/nQ >> 1 quantum considerations are inescapable and the arguments that brought us this far are
inadequate.12,13

12See Chapters 15 and 16.
13In addition to the quantum mechanical 1/N !, Planck’s constant h̵ also appears in the partition function – yet

another intrusion of quantum mechanics. Equation 7.21 shows that even the classical ideal gas – often imagined as
tiny billiard balls banging about in a box – has quantum imprinting.
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7.5 Thermodynamics of the ideal gas

This ideal gas model is replete with familiar thermodynamic results:

1. Internal energy U :

With P (n1, n2, . . .) from Eq.7.7, the internal energy is

U =
N

∑
n1,n2,n3,...=0,1,2...
n1+n2+...+nN=N

P (n1, n2, . . .) [n1ε1 + n2ε2 + n3ε3 + . . . + nN εN ] , (7.24)

which is identical with

U = −∂ lnZ
∂β

. (7.25)

Using Eq.7.21 together with Stirling’s approximation

n! ∼nne−n , n >> 1 ,
lnn! ∼n lnn − n , n >> 1 ,

(7.26)

we have

U = 3N

2β
(7.27)

= 3

2
N kB T . (7.28)

2. Heat capacity CV :

With only translational (kinetic) energy

CV =(
∂U
∂T
)
V

(7.29)

=3
2
N kB . (7.30)

3. Entropy S:

S =kBβ2 ( ∂

∂β
)(− 1

β
lnZ) (7.31)

=NkB [
5

2
+ 3

2
ln( m

2πh̵2β
) − ln(N

V
)] (7.32)

=NkB [
5

2
+ ln(nQ

n
)] (7.33)
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which is called the Sakur-Tetrode equation.14,15

4. Helmholtz potential F :

Applying Stirling’s approximation to Eq.6.56, where it was shown that

F = − 1

β
lnZ , (7.34)

we find

F = − N

β
(ln nQ

n
+ 1) . (7.35)

5. Equation of state:

The expression for pressure is

p = 1

β
(∂ lnZ

∂V
)
T

(7.36)

= −(∂F
∂V
)
T

, (7.37)

giving the “ideal gas law"

p = NkBT

V
. (7.38)

7.6 Gibbs’ entropy paradox

Consider a cylinder that is partitioned into two sections with volumes V1 and V2 so that the total
volume is V = V1 + V2. N1 and N2 absolutely identical ideal gas molecules occupy the volumes V1

and V2, respectively – same quantum concentration, same temperature T , same concentration n.
If the partition magically dissolves the identical gases will spontaneously mix and occupy the total
volume V with the equilibrium temperature and concentration unchanged.

Objectively, nothing has happened. There is no way to distinguish between the “before" and “after".
There is no change in the state of knowledge. For this process mixing has, apparently, no objective
meaning! Is there a change in entropy?

The Sakur - Tetrode equation gives the entropy of the original system (before the partition dissolves)
as

S =S1 + S2 (7.39)
=N1kB [ln (nQ/n) + 5/2] +N2kB [ln (nQ/n) + 5/2] (7.40)
=NkB [ln (nQ/n) + 5/2] (7.41)

14The inclusion of 1/N ! – the Gibbs correction – is a fundamental quantum mechanical result derived from the
requirement that under permutation of identical particles the many-particle state vector changes, at most, by a phase
factor.

15The Gibbs 1/N ! correction makes an essential contribution to the entropy. Without it S ?= N kB [ 32 + ln (V nQ)],
which does not satisfy Euler’s homogeneity condition S (λV ) = λS (V ). S would not be extensive.
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which is identical to the entropy of the system after the partition disintegrates – entirely in accord
with physical intuition and our interpretation of entropy’s informational meaning.16

If, however, the partition function of Eq.7.22 had not been “quantum" corrected by the Gibbs 1/N !
there would be an increase in the entropy after the partition disintegrates which, based on our
understanding of entropy, is nonsense!

7.7 Entropy of mixing

Consider the situation just described, but now with two different ideal gases, a and b, with unique
quantum concentrations na

Q and nb
Q. Initially, species a occupies a volume Va and species b occupies

a volume Vb. The partition function for gas a is

Za =
(Van

a
Q)

Na

Na!
(7.42)

and the partition function for gas b is

Zb =
(Vbn

b
Q)

Nb

Nb!
. (7.43)

Applying the Sakur-Tetrode equation to each species, the total initial entropy is

S =Sa + Sb (7.44)

=NakB [5/2 + ln (na
Q/na)] +NbkB [5/2 + ln (nb

Q/nb)] , (7.45)

where na = Na/Va and nb = Nb/Vb.

After the chamber partition magically dissolves and the gases mix, the total entropy of the mixed
system is

Sa+b = NakB {ln [(Va + Vb)na
Q/Na] + 5/2} +NbkB {ln [(Va + Vb)nb

Q/Nb] + 5/2} . (7.46)

Defining an entropy of mixing as Smixing = Sa+b − (Sa + Sb) then

Smixing = NakB ln(Va + Vb

Va
) +NbkB ln(Va + Vb

Vb
) > 0 (7.47)

The mixing entropy Smixing has the same value even if the partition functions had not been Gibbs
(quantum) corrected by 1/N !. Moreover, Eq.7.47 now says – nonsensically – that a finite mixing
entropy remains even after the limit

na
Q → nb

Q (7.48)

has been taken! Mixing entropy is obviously not a continuous function of nQ. This, physically, may
be attributable to the “quantization" of mass units.

16Note that when calculating thermodynamic averages such as U or p the Gibbs 1/N ! correction cancels. The same
cancellation does not occur in entropy calculations.
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7.8 The non-ideal gas

The idea of a “classical" ideal gas is clearly a fiction since h̵ and the Gibbs correction factor
1/N !, both from quantum mechanics, must appear in the ideal gas entropy. Moreover, atoms
and molecules in a real gas do interact and with significant consequences. An approximate equa-
tion of state that improves upon the ideal gas law is due to van der Waals (1873) who took account
of long-range attraction and short-range repulsion between particles. Van der Waals’ equation not
only improves descriptions of gas phase thermodynamics, it also suggests gas-liquid phase tran-
sitions and gas critical points as consequences of interactions. This eponymous equation of state
is17:

[p + (N/V )2 a] (V −Nb) = NkBT (7.49)

where a and b are coefficients characteristic of specific gases.18

The van der Waals equation, by quantitatively providing two parameters that characterize real
molecules, would seem to have settled a bitter ongoing debate of the times: Did gases, and matter
in general, have microscopic structure? But it didn’t.

Problems and exercises

7.1 Assume an N -particle ideal gas in two-dimensions with eigen-energies

En =
h̵2

2m
(π
L
)
2

(n2
x + n2

y) , (7.50)

where

nx, ny =1,2,3, . . . (7.51)

The confining surface area is

A =L2 . (7.52)

(a) Write an expression for the partition function Z2D of the two-dimensional ideal gas.

(b) Find the internal energy U2D of the gas.

(c) Find the heat capacity CA for the two-dimensional gas.

(d) Find the entropy S2D of the gas.

7.2 The quantity

πT = (
∂U
∂V
)
T

(7.53)

is called internal pressure and expresses the role of particle-particle interactions in the behavior
of a gas. Find πT for

17A derivation of the van der Waals equation is given in Chapter 12.
18R. C. Weast, (ed.), Handbook of Chemistry and Physics (53rd edn.), Cleveland:Chemical Rubber Co. (1972).
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(a) an ideal gas;

(b) a van der Waals gas;

(c) a gas with the equation of state

p = NkBT

V
[1 + N

V
B (T )] . (7.54)



A theory is the more impressive the greater the simplicity of its premises, the more
different kinds of things it relates and the more extended is its area of applicability.

A. Einstein. Reproduced by permission of Open Court Publishing Company, a division of
Carus Publishing Company, from Albert Einstein: Philosopher-Scientist, edited by Paul
Arthur Schilpp (The Library of Living Philosophers Volume VII), 1949, 1951 and 1970

by The Library of Living Philosophers

Chapter 8

The two-level system

8.1 Anomalous heat capacity

Insulators or semiconductors containing impurities with closely spaced electronic or nuclear ground
states1 show an anomalous low-temperature heat capacity peak – the so-called Schottky anomaly.2

It is an example of microscopic quantum effects having macroscopic (thermodynamic) signatures.

8.2 Schottky model

A simple model for the “Schottky" anomalous heat capacity consists of a crystal containing a dilute3

concentration of N identical atomic impurities, each having the same pair of closely spaced, non-
degenerate energy levels – a lower state ε1 and a higher state ε2. If, at some temperature T , n1

impurity atoms are in the low energy state and n2 are in the higher energy state the macroscopic
eigen-energies are

E (n1, n2) = n1ε1 + n2ε2 , (8.1)

1Usually degenerate low-energy states whose degeneracy is lifted by crystalline electric fields, magnetic fields,
spin-orbit coupling or hyperfine interactions.

2The phenomenon is named for Walter Hermann Schottky (1886-1976).
3Diluteness insures negligible inter-atomic effects.
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with the thermal Lagrangian

L = −kB ∑
n1,n2

n1+n2=N

P (n1, n2) lnP (n1, n2)

−T −1 ∑
n1,n2

n1+n2=N

P (n1, n2) (n1ε1 + n2ε2) − λ0 ∑
n1,n2

n1+n2=N

P (n1, n2) ,
(8.2)

where P (n1, n2) is the probability that n1 impurity atoms are in the state ε1 and n2 are in the state
ε2. The sums are over all states. The method of Lagrange multipliers gives the probabilities

P (n1, n2) =
e−β(n1ε1+n2ε2)

Z (8.3)

with the partition function

Z = ∑
n1,n2

n1+n2=N

e−β(n1ε1+n2ε2) , (8.4)

which again represents a sum over all states. One way to calculate this sum is by explicitly including
a configurational degeneracy (see Chapter 6)

g(n1, n2) =
N !

n1!n2!
(8.5)

to give

Z =
N

∑
n1,n2

n1+n2=N

N !

n1!n2!
e−β(n1ε1+n2ε2) , (8.6)

which is the binomial expansion of4

Z = (e−βε1 + e−βε2)N . (8.7)

The thermodynamic properties that follow from Eq.8.7 are:

1. Internal energy:

U = − ∂

∂β
ln Z (8.8)

=N ε1e
−βε1 + ε2e

−βε2

e−βε1 + e−βε2
. (8.9)

4Some authors prefer to calculate the partition function - one atom at a time - and then take the product of
N -single-atom partition functions. This avoids the mathematics of combinatoric analysis in obtaining g. But it also
evades the macroscopic character of the physics.
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2. Entropy:

S = − kB∑
n

P (n1, n2) ln P (n1, n2) (8.10)

= − kBβ2 ∂

∂β
( 1
β
lnZ) (8.11)

=NkB
⎡⎢⎢⎢⎣
ln (e−βε1 + e−βε2) + β

(ε1e−βε1 + ε2e
−βε2)

(e−βε1 + e−βε2)
⎤⎥⎥⎥⎦
. (8.12)

3. Heat capacity:

The heat capacity CV can be calculated from Eq.8.12 with

CV = T (∂S
∂T
)
V

. (8.13)

In solids this is usually assumed not to significantly differ from Cp which is a measured heat
capacity. Then with ε1 = 0, ε2 − ε1 =Δε

CV = NkB (βΔε)2 eβΔε

(eβΔε + 1)2
, (8.14)

which in terms of a dimensionless plotting coordinate X = βΔε becomes

CV
NkB

=X2 eX

(eX + 1)2
. (8.15)

Plotting this in Figure 8.1, a Schottky peak appears at X−1 = kBT
Δε = 0.417. Although the

low-temperature heat capacity of insulating crystals usually has a dominant ∼ T3 contribution
from lattice vibrations, the sharp anomalous peak can often be distinguished above this lattice
baseline.

In the high-temperature limit, X << 1, Eq.8.15 reduces to

CV
NkB

→ X2

4
(8.16)

=( Δε

2kBT
)
2

. (8.17)

At low temperature, X >> 1, Eq.8.15 becomes

CV
NkB

→X2e−X (8.18)

=( Δε

kBT
)
2

e
− Δε
kBT , (8.19)
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Figure 8.1: Schottky heat capacity anomaly. The abscissa is taken to be X−1 = kBT
Δε to emphasize

the characteristic low-temperature Schottky peak.

which has the limiting Schottky behavior

lim
T→0

CV = 0 . (8.20)

8.3 Two-level systems and negative temperature

Writing internal energy, Eq.8.9, as

U = N
Δε

1 + eβΔε
(8.21)

a dimensionless internal energy Φ = U
NΔε can be defined. Then the entropy of Eq.8.12,

S = NkB [ln (1 + e−βΔε) + βΔε

eβΔε + 1] , (8.22)

can be re-expressed in terms of Φ as

S
NkB

= (Φ − 1) ln (1 −Φ) −Φ lnΦ , (8.23)

which is plotted in Figure 8.2.

From the “thermodynamic identity" written as

TdS = NΔε dΦ + pdV (8.24)
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Figure 8.2: S vs. Φ. The region 0.5 < Φ ≤ 1 corresponds to negative temperature.

or

dS = N Δε

T
dΦ + p

T
dV , (8.25)

the slope at any point is (see Figure 8.2)

1

N
(∂S
∂Φ
)
N
= Δε

T
(8.26)

which displays the properties:

• for Φ < 0.5 slope> 0 – temperature is positive;

• at Φ = 0.5 slope= 0 – temperature is infinite;

• for Φ > 0.5 slope< 0 – temperature is negative.

Negative temperature means that a population of excited atoms is unstably inverted, i.e. the system
is not in a state of thermodynamic equilibrium and is, at the smallest perturbation, ready to dump
its excess energy into the ground state. In this sense negative temperatures are “hotter" than
positive temperatures.5 To achieve negative temperatures the excitation energies of the system
must have an upper bound, a condition satisfied by the isolated two-level Schottky model.

5Nor do they belong to equilibrium thermodynamics.
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The typical two-level system is however rarely isolated – i.e. phonons, radiation, magnetic excita-
tions, etc. are available for interaction. Therefore quasi-stable negative temperature conditions are
unusual. There are, however, special circumstances in which strongly prohibitive optical selection
rules prevent “triggers" from acting except on long time scales. Population inversion in lasers is one
example in which a negative temperature is maintained until stray photons “stimulate" the inverted
population into a downward avalanche.

Problems and exercises

8.1 A large system of N weakly interacting atoms is in thermal equilibrium. Each atom has only
three possible eigenstates with energies E = 0, E = ε and E = 3ε, all of which are non-degenerate.

a. Find the partition function Z for the N -atom system.

b. Find U/N , the internal energy per atom, when βε << 1.
8.2 A system in thermal equilibrium at temperature T consists of a large number of atoms N0 each

of which can exist in only two quantum energy states: E1 which is non-degenerate, and E2

which is p-fold degenerate, with E2 −E1 = ε > 0. The macroscopic eigen-energies are

E (n1, n2) = n1 E1 + n2 E2 (8.27)

with n1 atoms in state E1 and n2 atoms in state E2.

a. Find the partition function Z for the N0 atom system.

b. Find an expression for the internal energy U .

c. Show that in the high-temperature limit the internal energy is

U = N0
pε

1 + p
(8.28)

and the entropy is

S = N0kB ln (1 + p) . (8.29)

d. Find an expression for the high-temperature heat capacity CV .

8.3 Suppose each atom in a lattice of N atoms has three states with energies −ε, 0 and +ε. The states
with energies ±ε are non-degenerate whereas the state with energy 0 is two-fold degenerate.

a. Find the partition function Z of the system.

b. Calculate the internal energy of the system as a function of temperature.

c. Show that the heat capacity per atom, CV /N , is

CV /N = β2ε2

1 + cosh (βε) . (8.30)



I believe that no one who has won, through long years of experience, a reasonably reliable
sense for the not always easy experimental evaluation of a theory, will be able to
contemplate these results without immediately becoming convinced of the huge logical
power of the quantum theory.

W. Nernst, Z. fur Elektrochem. 17, p.265-275 (1911) [trans. A. Wasserman]

Chapter 9

Lattice heat capacity

9.1 Heat capacity of solids

The nearly 200-year-old Dulong-Petit “rule" for molar heat capacities of crystalline matter, cv,
predicts the constant value

cv =
3

2
NA kB (9.1)

=24.94 J mole−1 , (9.2)

where NA is Avagadro’s number. Although Dulong-Petit, which assumes solids to be dense, classical,
ideal gases (see Eq.7.29), is in amazingly good agreement with the high-temperature (∼ 300 K)
molar heat capacities of many solids, it fails to account for the observed rapid fall in cv at low
temperature. An especially large effect in diamond caught Einstein’s (1907) attention and with
extraordinary insight he applied Planck’s “quanta" to an oscillator model of an atomic lattice to
predict a universal decline in cv as T →0 K. Several years later, when low-temperature molar
heat capacities could be accurately measured, they were indeed found to behave in approximate
agreement with Einstein’s prediction.1 It was this result that ultimately succeeded in making the
case for quantum theory and the need to radically reform physics to accommodate it.

1cv in metals has an additional very low temperature contribution ∼ T from conduction electrons which, of course,
Einstein could not account for.
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9.2 Einstein’s model

Einstein’s model assumes a solid composed of N atoms, each of mass M , bound to equilibrium sites
within a unit cell by simple harmonic forces. The potential energy of each atom is

V (Rα) =
1

2
Mω2

0 δRα ⋅ δRα (9.3)

with a classical equation of motion

δR̈α + ω2
0δRα = 0 (9.4)

where δRα = Rα −Rα,0 is the displacement vector of the αth ion from its origin Rα,0. Einstein’s
independent oscillator model ignores any interactions between ions so there is only a single mode
with frequency ω0. From a modern perspective Einstein’s intuitive harmonic assumption is correct,
since atoms in a solid are bound by a total potential energy V (Rα) consisting of:

• A short-range repulsive component arising from the screened coulomb interaction between
positively charged ion cores

Vα,β ≈
e2

2
∑
α,β
α≠β

ZαZβ exp
−γ∣Rα−Rβ ∣

∣Rα −Rβ ∣
; (9.5)

• A long-range attractive component arising from quantum mechanical electron-electron corre-
lations and ion-electron interactions.

The two potential energy components are shown in Figure 9.1 together with their sum which has a
nearly harmonic2 minimum near R0.

9.3 Einstein model in one dimension

Einstein’s groundbreaking calculation of the heat capacity of a crystal lattice – the first application
of a quantum theory to solids – is based on an independent oscillator model. Its simplest form
considers N independent oscillators in a one-dimensional lattice with the αth oscillator potential
obtained by expanding V (r) about the solid curve’s minimum R0,α (see Figure 9.1).

V (Rα) = V (R0,α) +
1

2
Mω2

0δRα
2 , (9.6)

with

δRα = Rα −R0,α . (9.7)

Quantizing the model results in coresponding quantum energy levels

E(nα) = h̵ω0 (nα +
1

2
) , (9.8)

2With increasing displacement from R0, anharmonicity (departures from harmonicity) has significant physical
consequences.



9.3. EINSTEIN MODEL IN ONE DIMENSION 121

����

�

Figure 9.1: The long dashed line is the screened (short-range) coulomb repulsion between ion
cores. The short dashed line is the effective ion-ion attraction due to quantum mechanical electron
correlations and ion-electron interactions. The solid line is a nearly harmonic sum of the two
contributions, with a potential minimum at R0.

where α = 1,2, . . . ,N and ω0 is the natural oscillator frequency. The constant term V (R0,α) is ig-
nored. For the one-dimensional oscillator the quantum number has the integer values nα = 0,1,2, . . . ,∞.
The integer lattice energy levels represent quasi-particles called “phonons". Although they are not
real particles they have kinetic attributes of real particles (energy, momentum, etc.) except that
they are not number conserved. The lack of number conservation has the consequence that they
always have chemical potential μ = 0.

With all N atoms contributing, the macroscopic eigen-energies are

E (n) = Nh̵ω0

2
+ h̵ω0

N

∑
α=1

nα (9.9)

= Nh̵ω0

2
+ h̵ω0n (9.10)

with

N

∑
α=1

nα = n . (9.11)
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Figure 9.2: Cartoon array of one-dimensional Einstein harmonic oscillator potentials showing the
equally spaced energy levels of Eq.9.8.

9.3.1 Partition function for one-dimensional Einstein model

From the thermal Lagrangian

L = −kB
∞

∑
n=0

P (n) lnP (n) − 1

T

N

∑
n=0

P (n) [βh̵ω0 (
N

2
+ n)] − λ0

N

∑
n=0

P (n) (9.12)

it follows that

P (n) =
exp [−βh̵ω0 (

N

2
+ n)]

Z . (9.13)

Emphasizing the role of degeneracy in performing the partition function’s sum over all states,
Eqs.6.96 and 6.97 are used. The partition function is therefore written

Z =
∞

∑
n=0

(N − 1 + n)!
(N − 1)!n! exp [−βh̵ω0 (

N

2
+ n)] (9.14)

= e
−Nβh̵ω0

2
∞

∑
n=0

(N − 1 + n)!
(N − 1)!n! exp (−nβh̵ω0) . (9.15)

The resulting sum is not entirely obvious, although it can be approximated using the Stirling
formula, Eq.7.26. But with an integral representation of the Γ function

Γ (n) = (n − 1)! =
∞

∫
0

dt tn−1e−t , (9.16)

we can make the replacement

(N + n − 1)! =
∞

∫
0

dt t(N+n−1)e−t (9.17)

so the partition function becomes

Z = e
−Nβh̵ω0

2

∞

∫
0

dt
tN−1e−t

(N − 1)!
∞

∑
n=0

1

n!
tn e−nβh̵ω0 . (9.18)
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Summing over n (to get an exponential) and then integrating over t (again using the Γ func-
tion)

Z = e
Nβh̵ω0

2

(eβh̵ω0 − 1)
N

. (9.19)

Evaluation of the one-dimensional oscillator partition function in this way is not especially diffi-
cult, but it is not obviously extensible to higher dimensionality or to other physically interesting
models.

9.3.2 Phonons and the one-dimensional oscillator

A preferable route using Eq.9.10 for the eigen-energies, has the one-dimensional oscillator partition
function

Z =
∞

∑
n1=0

∞

∑
n2=0

. . .
∞

∑
nN=0

exp [−β (Nh̵ω0

2
+ h̵ω0

N

∑
α=1

nα)] (9.20)

= e−βNh̵ω0/2
∞

∑
n1=0

∞

∑
n2=0

. . .
∞

∑
nN=0

exp [−βh̵ω0

N

∑
α=1

nα] , (9.21)

where the sum over states is equivalent to the sum over all numbers of phonons nα. Explicitly
summing over α gives a product of N identical geometrical series

Z = e
−βNh̵ω0

2 (
∞

∑
n1=0

exp [−βh̵ω0n1])(
∞

∑
n2=0

exp [−βh̵ω0n2])⋯(
∞

∑
nN=0

exp [−βh̵ω0nN ]) (9.22)

and hence

Z = e−βNh̵ω0/2 (
∞

∑
n=0

e−βh̵ω0n)
N

, (9.23)

which is summed to give the result

Z = eβNh̵ω0/2

(eβh̵ω0 − 1)
N

, (9.24)

identical to Eq.9.19.

9.4 The three-dimensional Einstein model

The three-dimensional Einstein model, although suggesting a better approximation, still falls short
of what is physically observed. (See the Debye model discussion later in the chapter.) Here the
coordinate components x, y, z, of the αth independent oscillator displacements are taken into
account with the eigen-energies

E (nα,x, nα,y, nα,z) = h̵ω0 (nα,x + nα,y + nα,z + 3/2) , (9.25)
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where again α = 1,2,3, . . . ,N and nα,x, nα,y, nα,z = 0,1,2, . . . ,∞ with ω0 the oscillator frequency.
The N oscillator lattice has the macroscopic eigen-energies

Ex,y,z =
3Nh̵ω0

2
+ h̵ω0

N

∑
α=1

(nα,x + nα,y + nα,z) . (9.26)

9.4.1 Partition function for the three-dimensional Einstein model

Using the result of Eq.9.26, the thermal Lagrangian is as Eq.9.12 and the partition function writ-
ten

Z = e
−3Nβh̵ω0

2
∞

∑
n1,x=0
n1,y=0
n1,z=0

∞

∑
n2,x=0
n2,y=0
n3,z=0

. . .
∞

∑
nN,x=0
nN,y=0
nN,z=0

exp{−β [h̵ω0

N

∑
α=1
(nα,x + nα,y + nα,z)]} . (9.27)

The sum is managed, as in Section 9.3.2, by first explicitly summing over α in the exponential.
Then, because the three coordinate sums (nα,x, nα,y, nα,z) are identical, what remains is

Z = e
−3Nβh̵ω0

2 (
∞

∑
n1=0

exp [−βh̵ω0n1])
3

(
∞

∑
n2=0

exp [−βh̵ω0n2])
3

. . .(
∞

∑
nN=0

exp [−βh̵ω0nN ])
3

(9.28)

and finally

Z = e−
3Nβh̵ω0

2 (
∞

∑
n=0

e−βh̵ω0n)
3N

, (9.29)

where the remaining sum gives

Z =
⎡⎢⎢⎢⎢⎣
e
−βh̵ω0

2 ( 1

1 − e−βh̵ω0
)
⎤⎥⎥⎥⎥⎦

3N

. (9.30)

9.4.2 Thermodynamics of the three-dimensional Einstein model

Following steps from previous chapters, the internal energy is

U = − ∂

∂β
lnZ (9.31)

=3Nh̵ω0 [
1

2
+ ⟨n⟩] , (9.32)

where3

⟨n⟩ = 1

(eβh̵ω0 − 1)
. (9.33)

3⟨n⟩ is the average phonon (quasi-particle) occupation number. It is also looseley referred to as a Bose-Einstein
“function".
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Therefore for the three-dimensional model

CV =(
∂U

∂T
)
V

= − kBβ2 (∂U
∂β
)
V

=3NkB
(βh̵ω0)2 eβh̵ω0

(eβh̵ω0 − 1)2
. (9.34)

It is conventional to replace the oscillator frequency ω0 with an Einstein temperature θE

kBθE = h̵ω0 , (9.35)

so that

CV = 3NkB
(θE/T )2 eθE/T

(eθE/T − 1)2
, (9.36)

with which specific materials may be characterized by fitting to experimental data.

V

Figure 9.3: Three-dimensional Einstein model heat capacity CV
3NkB

vs. T
θE

. Note the sharp expo-
nential drop as T → 0.

In the low-temperature limit, Eq.9.36 becomes

lim
T→0

CV → 3NkB (θE/T )2 e−θE/T (9.37)

as shown in Figure 9.3. This steep exponential decline in CV is never observed. Universally observed
is CV ∼ T 3.
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Einstein was aware that a single oscillator frequency model was bound to be inadequate and he tried
to improve it, without success. But he achieved his primary objective – to apply Planck’s quantum
theory and show that it explained poorly understood low-temperature heat capacities.

At high temperature the Einstein result lim
T→∞

CV = 3NkB is in accord with Dulong-Petit.

9.5 Debye model

Atom-atom interactions were added to Einstein’s theory by Debye.4 Their effect is to introduce
dispersion into the oscillator frequencies, which is precisely the correction Einstein sought but never
achieved.

As a result of atom-atom interactions:

1. Translational (crystal) symmetry is introduced, with a new (wave vector) quantum number
k, sometimes called crystal momentum, with values

kj =
2π

Njaj
νj , j = x, y, z , (9.38)

where aj is the lattice spacing in the jth crystal direction, Nj the number of atoms in the jth
periodic cell direction and where νj = 1,2,3, . . . ,Nj .5,6

2. As shown in Figure 9.4, rather than a single Einstein lattice frequency ω0 there is now a range
of oscillator frequencies7 which Debye assumed varied linearly with ∣k∣

ω =ω (k) (9.39)
= ⟨cs⟩ ∣k∣ , (9.40)

where ⟨cs⟩ is an average speed of sound in the crystal.8

3. The infinitely sharp Einstein “phonon" density of states implied in Figure 9.4

DE (ω) = Nδ (ω − ω0) (9.41)

is replaced in the Debye model by9

DD (ω) =
V ω2

2π2 ⟨cs⟩3
. (9.42)

4P. Debye, “Zur Theorie der spezifischen Waerme", Annalen der Physik (Leipzig), 39, 789 (1912).
5In a 3-dimensional crystal the lattice atom displacements δR are in 3-mutually perpendicular directions (polar-

izations) such that k ⋅ δR = 0.
6In solid state physics it is conventional to choose −N

2
< ν ≤ N

2
which, in this example, would define a single

Brillouin Zone.
7One might say that the atom-atom interactions have lifted the degeneracy among single atom oscillator frequen-

cies ω0.
8There are 3 different sound velocities corresponding to the 2 independent transverse phonons and 1 longitudinal

phonon. This turns out to be an approximation that accurately replicates the small ∣k∣ behavior of lattice vibrations
in many 3 −D crystals.

9See Appendix E.



9.5. DEBYE MODEL 127

4. Since in a finite crystal the quantum number k is bounded, the range of Debye’s oscillator
frequencies is also bounded, i.e.

0 ≤ ω < ΩD . (9.43)

Within the Debye model ΩD is found from

∞

∫
0

dωDE (ω) =
ΩD

∫
0

dωDD (ω) , (9.44)

i.e. the total number of modes, 3N , is the same in both models, so that

ΩD = (6π2⟨cs⟩3N/V )
1/3

. (9.45)

Einstein oscillator frequency ω 0

ω 

ω
0

Figure 9.4: Mode-dependent frequencies. The solid (grey) curve represents an approximate result
for a real lattice. kmax is the Brillouin zone boundary for the crystal (−kmax < k ≤ kmax). The
dashed line represents Debye’s linear approximation. The slope of the dashed line is the average
speed of sound in the crystal. ΩD is the Debye approximation’s highest attained frequency. The
horizontal fine line at ω = ω0 represents the dispersionless Einstein lattice.
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Whereas the Einstein internal energy UE is (see Eq.9.32)

UE =3h̵
∞

∫
0

ω dω

Einstein density of states
lmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmnmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmo
{Nδ (ω − ω0)} [1

2
+ 1

eβh̵ω − 1] (9.46)

=3Nω0 [
1

2
+ 1

eβh̵ω0 − 1] , (9.47)

the changes introduced by Debye give instead the internal energy UD (see Appendix E),

UD = h̵
ΩD

∫
0

ω dω

Debye density of states
lmmmmmmmmmmmmmmmmmmmmmmmmmmmnmmmmmmmmmmmmmmmmmmmmmmmmmmo
{ 3V ω2

2π2⟨cs⟩3
} [1

2
+ 1

eβh̵ω − 1] (9.48)

= 3V

2π3h̵3⟨cs⟩3β4

βh̵ΩD

∫
0

dxx3 (1
2
+ 1

ex − 1) . (9.49)

9.5.1 Thermodynamics of the Debye model

At high temperature, βh̵ΩD << 1, the integral in Eq.9.49 can be approximated by expanding
ex ≅ 1 + x. Then using Eq.9.44 the Debye internal energy is

lim
T→∞

UD =
V

2π2
(ΩD

⟨cs⟩
)
3

kBT (9.50)

=3NkBT , (9.51)

consistent with the Dulong-Petit rule. At low temperature, βh̵ΩD >> 1, and defining

h̵ΩD =kBΘD , (9.52)

with ΘD the Debye temperature, the internal energy integral can be approximated as

lim
T→0

UD →
3V

2π3h̵3⟨cs⟩3β4

∞

∫
0

dxx3 (1
2
+ 1

ex − 1) , (9.53)

from which, with Eq.9.45, follows the low-temperature heat capacity

lim
T→0

CV →
6k4

B

π2h̵3⟨cs⟩3
× π4

15
T 3 (9.54)

=NkB (
12π4

5
) × ( T

ΘD
)
3

. (9.55)
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θD
aluminum 428 K
cadmium 209 K
chromium 630 K
copper 343.5 K
gold 165 K
iron 470 K
lead 105 K
Nickel 450 K
platinum 240 K
silicon 645 K
titanium 420 K
zinc 327 K
carbon 2230 K

Table 9.1: Debye temperatures θD for some typical solids.

The CV ≅ T 3 behavior is almost universally observed in three-dimensional solids. Examples of
Debye temperatures are given in Table 9.1.

Problems and exercises

9.1 Two-dimensional materials are now widely fabricated and investigated. Within the framework
of Debye’s model for lattice vibrations find the low-temperature lattice contribution to the
constant area heat capacity CA for a two-dimensional crystalline system.

9.2 Ferromagnetic systems have very low temperature collective spin excitations which are called
magnons.10 Their quasi-particle behavior is similar to collective lattice, i.e. phonon, excitations
except that their energy spectrum in zero magnetic field is

h̵ωk =D ∣k∣2 , (9.56)

where

D = 2SJa2 (9.57)

with J a magnetic moment coupling constant, S the spin of a magnetic moment and a is a
lattice constant. Show that the low-temperature magnon heat capacity CV is proportional to
T 3/2.

9.3 In microscopic lattice models that include anharmonic contributions (phonon-phonon interac-
tions), phonon frequencies ω change with volume V . Using

p = 1

β
(∂ lnZ

∂V
)
T

(9.58)

10T. Holstein and H. Primakoff, “Field dependence of the intrinsic domain magnetization of a ferromagnet", Phys.
Rev. 58, 1098-1113 (1940).
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where Z is the Debye partition function, find the pressure of a Debye solid. Therefore in taking
the volume derivative, Eq.9.58, ⟨cs⟩ and hence ΘD depend on volume.

Express the pressure in terms of the dimensionless Grüneisen parameter γ,

γ ≡ − V

ΘD
( dΘD

dV
) . (9.59)



Chapter 10

Elastomers: entropy springs

Mr. McGuire: “I want to say one word to you. Just one word."
Benjamin: “Yes, sir."
Mr. McGuire: “Are you listening?"
Benjamin: “Yes, I am."
Mr. McGuire: “Plastics."

The Graduate (1967)1

10.1 Naive one-dimensional elastomer

Crystalline matter and polymeric materials exhibit considerable difference in elastic behaviors.
Under applied stress σ all solids experience strain (elongation) ε. But crystalline materials also
exhibit a property of “stiffness" due to accompanying large increases in bond energy. These materials
also completely lose their elastic properties at small values of strain, ε ∼ 0.001. Polymeric materials,
such as a common rubber band, are neither “stiff" nor, generally, do they lose elasticity even under
large strain.

To see that something quite distinctive must account for elasticity differences between polymers
and crystalline materials, one need only compare values of isothermal Young’s moduli

ET = (
∂σ

∂ε
)
T

. (10.1)

Values for crystalline materials are given in Table 10.1 and for polymeric materials in Table 10.2.
Young’s moduli in crystalline matter can be as much as four orders of magnitude larger than for
polymeric materials. What makes them so different is that elastic polymers are “softly" linked
chains of chemical monomers whose “rubbery" elasticity is associated with freedom for monomer
units to bend, rotate and randomly stack, with negligible energy cost. Figure 10.1 illustrates the
structure of the polymer polyethylene in which ethylene molecules (monomers) are joined in chains.
Elastomer flexibility is enabled by unhindered unit rotation about a carbon “backbone". Truly
“rubbery" materials retain their elastic behavior even when subject to strains of ε ∼ 1 − 3, which is
much larger than for metals.

131
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Table 10.1: Isothermal Young’s moduli for some typical crystalline materials.

ET

aluminum 7 × 1010 N m−2

steel 20.7 × 1010 N m−2

chromium 29 × 1010 N m−2

tungsten 40 × 1010 N m−2

titanium 40 × 1010 N m−2

copper 12 × 1010 N m−2

glass 7.5 × 1010 N m−2

diamond 110 × 1010 N m−2

Table 10.2: Isothermal Young’s moduli for some elastic polymers.

ET

rubber 0.001 × 1010 N m−2

teflon 0.05 × 1010 N m−2

polypropylene 0.1 × 1010 N m−2

nylon 0.3 × 1010 N m−2

low density polyethylene 0.02 × 1010 N m−2

polystyrene 0.3 × 1010 N m−2
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Figure 10.1: Polyethylene segment. Polyethylene tends to crystallize at room temperature and is
not the best example of an elastomer.

Another polymer with a simple carbon backbone is polyvinyl chloride (see Figure 10.2).

Figure 10.2: Polyvinyl chloride polymer has a carbon backbone similar to polyethylene, but with a
chlorine atom in the side-chains.

Other polymers can be made which restrict the monomers from swinging so freely. An example
of a less flexible polymer is polystyrene (Figure 10.3) which is typically used in a rigid “glassy"
state.

Figure 10.3: Polystyrene has large aromatic rings in the side chains which severely restrict rotation
about the carbon backbone.

Elasticity in polymers is primarily a result of stacking arrangement multiplicity for the constituent
monomers. Less tangled arrangements (elongated chains together with large elastic tension) imply
fewer stacking possibilities, i.e. less uncertainty in describing those arrangements. More tangled ar-
rangements (shorter chains and smaller elastic tension) correspond to greater stacking possibilities,
i.e. more uncertainty. Entropy being a measure of (configurational) uncertainty, an arrangement

1Courtesy of The Internet Movie Database (http://www.imdb.com). Used with permission.
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with less uncertainty has smaller thermodynamic entropy while one with greater uncertainty is a
higher entropy configuration. Elastomers tend to resist elongation (spring shut) in order to achieve
greater entropy. For this reason elastomers are sometimes called “entropy springs".

In this chapter we first hypothesize a microscopic one-dimensional model of elastomer elasticity
and, using thermal Lagrangians, derive an elastomer equation of state. Then, using standard
thermodynamic methods as introduced in Chapters 2, 3 and 4, together with the derived equation
of state, we discuss the elastomer model’s macroscopic physical behaviors.

10.2 Elongation as an extensive observable

Real elastomers generally function in three dimensions. When they are unidirectionally stretched,
their cross-sectional areas shrink proportionately (necking) to maintain approximately constant
volume. The change in cross-sectional area corresponds to the action of internal tensions that tend
to squash the elastomer in directions transverse to its elongation. Metallic rods, although also
elastic, due to much higher Young’s moduli hardly elongate. Therefore in metal rods there is little
change in the rod’s cross-sectional area and transverse tensions can be safely ignored.

Even though real elastomers should be treated as three-dimensional to better account for elastic
properties, the naive one-dimensional model discussed here does – satisfactorily – illustrate the
overwhelming effect of entropy in its elastic properties as well as other unusual empirical features
of a “rubber band".

We consider a naive one-dimensional model of polymer elasticity similar to that introduced in the
discussion of degeneracy in Chapter 6. We assume here, as well, that any conformation of links is
only weakly energy dependent, i.e. any elongation assumed by the polymer has the same (internal)
bond energy. The Lagrangian used in implementing least bias for this elastic model includes in
the hamiltonian a macroscopic, observable elastomer elongation, the average difference between the
polymer’s end coordinates. The “thermodynamic" hamiltonian is therefore

Hop = h0 − τ ⋅χop , (10.2)

where τ is elastic tension – the variable conjugate to the elongation operator, χop. Note that h0 is
an internal “bond energy" hamiltonian which is neglected in the model.

10.2.1 Naive elastomer model

The naive one-dimensional polymer is assumed to be an assemblage of N links, each of length
a, that can point to the left or to the right with no energy difference for either orientation (see
Figure 10.4).

In this naive model ⟨h0⟩ = 0 so that the hamiltonian becomes

Hop = −τ χop (10.3)

and the average macroscopic polymer elongation ⟨χop⟩ is

⟨χop⟩ = Tr ρ̃τopχop . (10.4)
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Figure 10.4: One-dimensional model of monomer folding.

The elongation operator’s macroscopic eigenvalues are χ = a (nR − nL), where nL is the number
of left-directed monomers, nR is the number of right-directed monomers, and nR + nL = N is the
total number of monomers. Therefore macroscopic eigen-energies of the system (eigen-energies of
the hamiltonian in Eq.10.3) are

E (nR, nL) = −τ χ (10.5)
= −τ a (nR − nL) . (10.6)

Forming the thermal Lagrangian

L = −kB
N

∑
nR,nL

nR+nL=N

P (nL, nR) lnP (nL, nR)

− λ0

N

∑
nR,nL

nR+nL=N

P (nL, nR) − T −1
N

∑
nR,nL

nR+nL=N

P (nL, nR) [−τa (nR − nL)]] ,
(10.7)

we find, with β = 1
kBT

,

P (nL, nR) =
eβτa(nR−nL)

Zχ
, (10.8)

where Zχ, the partition function, is

Zχ =
N

∑
nL,nR

nL+nR=N

g (nL, nR) eβτa(nR−nL) . (10.9)

The degeneracy g (nL, nR) is inserted to remind us to sum over all states. Applying the degeneracy
for this model from Chapter 6,

g (nL, nR) = 2
N !

nL!nR!
, (10.10)

the partition function is

Zχ =
N

∑
nL,nR

nL+nR=N

2
N !

nL!nR!
eβτa(nR−nL) (10.11)

= 2 (eβ aτ + e−β aτ)N (10.12)

= 2 [2 cosh (βτa)]N . (10.13)
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10.3 Properties of the naive one-dimensional “rubber-band"

10.3.1 Elongation

The average elongation of “rubbery" materials, ⟨χop⟩, shows some empirically distinctive features.
Using Eq.10.8 ⟨χop⟩ is

⟨χop⟩ =
N

∑
nL,nR

nL+nR=N

2
N !

nL!nR!
[a (nR − nL)]

eβτa(nR−nL)

Zχ
(10.14)

or

⟨χop⟩ = −(
∂

∂τ
)[− 1

β
lnZχ] , (10.15)

which gives the elastomer equation of state

⟨χop⟩ = N a tanh (β τ a) . (10.16)

Examining this result in Figure 10.5, note the highly non-linear response to large tension, diverging

as
⟨χop⟩
Na

→ 1. The elastic limit, where elasticity is permanently lost, is in that region.

At small tension, β τ a << 1, the elongation is linear, i.e. Hooke’s law,

⟨χop⟩ =
N a2 τ

kB T
(10.17)

or

τ = kB T

N a2
⟨χop⟩ , (10.18)

which displays the distinctive feature that the elastic constant of a “rubber band" increases with
increasing temperature.2

10.3.2 Entropy

“Rubber band" entropy can be found from

S = − kB
N

∑
nL,nR

nL+nR=N

P (nL, nR) lnP (nL, nR) (10.19)

= − kB
N

∑
nL,nR

nL+nR=N

{e
βτa(nR−nL)

Zχ
[βτa (nR − nL)] − lnZχ} (10.20)

= − kBβ {τ⟨χop⟩ −
1

β
lnZχ} , (10.21)

2Finding the thermal “expansivity" of the one-dimensional rubber band is assigned as a problem.
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Figure 10.5: Average extension, ⟨χop⟩/Na, of “rubber" as a function of τa
kBT

. At small tension,
τa
kBT

<< 1, the behavior is linear.

which is identical to

S = − ∂

∂T
(− 1

β
lnZχ) (10.22)

=kBβ2 ∂

∂β
(− 1

β
lnZχ) , (10.23)

with the result (N >> 1)
S = NkB [ln 2 + {ln [2 cosh (βτa)] − βτa tanh (βτa)}] . (10.24)

Recasting the entropy in terms of average elastomer extension X = ⟨χop⟩
Na (see Eq.10.16) we

find
S
Na

= ln [ 2√
1 −X2

] −X tanh−1 X . (10.25)

Extension vs. entropy is shown in Figure 10.6. In this model energy plays no role in elastic behavior.
It is evident, then, that rubber’s restorative “springiness" is due to favoring an entropy increase in
the more compact configuration.

10.4 “Hot rubber bands": a thermodynamic analysis

If a thick real rubber band is quickly stretched and then abruptly relaxed several times in rapid
succession, it cannot fail to be noticed that the rubber band warms. Even without sensitive ther-
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Figure 10.6: Average extension per monomer, ⟨χop⟩/Na, of an “entropy spring" as a function of S.

mometry the temperature rise can be detected by placing the rubber band against the center of
your forehead or against your upper lip, both of which are sensitive to temperature. The thermo-
dynamics of this successive pair of processes can be qualitatively studied using the one-dimensional
polymer model.3,4

If the elastomer is stretched so quickly that there is insufficient time for it to exchange heat with
the surroundings, then the process can be described as adiabatic (d−Q = 0). In that case,

0 = dU + d−W . (10.26)

Since U is a state variable5 the integral

B

∫
A

dU = U (B) − U (A) (10.27)

only depends on end-points and not path. Then W also depends on end-points, and a quasi-static
path can be chosen, i.e.

d−WQS = −τ dL . (10.28)

The remaining problem-solving steps are typical of those in Chapters 3-5 but adapted to the elastic
model.

3The elastic properties of a typical elastomer have, in principle, weak (but not zero) internal energy dependence.
In the interest of clarity this energy dependence is, in the one-dimensional model, entirely ignored. To continue the
present discussion a dose of reality must be restored. This comes in the form of a non-zero internal energy. But as
will be seen, its microscopic origin and its magnitude are irrelevant.

4For simplicity, the average extension ⟨χop⟩ will now be replaced by L.
5Note that now hop ≥ 0 so that U ≠ 0.
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Starting with the First Law

d−Q = dU − τ dL (10.29)

and applying the adiabatic (fast stretching) condition, we have,6

0 = dU − τ dL . (10.31)

Taking the differential of U = U (T,L)

dU = (∂U
∂T
)
L
dT + (∂U

∂L
)
T

dL , (10.32)

Eq.10.31 becomes

0 = (∂U
∂T
)
L
dT + [(∂U

∂L
)
T
− τ] dL . (10.33)

However, the constant length heat capacity is

CL = (
∂U
∂T
)
L

, (10.34)

which leaves only the partial derivative

(∂U
∂L
)
T

(10.35)

to be evaluated. A way forward7 is to use the Helmholtz potential F = U − TS and take the constant
temperature partial derivative

(∂U
∂L
)
T
= (∂F

∂L
)
T
+ T (∂S

∂L
)
T

. (10.36)

This is handled by noting that combining the (elastic) thermodynamic identity

T dS = dU − τ dL (10.37)

with the differential of Helmholtz potential

dF = dU − T dS − S dT (10.38)

gives

dF = −S dT + τ dL (10.39)

6Alternatively it might be better to evaluate

dT = (∂T
∂L
)
S

dL . (10.30)

7A different but equivalent method was used on a similar partial derivative in Chapter 2.
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and the identification

(∂F
∂L
)
T
= τ . (10.40)

To simplify the last term in Eq.10.36, apply the Euler criterion to the exact differential dF , i.e.
Eq.10.39,

−(∂S
∂L
)
T
= ( ∂τ

∂T
)
L

, (10.41)

which is a Maxwell relation. Finally Eq.10.36 becomes

(∂U
∂L
)
T
= τ − T ( ∂τ

∂T
)
L

(10.42)

and Eq.10.33 reduces to

CL
T

dT = ( ∂τ
∂T
)
L
dL . (10.43)

Using the approximate (linearized) elastomer equation of state, Eq.10.17, we find

( ∂τ
∂T
)
L
= kBL

Na2
, (10.44)

arriving at the differential equation

CL
T

dT = kB
Na2

L dL , (10.45)

which is easily integrated to give

Tf

T0
= exp(

L2
f −L2

0

κ2
) , (10.46)

where8

κ−2 = 1

2⟨CL⟩
( kB
Na2

) . (10.47)

Thus, as a consequence of adiabatic stretching, i.e. Lf > L0, the elastomer warms!

10.4.1 Abruptly relaxed rubber band

When the rubber band is suddenly allowed to relax under no effective restraint (snaps shut) we
still have a fast process with d−Q = 0. But relaxing without restraint means that no work is done by
the rubber band, i.e. d−W = 0. This process is thermodynamically identical to the free expansion
of a confined gas studied in Chapter 3. Therefore, from the First Law, there is no internal energy
change, dU = 0.

8Assuming an average value of CL.
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This suggests that to find the temperature change in the rapidly relaxed “rubber band", we write,
as in Chapter 3, the infinitesimal

dT = (∂T
∂L
)
U

dL . (10.48)

We are again temporarily blocked by an “unfriendly" partial derivative. But with the skill gained
in Chapters 3-5 we start by applying the cyclic chain rule

(∂T
∂L
)
U
= −(∂U

∂L
)
T
(∂U
∂T
)
−1

L
(10.49)

and using Eqs.10.34 and 10.42 from above

dT = 1

CL
[T ( ∂τ

∂T
)
L
− τ] dL , (10.50)

which, together with the linearized polymer equation of state, shows that the temperature of an
unrestrained, rapidly relaxed elastomer does not change! Therefore a perceptible temperature
increase can accumulate by repeated adiabatic stretching and abrupt (unrestrained) relaxation of
the rubber band. Try it!

10.4.2 Entropy change in the relaxing elastomer

A rubber band snaps shut when the elongating constraint (tension) is suddenly released. Of course
it does. What else would you expect from a rubber band? What governs this spontaneous process?
As alluded to above, it is an expected increase in the entropy of the universe (i.e. the rubber band).9

To calculate the change in entropy in this constant U process write

dS = (∂S
∂L
)
U

dL . (10.51)

What seems to be an unusual partial derivative has been considered previously in Chapter 3 where
we first applied the cyclic chain rule to get

(∂S
∂L
)
U
= −(∂U

∂L
)
S
(∂U
∂S )

−1

L
. (10.52)

Then from the thermodynamic identity, Eq.10.37, we find both

(∂U
∂L
)
S
= τ (10.53)

and

(∂U
∂S )L

= T , (10.54)

9A pretty modest-sized universe, to be sure.
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so that Eq.10.51 reduces to

dS = − τ

T
dL . (10.55)

Using the linearized equation of state this further reduces to the differential expression

dS = − kB
Na2

L dL , (10.56)

which is integrated to give

ΔS = kB
2Na2

(L2
0 −L2

f) > 0 . (10.57)

Spontaneous, unrestrained contraction of a stretched rubber band is driven by increased entropy of
the “universe."

10.5 A non-ideal elastomer

Instead of the one-dimensional elastomer consider a model elastomer as a three-dimensional bundle
of roughly parallel but weakly interacting chains (directed, say, in the z-direction). The general
picture is that each chain is a system of N links (N ≫ 1), each of length a, which can swivel around
the bond at any polar or azimuthal angle θ, φ with respect to the primary z-axis. However, now an
interchain energy, assumed to be proportional to sin θ, is introduced. But to further simplify the
model we assume that these links can only point in transverse {±x,±y} directions as well as the
longitudinal z-direction.

All links pointing parallel to the primary z-axis are taken to have identical energy, E = 0, while
rotationally hindered links bending in {±x,±y} directions (subject to zero mean displacements in the
x- and y- directions) acquire an average energy E = ε. Such an interaction introduces non-ideality
in a simple but plausible way – reminiscent of cross-linking that takes place in vulcanization of
rubber. In the limit ε → 0 transverse links are as easily created as longitudinal links so that links
meander randomly in three dimensions. In this limit the elastomer may be thought of as ideal
in an analogous sense to a three-dimensional non-interacting gas being ideal. (More will be said
about this comparison below.) For ε ≠ 0 the transverse link interaction energy causes meandering
to become biased and the elastomer is no longer ideal.

As before, we formulate a thermal Lagrangian tailored to the model described above, and obtain
“surrogate" probabilities and a partition function for the system. The partition function yields all
necessary thermodynamic detail from which the microscopic interaction parameter ε can, presum-
ably, be found by a suitable experiment.

The macroscopic hamiltonian is
Hop = h0 − τ ⋅χop , (10.58)

where h0 accounts for the macroscopic “cross-linking" bond energy, χop is the length vector operator
whose average ⟨χop⟩ has components in any of three mutually perpendicular directions, and τ is
the elastic tension vector conjugate to the displacement operator.
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Within the framework of the three-dimensional elastomer model the macroscopic eigen-energies of
Hop are

Ê (n±x, n±y, n±z) = (n+x + n−x + n+y + n−y) ε
(10.59)

−τxa (n+x − n−x) − τya (n+y − n−y) − τza (n+z − n−z) ,

where n±q are the discrete number of links in the ±q directions, with q = x, y, z the mutually per-
pendicular coordinate directions and a is the length per link. The thermal Lagrangian L for this
model is therefore

L = −kB∑
n
P (n) lnP (n)

−T −1 [{∑
n
P (n) [(n+x + n−x + n+y + n−y) ε]}

− {∑
n
P (n) [τxa (n+x − n−x) + τya (n+y − n−y) + τza (n+z − n−z)]}]

−λ0∑
n
P (n) ,

(10.60)

with T the absolute temperature, and where

P (n) ≡ P (n±x, n±y, n±z) (10.61)

is the probability there are n±x, n±y, n±z links of each type. The symbolic sum

∑
n

≡ ∑
n+x,n−x
n+y,n−y
n+z,n−z

(10.62)

is over the integers {n±x, n±y, n±z} so that, for example, the average value of the longitudinal
component of the elastomer length vector ⟨Lz⟩ is

⟨Lz⟩ = a∑
n

P (n) (n+z − n−z) (10.63)

and the internal energy U is

U =∑
n

P (n) (n+x + n−x + n+y + n−y) ε (10.64)

with the “ideal" elastomer characterized by lim
ε→0

U = 0. Maximizing the Lagrangian L with respect

to the P (n) we obtain

P (n) = e−βε(n+y+n−y+n+x+n−x) e−βaτz(n+z−n−z)

ZX
, (10.65)

where τx = τy = 0 (required by ⟨Lx⟩ = ⟨Ly⟩ = 0) has been imposed. The normalizing denomina-
tor

ZX = ∑
n

e−βε(n+y+n−y+n+x+n−x) e−βaτz(n+z−n−z) (10.66)
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is the partition function. Equation 10.66 is summed by using the degeneracy g (n) of the macro-
scopic eigen-energies

g (n±x, n±y, n±z) =
N !

n+x!n−x!n+y!n−y!n+z!n−z!
(10.67)

to give the partition function

ZX = ∑
n

N !

n+x!n−x!n+y!n−y!n+z!n−z!
e−βε(n+y+n−y+n+x+n−x) e−βaτz(n+z−n−z) , (10.68)

the sum now being over distinct integer values restricted by the fixed total

n+x + n−x + n+y + n−y + n+z + n−z = N. (10.69)

Equation 10.68 is just the multinomial expansion of

ZX = [e−βτza + e+βτza + 4e−βε]N . (10.70)

10.6 Three-dimensional elastomer thermodynamics

Substituting probabilites of Eq. 10.65 into

S = −kB
N

∑
n

P (n) lnP (n) (10.71)

gives the thermodynamic entropy

S = βkB (U − τz ⟨Lz⟩ +
1

β
lnZX) . (10.72)

Defining GX , an elastic Gibbs potential, as

GX = −
1

β
ln ZX , (10.73)

Eq. 10.72 is rewritten as
GX = U − TS − τz ⟨Lz⟩ . (10.74)

Taking the total differential of GX and using the fundamental equation

T dS = dU − τz d⟨Lz⟩ , (10.75)

where d⟨Lz⟩ is an infinitesimal change in elastomer length, we also find

dGX = −S dT − ⟨Lz⟩ dτz (10.76)

so that from the partition function we find the elastomer length, i.e. the equation of state,

⟨Lz⟩ = [
∂

∂ (βτz)
lnZX]

T

(10.77)

= Na sinh (βaτz)
cosh (βaτz) + 2e−βε

. (10.78)
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z
z

z

z

Figure 10.7: Model elastomer stress-strain relationships as described by Eq. 10.78. Curves with
z = βε < 0 are typically observed in real rubber-like elastomers.

Plotting βaτ vs. ⟨Lz⟩/Lmax in Figure 10.7, various elastic polymer behaviors obtained from the
equation of state, Eq. 10.78, are shown. The the curve for z = βε > 0 is characteristic of an “elasticity"
dominated by coiling and uncoiling of individual chains. On the other hand, the curve for z = βε < 0
corresponds to a tendency to form cross-linkages,10 in which case rubber initially strongly resists
stretching followed by a region of easier deformation (possibly associated with physically observed
“necking") until, as ⟨Lz⟩/Lmax → 1, stretched rubber suddenly ruptures. The case z = βε < 0
parallels observed characteristics of “rubber".

Using Eq. 10.76 or, equivalently, Eq. 10.71, the elastomer entropy is

S = −(∂GX
∂T

)
τz

= −kBβ2 [ ∂

∂β
( 1
β
lnZX)]

τz

,

(10.79)

which evaluates to

S = NkB

⎧⎪⎪⎨⎪⎪⎩
ln 2 + ln [2e−βε + cosh (βτza)] +

β [2ε − aτze
βε sinh (βτza)]

2 + eβε cosh (βτza)

⎫⎪⎪⎬⎪⎪⎭
. (10.80)

10Such as happens in vulcanization of rubber.
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Finally, from Eqs. 10.73, 10.74, 10.78 and 10.80, the internal energy is

U = 2Nε

2 + eβε cosh (βaτz)
. (10.81)

10.6.1 An experiment

The typical undergraduate thermal physics course seems to lack realistic hands-on laboratory ex-
ercises, especially ones that might explore the synergy between statistical theory, microscopic pa-
rameters and experiment. Perhaps this is a result of historical precedence in which gases – with
easy kinetic theory visualizations – enjoy perceived pedagogical simplicity. Although having a dis-
proportionate role in thermodynamic instruction they are not especially convenient subjects for
non-trivial laboratory studies in a classroom setting nor are statistical theories of non-ideal gases –
which should be the basis for exploring any experimental synergy – easily accessible at the under-
graduate level.

In Appendix F macroscopic thermodynamic (lab) measurements are used to find a microscopic
interaction energy ε as modeled in the three-dimensional elastomer of Section 10.6.

Problems and exercises

10.1 Find the linear thermal expansivity

α = 1

L
(∂L
∂T
)
τ

(10.82)

for the “naive" one-dimensional rubber band.

10.2 Find the mean fluctuations in the average one-dimensional polymer elongation ⟨χop⟩

⟨(Δχ)2⟩ = ⟨(χop − ⟨χop⟩)
2⟩ (10.83)

for the naive polymer model.

10.3 A macromolecule is composed of a chain of N chemically identical molecular monomers for
which two distinct states are accessible. At equilibrium N0 units are in the molecular ground
state with energy E0 and N1 units are in an excited state with energy E1. Both states are
non-degenerate. The ground state monomer length is � = λ while in the excited state it has
length � = (1 + δ)λ, 0 < δ << 1.
a. Write an expression for the polymer partition function Z.

b. Find an equation of state describing the total length L as a function of chain tension τ and
temperature T , L = L (τ, T ).

10.4 A one-dimensional polymer that emulates piezoelectric behaviors is modeled as N = (nR + nL)
molecular links of which nR are right-pointing (+x) and nL are left-pointing (−x). Each link
has length λ and fixed electric dipole moment p . When placed in a uniform electric field E0,x,
each right-pointing link has an energy

εR = −p ⋅ E0 (10.84)
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while each left-pointing link has an energy

εL = +p ⋅ E0 . (10.85)

The implied “piezoelectric" behaviors are:

i. a mechanical tension τ applied along the longitudinal +x-direction, resulting in an electric
polarization P in that direction;

ii. An electric field E0 applied in, say, the +x-direction, resulting in a mechanical deformation
Δ� in that direction.

The thermodynamic hamiltonian for this model is taken to be

ĥ = h0 − τχop − E0 ⋅ P op (10.86)

so that the corresponding macroscopic eigen-energies are

Ê = Nε0 − τλ (nR − nL) − E0 ⋅ p (nR − nL) (10.87)

with the average length

⟨χop⟩ = λ ⟨nR − nL⟩ (10.88)

and the average polarization

⟨P op⟩ = p ⟨nR − nL⟩ . (10.89)

It is assumed that h0 is field independent and ε0 ≈ 0.
a. Write a thermal Lagrangian corresponding to the model.

b. Write a partition function for this piezoelectric polymer in the form

Z =∑
E

g (E)e−βE (10.90)

and evaluate the expression.

c. Find the entropy of the model in terms of β and p ⋅ E0 .

d. Find the Helmholtz potential F in terms of β and p ⋅ E0 .

e. Find the average polymer length ⟨χop⟩ in terms of β and P ⋅ E0.

A characterising piezoelectric property is the coefficient

ξ = (∂P
∂τ
)
β,E

. (10.91)

f. Describe ξ in words.

g. Find ξ in terms of β and p ⋅ E0.
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The nation that controls magnetism controls the universe.

“Diet Smith", from Chester Gould’s Dick Tracy comic strip (1960)

Chapter 11

Magnetic thermodynamics

11.1 Magnetism in solids

Lodestones – fragments of magnetic1 FeO+Fe2O3 (Fe3O4) – although known to the ancients were,
according to Pliny the Elder, first formally described in Greek 6th-century BCE writings. By that
time they were already the stuff of myth, superstition and amazing curative claims, some of which
survive to this day. The Chinese used lodestones in navigation as early as 200 BCE and are credited
with inventing the magnetic compass in the 12th century CE.

Only in the modern era has magnetism become well understood, inspiring countless papers, books2

and more than a dozen Nobel prizes in both fundamental and applied research.

11.1.1 Forms of macroscopic magnetism

Paramagnetism

In an external magnetic field B the spin-state degeneracy of local (atomic) or itinerant (conduction)
electronic states is lifted (Zeeman effect). At low temperature this results in an induced macroscopic
magnetic moment whose vector direction lies parallel to the external field. This is referred to as
paramagnetism.3

1Named, as one story goes, for Magnus, the Greek shepherd who reported a field of stones that drew the nails
from his sandals.

2See e.g. Stephen Blundell, Magnetism in Condensed Matter Oxford Maser Series in Condensed Matter Physics
(2002); Daniel C Mattis, Theory of Magnetism Made Simple, World Scientific, London (2006); Robert M. White,
Quantum Theory of Magnetism: Magnetic Properties of Materials, 3rd rev. edn, Springer-Verlag, Berlin (2007).

3Itinerant (conduction) electron paramagnetism is referred to as spin or Pauli paramagnetism.

149
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For most materials removing the external field restores spin-state degeneracy, returning the net
moment to zero.

Diamagnetism

Macroscopic magnetization may also be induced with a magnetization vector anti-parallel to the
external field, an effect called diamagnetism. In conductors diamagnetism arises from the highly
degenerate quantum eigen-energies and eigenstates (referred to as Landau levels)4 formed by inter-
action between mobile electrons and magnetic fields. Diamagnetism is also found in insulators, but
largely from surface quantum orbitals rather than interior bulk states.5 Both cases are purely quan-
tum phenomena, leaving macroscopic diamagnetism without an elementary explanatory model.6,7

All solids show some diamagnetic response, but it is usually dominated by any paramagnetism that
may be present.

At high magnetic fields and low temperatures very pure metals exhibit an oscillatory diamagnetism
called the de Haas-van Alfen effect whose source is exclusively the Landau levels.8

“Permanent" magnetism

“Permanent" magnetism refers to macroscopic magnetization taking place without any external
magnetic fields. Several examples of this phenomenon are:

• Ferromagnetism:An ordered state of matter in which local paramagnetic moments interact
to produce an effective internal magnetic field resulting in collective alignment of moments
throughout distinct regions called domains. Due to internal fields, domains can remain aligned
even after the external field is removed.

Ferromagnetic alignment “abruptly" disappears at a material-specific temperature called the
Curie temperature Tc, above which ordinary local paramagnetism returns.

• Antiferromagnetism: At low temperatures, interactions between adjacent identical paramag-
netic atoms, ions or sub-lattices can induce collective “anti-alignment" of adjacent paramag-
nets, resulting in a net zero magnetic moment.

• Ferrimagnetism: At low temperatures, interactions between unequivalent paramagnetic atoms,
ions or sub-lattices can produce collective “anti-alignment" of moments, resulting in a small
residual magnetization.

In both ferrimagnetism and antiferromagnetism, increasing temperature weakens “anti-alignment"
with the collective induced moments approaching a maximum. Then, at a material specific
temperature called the Néel temperature TN , anti-alignment disappears and the materials
become paramagnetic.

In this chapter general concepts in the thermodynamics of magnetism and magnetic fields are
discussed as well as models of local paramagnetism and ferromagnetism.

4L. Landau, “Diamagnetism of Metals", Z. Phys. 64, 629 (1930).
5D. Ceresoli, et. al. “Orbital magnetization in crystalline solids", Phys. Rev. B 74, 24408 (2006).
6Niels Bohr, Studier over Metallernes Elektrontheori, Københavns Universitet (1911).
7Hendrika Johanna van Leeuwen, "Problémes de la théorie électronique du magnétisme", Journal de Physique et

le Radium, 2, 361 (1921).
8D. Shoenberg, Magnetic Oscillations in Metals, Cambridge University Press, Cambridge (1984).
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11.2 Magnetic work

Central to integrating magnetic fields and magnetizable systems into the First Law of Thermody-
namics is formulating magnetic work. Using Maxwell fields,9 the energy generated within a volume
V in a time δt, by an electric field E acting on true charge currents J – Joule heat – is10

δWM = −δt ∫
V

J ⋅ E dV . (11.1)

Therefore the quasi-static and reversible11 magnetic work done by the system is

δWM
QS = δt ∫

V

J ⋅ E dV . (11.2)

Using the Maxwell equation (in cgs-Gaussian units)12

∇×H = 4π

c
J + 1

c

δD
δt

, (11.3)

the work done by the system in time δt is

δWM
QS = δt

⎧⎪⎪⎨⎪⎪⎩

c

4π
∫
V

(∇ ×H ) ⋅ E dV − 1

4π
∫
V

δD
δt
⋅ E dV

⎫⎪⎪⎬⎪⎪⎭
. (11.4)

Using the vector identity

U ⋅ ∇ ×V = ∇ ⋅ (V ×U) +V ⋅ ∇ ×U , (11.5)

this becomes

δWM
QS = δt

⎧⎪⎪⎨⎪⎪⎩

c

4π

⎡⎢⎢⎢⎢⎣
∫
V

∇ ⋅ (H × E) dV + ∫
V

H ⋅ ∇ × E dV

⎤⎥⎥⎥⎥⎦
− 1

4π
∫
V

δD
δt
⋅ E dV

⎫⎪⎪⎬⎪⎪⎭
. (11.6)

The first integral on the right can be transformed by Gauss’ theorem into a surface integral. But
since the fields are static (non-radiative), they fall off faster than 1

r2
so that for a very distant surface

the surface integral can be neglected. Then, with the Maxwell equation (Faraday’s Law)

∇× E = −1
c
(δB
δt
) , (11.7)

9Maxwell fields in matter and free space are the local averages that appear in his equations of electromagnetism.
10The wiggly δ s are used here to represent incremental changes in thermal variables associated with the interval

of time δt.
11In specifying reversibility non-reversible hysteresis effects are excluded.
12Even though they have fallen out of pedagogical favor in E&M textbooks, cgs units offer unrivaled clarity in

presenting the subtle issues involved in thermodynamics of magnetic and electric fields.
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incremental work done by the system is

δWM
QS = − δt

⎧⎪⎪⎨⎪⎪⎩

1

4π
∫
V

H ⋅ δB
δt

dV + 1

4π
∫
V

δD
δt
⋅ E dV

⎫⎪⎪⎬⎪⎪⎭
(11.8)

= −
⎧⎪⎪⎨⎪⎪⎩

1

4π
∫
V

H ⋅ δB dV + 1

4π
∫
V

δD ⋅ E dV

⎫⎪⎪⎬⎪⎪⎭
, (11.9)

where the space integrals are over the volume of the sample and surrounding free space. [Note: The
“wiggly" deltas in δB(x), δH (x) and δD(x) represent functional changes associated with δt, i.e.
changes in the fields (states) not the coordinates. The fields themselves are functions of coordinates
x and are not just simple variables.]

Limiting the discussion to magnetic phenomena, the magnetic contribution to quasi-static work
done by the system is therefore

δWMQS = −
⎧⎪⎪⎨⎪⎪⎩

1

4π
∫
V

H ⋅ δB dV

⎫⎪⎪⎬⎪⎪⎭
, (11.10)

so that a fundamental magnetic thermodynamic equation for δU becomes

δU = TδS − p dV + 1

4π
∫
V

H ⋅ δB dV . (11.11)

From the Helmholtz potential, F = U − TS,

δF = δU − TδS − S dT , (11.12)

which when combined with Eq.11.11 gives the change δF :

δF = −S dT − pdV + 1

4π
∫
V

H ⋅ δB dV . (11.13)

Defining magnetic enthalpy H as

H = U + pV − 1

4π
∫
V

B ⋅H dV , (11.14)

gives, with Eq.11.11, an enthalpy change δH :

δH = TδS + V dp − 1

4π
∫
V

B ⋅ δH dV . (11.15)
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Finally, a magnetic Gibbs potential G is defined as

G = F + pV − 1

4π
∫
V

B ⋅H dV , (11.16)

which with Eq.11.13 gives the Gibbs potential change δG ∶

δG = −S dT + V dp − 1

4π
∫
V

B ⋅ δH dV . (11.17)

Magnetization density13 M and polarization density14 P are inserted by the linear constitutive
relations

H = B − 4πM (11.18)

and

D = E + 4πP (11.19)

allowing quasi-static magnetic work to be written

δWM
1

QS =
⎧⎪⎪⎨⎪⎪⎩

1

4π
∫
V

B ⋅ δB dV − ∫
V ′

M⋅ δB dV

⎫⎪⎪⎬⎪⎪⎭
(11.20)

or

δWM
2

QS =
⎧⎪⎪⎨⎪⎪⎩

1

4π
∫
V

H ⋅ δH dV + ∫
V ′

H ⋅ δM dV

⎫⎪⎪⎬⎪⎪⎭
, (11.21)

and quasi-static electric work to be written

δWP1

QS =
⎧⎪⎪⎨⎪⎪⎩

−1
4π
∫
V

D ⋅ δD dV + ∫
V ′

P ⋅ δD dV

⎫⎪⎪⎬⎪⎪⎭
(11.22)

or

δWP2

QS =
⎧⎪⎪⎨⎪⎪⎩

−1
4π
∫
V

E ⋅ δE dV − ∫
V ′

E ⋅ δP dV

⎫⎪⎪⎬⎪⎪⎭
. (11.23)

The first terms in all four alternatives are total field energies – integrals over all space, both inside
and outside matter. The second terms are integrals over V ′ which include only the volume of
magnetized (polarized) matter. Since magnetic (electric) thermodynamics is primarily concerned

13Total magnetic moment per unit volume.
14Total electric dipole moment per unit volume.
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with matter that is magnetized (polarized), one practice is to bravely ignore the total field energies.
Another is to absorb the field energies into the internal energy U . Since neither option is entirely
satisfactory a third way is discussed in Section 11.3 below.

Nevertheless, these results – in terms of local average fields – are general and thermodynamically
correct.15 But they are not convenient to apply. Nor are they the fields that appear in microscopic
magnetic (electric) quantum hamiltonians. In quantum magnetic (electric) models the hamiltoni-
ans for individual magnetic (electric) moments depend only on the the field before the sample is
introduced. After the sample is introduced internal fields can additionally result from:

a. interactions between internal moments as additional terms in the hamiltonian. These inter-
actions may be approximately treated as “effective fields" acting in addition to the external
field (see, for example, Section 11.9, below);

b. internal “demagnetizing" fields arising from fictitious surface “poles" induced by B0,16

c. internal currents induced by the applied field (especially in conductors).17

11.3 Microscopic models and uniform fields

Microscopic models of magnetic and electric hamiltonians are expressed in terms of uniform ap-
plied fields (B0, E0) present before matter is introduced. This emphasis on applied fields (rather
than average Maxwell fields within matter) results in thermodynamic relations somewhat different
from Eqs.11.11 to 11.17 above. Focusing on magnetic effects in the absence of internal magnetic
interactions, quasi-static magnetic work done by the system is (see Eq.G.23 in Appendix G),

d−WM
QS = −B0 ⋅ dM . (11.24)

Since B0 is uniform, a total macroscopic magnetization vector M has been defined as:

M = ∫
V ′

⟨M⟩ dV , (11.25)

with ⟨M⟩ the average magnetization per unit volume.18

15δWM2

QS and δWP2

QS , have the correct form for work – intensive × extensive.
16“Demagnetizing" fields introduce sample shape dependence into the magnetic properties.
17T. Holstein, R. E. Norton and P. Pincus, "de Haas-van Alphen effect and the specific heat of an electron gas",

Phys. Rev. B 8, 2649 (1973).
18Similarly

d−WP
QS = E0 ⋅ dP . (11.26)
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Therefore thermodynamic differential relations become (see Eqs.G.24, G.26, G.25 and G.27)

T dS = dU∗ + p dV − B0 ⋅ dM ,

T dS = dH ∗ − V dp +M ⋅ dB0 ,

dF ∗ = −SdT − p dV + B0 ⋅ dM ,

dG∗ = −S dT + V dp −M ⋅ dB0 ,

(11.27)

where the starred potentials are

U∗ = U + 1

8π
∫
V

B2
0 dV , (11.28)

H∗ =H + 1

8π
∫
V

B2
0 dV , (11.29)

F ∗ = F + 1

8π
∫
V

B2
0 dV , (11.30)

G∗ = G + 1

8π
∫
V

B2
0 dV . (11.31)

11.4 Local paramagnetism

The classical energy of a magnetic moment m in an average local (Maxwell) magnetic field B
is

E = −m ⋅ B . (11.32)

For fundamental magnetic moments (electrons, protons, neutrons, etc.) quantum mechanics pos-
tulates an operator replacement m→mop, and a quantum paramagnetic hamiltonian

HM = −mop ⋅ B0 , (11.33)

where B0 is the uniform field present before matter is introduced.19

The paramagnetic hamiltonian for a solid consisting of N identical moments fixed at crystalline
sites i is

Hop = h0 − B0 ⋅
N

∑
i=1

mop (i) , (11.34)

19Appendix G includes a discussion of the implications and limitations of using B0 in the thermodynamics.
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where mop (i) is a magnetic moment operator20 and h0 is any non-magnetic part of the hamilto-
nian.21,22 The “magnetization" operator (total magnetic moment per unit volume) is

Mop =
1

V

N

∑
i=1

mop (i) . (11.37)

One objective is to find the macroscopic equation of state ⟨M ⟩ =M (T,B0) where ⟨M ⟩ is the average
magnetization per unit volume

⟨M ⟩ = Tr ρτopMop . (11.38)

11.5 Simple paramagnetism

Consider a spin = ½ atom which in the absence of a magnetic field has the pair of degenerate states
with energy E0

23,24,25

mz,op∣μ̄±½⟩ = ±
gγB
2
∣μ̄±½⟩ . (11.39)

In a uniform magnetic field, B0,z, the degeneracy of each atom state is lifted, creating a pair of
non-degenerate states of energy

E− = E0 − μ½B0,z and E+ = E0 + μ½B0,z (11.40)

with μ½ = gγB
2 (see Figure 11.1).

The macroscopic N -moment eigen-energies are

E (n+, n−) = NE0 + (n+ − n−) μ½ B0,z , (11.41)

20mop is proportional to an angular momentum (spin) operator Sop, with

mop = gγB

h̵
Sop . (11.35)

Here g is the particle g-factor and γB = eh̵
2mc is the Bohr magneton (cgs-Gaussian units.)

For a spin = ½ atom the quantum mechanical z-component spin operator Sz , is taken with two eigenstates and two
eigenvalues

Sz ∣±1
2
⟩ = ± h̵

2
∣±1

2
⟩ (11.36)

21It is assumed that there are no interactions corresponding to internal fields, Bint.
22Field-particle current terms HA ⋅J = 1

2m
(pop − q

c
Aop)2, where Aop is the vector potential operator, are ignored.

23h0 of Eq.11.34, and hence E0, is assumed to make no magnetic contribution, either from interacting moments,
internal currents or other internal fields.

24An eigenvalue equation for atomic spin J , mz,op is

mz,op∣μ̄mJ ⟩ = gγB mJ ∣μ̄mJ ⟩ ,
where ∣μ̄mJ ⟩ are the eigenstates and gγB mJ the eigenvalues, with −J ≤mJ ≤ J .

25To preserve simplicity, discussion is confined to spin-½ magnetic moments.
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Figure 11.1: Lifting the s = 1
2

spin degeneracy with a magnetic field B0,z

where n+ is the number of atoms in a state with eigen-energy

E+ = E0 + μ½ B0,z (11.42)

and n− is the number of atoms in a state with eigen-energy

E− = E0 − μ½ B0,z , (11.43)

with n+ +n− = N . The probabilities P (εs) required for the thermodynamic density operator

ρ̂τop = ∑
s

P (εs)∣Es⟩⟨Es∣ (11.44)

are found by constructing the thermal Lagrangian

L = −kB
N

∑
n+,n−=0

P (n+, n−) lnP (n+, n−) − λ0

N

∑
n+,n−=0

P (n+, n−)

−T −1
N

∑
n+,n−=0

P (n+, n−) [NE0 + μ½ (n+ − n−)B0,z]
(11.45)

using the N -atom macroscopic eigen-energies of Eq.11.41. The resulting probabilities are

P (n+, n−) =
e−β [NE0 + μ½ (n+ − n−)B0,z]

ZM
, (11.46)

where β = 1/kB T , and the denominator (the paramagnetic partition function) is

ZM =
N

∑
n+,n−

n++n−=N

g (n+, n−)e−β [NE0 + μ½ (n+ − n−)B0,z] . (11.47)
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The sum over all states is accounted for by the configurational degeneracy

g (n+, n−) =
N !

n+ !n− !
(11.48)

so that

ZM =
N

∑
n+,n−
n++n−=N

N !

n+ !n− !
e−β [NE0 + μ½ (n+ − n−)B0,z] , (11.49)

which is the binomial expansion of

ZM = e−βNE0 (eβμ½B0,z + e−βμ½B0,z)
N

(11.50)

= [2e−βE0 cosh (βμ½B0,z)]
N

. (11.51)

11.6 Local paramagnet thermodynamics

Using Eq.11.46, simple paramagnet thermal properties for the spin = ½ system are found.

The average total magnetization is

⟨M⟩ = −

N

∑
n−,n+
n++n−=N

N !

n+!n−!
[μ½ (n+ − n−)] e−β [NE0 + μ½ (n+ − n−)B0,z]

ZM
(11.52)

or

⟨M⟩ = − ∂

∂B0,z
(− 1

β
lnZM) (11.53)

= N μ½ tanh (βμ½B0,z) . (11.54)

Equation 11.54 is called the Langevin paramagnetic equation. Note in Figure 11.2 that the mag-
netization saturates as βμ1/2B0 →∞, where

tanh (βμ½B0,z) → 1 , (11.55)

with a saturation value

⟨M⟩ ≈ Nμ½ . (11.56)

The linear region where βμ½B0 << 1 is called the Curie regime. In that case

tanh (βμ½B0,z) ≈ βμ½B0,z (11.57)

and

⟨M⟩ ≈ Nβμ2
½B0,z . (11.58)
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The average energy (including the magnetization-independent energy) is

⟨Hop⟩ =

N

∑
n+,n−

N !

n+!n−!
[NE0 + (n+ − n−)μ½B0,z] e−β [NE0 + (n+ − n−)μ½B0,z]

ZM
(11.59)

so that internal energy is

U = − ∂

∂β
lnZM + B0,z⟨M⟩ , (11.60)

which is simply

U = NE0 . (11.61)

Figure 11.2: Magnetization vs. βμ½B0

Comparing Eq.11.53 with Eq.11.27 we see that the uniform field Gibbs potential is found from the
uniform field partition function, Eq.G.23,

GM = − 1
β
lnZM , (11.62)

as discussed in Appendix G.

From Eq.11.27 the entropy is

S = −(∂GM

∂T
)
p,B0,z

(11.63)

= kBβ2 (∂GM

∂β
)
p,B0,z

(11.64)

= NkB {ln 2 + ln [cosh (βμ½B0,z)] − βμ½B0,z tanh (βμ½B0,z)} . (11.65)
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The entropy is represented in Figure 11.4 below. Note that as βμ½B0,z → 0 the entropy attains its
maximum value Smax = NkB ln 2, reflecting the original zero field two-fold degeneracy of the atom
states.

The relevant heat capacities for paramagnets are those for which B or M are maintained constant.
As can be derived from Eq.11.27 the heat capacity at constant B is

CB = (
∂H

∂T
)
B

(11.66)

or in terms of entropy S

CB = T (∂S
∂T
)
B

. (11.67)

Using Eqs.11.65 and 11.67

CB = NkB (βμ½B0,z)
2
sech2 (βμ½B0,z) , (11.68)

a result which is shown in Figure 11.3. For βμ½B0 << 1 it behaves quadratically

CB ≈ NkB (μ½βB0)
2
. (11.69)

Figure 11.3: Constant field heat capacity CB/NkB vs. βμ½B0.
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The heat capacity at constant M , as derived from Eq.11.27, is

CM = (∂U
∂T
)
M

(11.70)

or

CM = T (∂S
∂T
)
M

. (11.71)

This time Eqs.11.70 and 11.61 are used and obviously give26

CM = 0 (11.72)

Figure 11.4: Entropy vs. βμ½B0.

26Alternatively, the general relation CM − CB = T ( ∂B∂T )M (∂M∂T )B which can be simplified to

CM − CB = −T [(∂M∂T )B]
2 [(∂M

∂B
)
T
]−1 with its more straightforward partial derivatives, confirms the zero

result. Derivation of these results is assigned as a problem.
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11.7 Magnetization fluctuations

Magnetization “fluctuations" ΔM are defined by27

ΔM ≡M − ⟨M⟩ (11.73)

and “mean square magnetic fluctuations" (uncertainty) are

⟨(ΔM)2⟩ = ⟨(M − ⟨M⟩)2⟩ (11.74)

= ⟨M2⟩ − ⟨M⟩2 , (11.75)

where

⟨M2⟩ = −

N

∑
n−,n+

N !

n+!n−!
[μ½ (n+ − n−)]

2
e−β [NE0 + μ½ (n+ − n−)B0,z]

ZM
. (11.76)

Taking this result together with ZM and ⟨M⟩ (as calculated in Eq.11.52), the mean square fluctu-
ations are

⟨M2⟩ − ⟨M⟩2 = 1

β2

∂2

∂B2
0

lnZM (11.77)

= Nμ2
½ sech

2 (βμ½B0) (11.78)

Expressed as dimensionless “root mean square fluctuations"
√
⟨M2⟩ − ⟨M⟩2

⟨M⟩ = 1√
N sinh (βμ½B0.z)

, (11.79)

which decrease rapidly with increasing field B0, decreasing temperature T and with increasing
N .

11.7.1 Example: Adiabatic (isentropic) demagnetization

A paramagnetic needle immersed in liquid He4 initially at temperature T0 > Tλ, is placed in a weak
external field B0 directed along the needle’s long axis.28 The magnetic field is suddenly lowered to
a value B�.

What is the change in temperature of the paramagnetic needle?

This sudden process corresponds to an adiabatic (isentropic) demagnetization – too fast for imme-
diate heat exchange. The solution to the problem is obvious from Eq.11.65 where for any constant
value of S the product βμ½B0 is also constant. Therefore for the adiabatic demagnetization pro-
cess

B0

T
= constant , (11.80)

27Fluctuations are formally associated with thermal state functions that have quantum operator representations.
For example, temperature does not have well defined fluctuations since there is no quantum temperature operator.
See, e.g. C. Kittel, “Temperature Fluctuation: An Oxymoron", Physics Today 41, 93 (1988).

28In this configuration the demagnetization factor η is zero, which simplifies the situation. (See Appendix G.)
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so that as B0 falls, T falls along with it. This is called the magnetocaloric effect.

Alternatively, we can begin with

dT =( ∂T

∂B0
)
S
dB0 + (

∂T

∂S )B0

dS , (11.81)

which for this isentropic process pares down to

dT =( ∂T

∂B0
)
S
dB0 . (11.82)

Applying the cyclic chain rule (see Chapter 4)

( ∂T

∂B0
)
S

= −
( ∂S

∂B0
)
T

(∂S
∂T
)
B0

(11.83)

= − T

CB
( ∂S

∂B0
)
T

. (11.84)

Using the Gibbs potential expression as given in Eq.11.27 and applying Euler’s theorem we have a
Maxwell relation

( ∂S
∂B0

)
T

=(∂M
∂T

)
B0

(11.85)

so that Eq.11.82 is now

dT = − T

CB
(∂M

∂T
)
B0

dB0 . (11.86)

Inserting CB from Eq.11.69 and M from Eq.11.58

dT

T
= dB0

B0
(11.87)

which is integrated to finally give

Tf = (
B�

B0
)T0 , (11.88)

i.e. the needle cools.

11.8 A model for ferromagnetism

In previous sections, paramagnetism is modeled as N independent local magnetic moments. But
in general these moments can interact to produce an internal magnetic field acting in addition to
the external field, resulting in an average total effective field B∗.
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Short-range, nearest-neighbor magnetic moment coupling is frequently described by the Heisenberg
exchange interaction,29

Hex (i, i′) = −
1

2
mop (i)Ki,i′mop (i ′) , (11.89)

where mop (i) is the magnetic moment operator for the ith site and Ki,i ′ is an interaction which
couples the moment at i with the moment at a nearest neighbor site, i′. The macroscopic Heisenberg
hamiltonian30 is taken to be

H = −
N

∑
i=1
B0 ⋅mop (i) −

1

2

N

∑
i=1

z

∑
i′=1

mop (i) ⋅ Ki,i′ ⋅mop (i′) , (11.90)

where z is the total number of nearest neighbor moments. The double sum31 includes only terms
with i ≠ i′.

Apart from in one or two dimensions, this many-body problem has, generally, no analytic solution.
But an approximation – a mean field approximation (MFA)32 – can be applied to replace the
many-body model by an effective “one-body" model and plausibly account for the phenomenon of
ferromagnetism.

11.9 A mean field approximation

In preparation for applying the MFA, rewrite Eq.11.90 as

H = −
N

∑
i=1
{B0 +

1

2

z

∑
i′=1
Ki, i′ mop (i′)} ⋅mop (i) , (11.91)

where, assuming an isotropic system, all z nearest neighbors can be treated as identical, i.e.
Ki,i′ → K.

The essence of a mean field approximation is the identity:

mop (i′)mop (i) = [mop (i′) − ⟨mop⟩] [mop (i) − ⟨mop⟩]
+mop (i′) ⟨mop⟩ + ⟨mop⟩mop (i) − ⟨mop⟩⟨mop⟩ , (11.92)

where ⟨mop⟩ is the average magnetic moment, i.e. the magnetization per site, M/N . The MFA
neglects the first term, i.e. the product of fluctuations around the magnetization, whereas the last
term contributes a constant value. The hamiltonian of Eq.11.91 can then be written in its “mean
field" form33

H = 1

2
zNK⟨mop⟩2 −

N

∑
i=1
{B0 + z ⟨mop⟩K} ⋅mop (i) , (11.93)

29W. Heisenberg, “Mehrkörperproblem und Resonanz in der Quantenmechanik", Zeitschrift für Physik 38, 441,
(1926).

30Curiously, the Heisenberg “magnetic" interaction does not originate from magnetic arguments. Its source is
strictly interatomic electronic interactions, in particular from the electron exchange interaction in the hydrogen
molecule.

31The factor 1/2 compenstates for the ultimate double counting by the sum.
32P Weiss, “L’hypothèse du champ moleculaire et la propriète ferrmognetique", J. Phys. (Paris) 6, 661 (1907).
33The double mean field sum over i and i′ (second and third terms in Eq.11.92), cancels the factor 1

2
.
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which includes the constant term from the MFA (see Eq.11.92). The external field B0 is now
supplemented by an “internal" field, Bint

Bint =z ⟨mop⟩K (11.94)

= z

N
M K (11.95)

so a total “effective" field B∗ at the ith site is

B∗ (i) = B0 (i) + Bint (i) (11.96)

= B0 (i) +
z

N
KM (i) (11.97)

giving rise to a mean field hamiltonian

H = 1

2
M ⋅ Bint −

N

∑
i=1
B∗ (i) ⋅mop (i) . (11.98)

This has the effect of replacing B0 in the paramagnet partition function of Eq.11.51 by B∗, in which
case

ZM∗ = e−
1
2βM ⋅Bint [2 cosh (βμ½B∗)]

N
, (11.99)

with a Gibbs potential34

G̃∗ = − 1
β
lnZM∗ (11.100)

= 1

2
M ⋅ Bint −

N

β
ln (2 coshβμ½B∗) . (11.101)

In the absence of an external field, i.e. B0 = 0, we find from Eqs.11.53, 11.97 and 11.99

M = N μ½ tanh(βμ½
zK
N

M) , (11.102)

which is a transcendental equation in M that describes the possibility of finite magnetization even
in the absence of an external field.

11.10 Spontaneous magnetization

Rewriting the S = 1
2

result, Eq.11.102, as a self-consistent expression in a dimensionless order
parameter M ,

M = M

Nμ½
, (11.103)

34The constant term from the MFA has interesting thermodynamic consequences to be discussed in Appendix G.
(See Eq.G.30).
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Eq.11.102 becomes

M = tanh(Tc

T
M ) , (11.104)

where

Tc =
μ½

2zK
kB

. (11.105)

Tc is called the Curie temperature (see Table 11.1). Solving Eq.11.104 graphically we see that for
T < Tc, M > 0 and magnetic moments spontaneously align (ferromagnetism).

��

Figure 11.5: A graphical solution of the self-consistent equation, Eq.11.104. The sharp decline of
the Order Parameter M as T → T −c (the Curie temperature) is followed by a slope discontinuity
at T = Tc. This is the general characteristic of a magnetic phase transition. When T > Tc the only
solution to Eq.11.104 is M = 0.

For T > Tc, M = 0 and spontaneous alignment is destroyed, characterizing Tc as the “transition
temperature" at which a phase transition from an ordered (M > 0) to a disordered (M = 0) state
takes place.35 (See Figure 11.5.)

35This is referred to as Symmetry Breaking.
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Curie Temperature, K
Fe 1043
Co 1388
Ni 627
Gd 293
Dy 85
CrBr3 37
EuO 77
MnAs 318
MnBi 670
Fe2B 1015
GdCl3 2.2

Table 11.1: Sample values of Curie Temperatures in Ferromagnetic materials.

11.11 Critical exponents

As T approaches Tc with T < Tc, the magnetic order parameter shows the power-law behavior

M ≈ (Tc

T
− 1)

βc

, (11.106)

where βc is called a critical exponent. The value of βc from the MFA is found by first inverting
Eq.11.104

Tc

T
M = tanh−1 M (11.107)

and then expanding tanh−1 M for small M ,

Tc

T
M =M + 1

3
M 3 + . . . , (11.108)

to give

M ≈
√
3(Tc

T
− 1)

1/2

. (11.109)

The S = 1
2

mean field critical exponent is therefore

βc =
1

2
. (11.110)

11.12 Curie-Weiss magnetic susceptibility (T > Tc)

When T > Tc with no external field, i.e. B0 = 0, nearest-neighbor interactions are no longer
sufficient to produce spontaneous magnetization. However, upon re-introduction of an external
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field B0 induced paramagnetic moments will still contribute internal fields, so that within a MFA a
total internal field is again B∗, as in Eq.11.97.

For T >> Tc Eq.11.102 can be expanded36 and solved for ⟨M⟩ to give

⟨M⟩ =
μ2

½

kB
(T − Tc)−1 B0 , (11.111)

where Tc is as defined in Eq.11.105. With a magnetic susceptibility χM defined as37

⟨M⟩ = χMB0 , (11.112)

we have

χM =
μ2

½

kB
(T − Tc)−1 , (11.113)

which is called the Curie-Weiss Law. When T >> Tc this is a satisfactory description for magnetic
susceptibility. But it fails near T ≈ Tc, where the formula displays a singularity.38

The Curie-Weiss law is often expressed in terms of
1

χM
which is (advantageously) linear in T − Tc.

11.12.1 Closing comment

The study of magnetic matter remains a vast and varied topic that drives contemporary research,
both fundamental and applied. The examples discussed in this chapter (paramagnetism and ferro-
magnetism) are but introductory samples of the role played by quantum mechanics in understanding
macroscopic magnetism.

36tanh (x) ≈ x − 1
3
x3.

37Unlike magnetization, magnetic susceptibility has no strict thermodynamic definition. In the case of non-linear
materials an isothermal susceptibility χM = ( ∂M

∂B0
)
T

is a more practical definition.
38Tc experimentally determined from Curie-Weiss behavior is usually higher than Tc determined from the ferro-

magnetic phase transition.



If to any homogeneous mass in a state of hydrostatic stress we suppose an infinitesimal
quantity of any substance to be added, the mass remaining homogeneous and its entropy
and volume remaining unchanged, the increase of the energy of the mass divided by the
quantity of the substance added is the (chemical) potential for that substance in the mass
considered.

J. W. Gibbs,"On the equilibrium of heterogeneous substances",
Trans. Conn. Acad., vol. III, 108-248 (1876)

Chapter 12

Open systems

12.1 Variable particle number

J. W. Gibbs ingeniously extended thermodynamics to include processes involving systems with
variable particle number1,2 – processes that include:

1. Phase transitions: Macroscopic matter transforms – discontinuously – into different physi-
cally distinctive phases, usually accompanied by changes in symmetry and discontinuities in
properties. Examples of phase changes are:

(a) melting: Asolid ⇄ Aliquid;

(b) magnetization: paramagnet⇄ ferromagnet;

(c) evaporation: Aliquid ⇄ Avapour;

(d) sublimation: Asolid ⇄ Avapour;

(e) Normal ⇄ Superconductor;

(f) Normal He4 ⇄ Bose-Einstein condensate .

1Willard Gibbs, “On the equilibrium of heterogeneous substances", Trans. Conn. Acad., vol. III, 343-524 (1878).
2Willard Gibbs, “On the equilibrium of heterogeneous substances", Amer. Jour. of Sci. (3), vol. XVI, 441-458

(1878).
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2. Atoms, molecules or particles combine and recombine as different chemical units:

(a) chemical reactions:

nAA + nBB . . .⇄ nxX + nY Y . . . (12.1)

where nA, nB , . . . , nX , nY , . . . are integer numbers of the chemical participants, A,B, . . . ,X,Y . . .;

(b) fundamental particle interactions – electron-positron annihalation:

e+ + e_ → γ + γ . (12.2)

12.2 Thermodynamics and particle number

The hamiltonians H and state functions ∣Ψ⟩ in Schrödinger’s quantum mechanics define microscopic
dynamics for systems with a fixed number of particles (closed systems). These, so far, have been our
quantum reference in understanding macroscopic systems. However, for many systems or processes
this is physically or mathematically inadequate. By introducing into the hamiltonian a particle
number operator Nop and its eigenvalue equation

Nop∣N̄⟩ = N ∣N̄⟩ (12.3)

with eigenvalues N = 0,1,2, . . . and eigenfunctions ∣N̄⟩, together with a particle number fluctuation
operator defined as

ΔNop = Nop − ⟨Nop⟩ , (12.4)

quantum mechanics (and thermodynamics) can logically and formally be extended to include vari-
able particle number – the defining property of open systems. The number operator is not part of
Schrödinger mechanics but belongs to quantum field theory, a quantum formulation far beyond any
plan for this book. Yet, a number operator and its eigenvalue property (see Eq.12.3) are the basis
of Gibbs’ prescient “Grand Canonical" thermodynamics, a topic discussed and applied in this and
remaining chapters.

12.3 The open system

12.3.1 Formalities

The hamiltonian Ĥop, which constitutes the basis for open system thermodynamics, is

Ĥop = hop − μNop , (12.5)

which now contributes “particle" work dWN = −μ d⟨Nop⟩, where μ is the chemical potential for a
single species. In the case where there are M chemically distinct components,

Ĥop = hop −
M

∑
i

μiN i
op , (12.6)
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where μi is the chemical potential for the ith chemical component.

While not significantly modifying the canonical formalism – in particular the commutation rela-
tion

[ρ̂τop, Ĥop] = 0 (12.7)

is still satisfied – introducing μNop does have formal and thermodynamic consequences.

The single-species open system thermal Lagrangian which incorporates Eq.12.5 now becomes,

L = −kB ∑
N=0,1,2,...

∑
s

{P̂ [εs (N) ,N] ln P̂ [εs (N) ,N]}

− 1

T
∑

N=0,1,2,...
{∑

s

P̂ [εs (N) ,N] [εs (N) −Nμ]} − λ0 ∑
N=0,1,2,...

{∑
s

P̂ [εs (N) ,N]} , (12.8)

where P̂ [εs (N) ,N] is the normalized probability for:

• N particles;

• N -particle eigen-energies εs (N).
The “hat" worn by P̂ distinguishes it from closed system (canonical) probabilities.

Maximizing L with respect to variations in P̂ [εs (N) ,N] gives

P̂ [εs (N) ,N] =
e−β[εs(N)−μN]

∑
N=0,1,2,...

{∑
s
e−β[εs(N)−μN]}

, (12.9)

where the normalizing denominator

Zgr = ∑
N=0,1,2,...

{∑
s

e−β[εs(N)−μN]} (12.10)

is the grand partition function. As in the canonical case, the s-sum covers all N -particle eigen-
states ∣εs (N)⟩ whereas the newly introduced N -sum covers all particle numbers N = 0,1,2, . . . (i.e.
eigenvalues of Nop).

Re-parsing Eq.12.10 we can equivalently write

Zgr = ∑
N=0,1,2,...

eβμN {∑
s

e−β εs(N)} , (12.11)

which emphasizes the underlying form

Zgr = ∑
N=0,1,2,...

eβμNZ (N) , (12.12)

where

Z (N) = ∑
s

e−β εs(N) (12.13)

is an N -particle partition function.
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12.3.2 Grand thermodynamics

1. Average system particle number ⟨Nop⟩,

⟨Nop⟩ =
∑

N=0,1,2,...
N ∑

s
e−β[εs(N)−μN]

∑
N=0,1,2,...

∑
s
e−β[εs(N)−μN]

, (12.14)

is written in terms of Eq.12.10, the grand partition function, as3

⟨Nop⟩ =
1

β
( ∂

∂μ
lnZgr)

T,V

. (12.15)

2. System internal energy U ,

U =
∑

N=0,1,2,...
∑
s
εs (N)e−β[εs(N)−μN]

∑
N=0,1,2,...

∑
s
e−β[εs(N)−μN]

(12.16)

can be rearranged as

U = −( ∂

∂β
lnZgr)

μ,V

+ μ⟨Nop⟩ . (12.17)

3. Assuming a volume dependence εs (N,V ), pressure p is

p =
∑

N=0,1,2,...
∑
s
[−∂εs (N,V )

∂V
] e−β[εs(N,V )−μN]

∑
N=0,1,2,...

∑
s
e−β[εs(N,V )−μN] (12.18)

which in terms of the grand partition function is

p = 1

β
( ∂

∂V
lnZgr)

T,μ
. (12.19)

4. Entropy S,

S = −kB ∑
N=0,1,2,...

∑
s

{P̂ [εs (N) ,N] ln P̂ [εs (N) ,N]} , (12.20)

3⟨Nop⟩ is a continuous state variable.
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becomes, with Eqs.12.9 and 12.10,

S = − kB ∑
N=0,1,2,...

∑
s

{e
−(εs(N)−μN)

Zgr
[− lnZgr − β (εs (N) − μN)]} (12.21)

= − kBβ(−U − 1

β
lnZgr + μ⟨Nop⟩) . (12.22)

Then with Eq.12.17

S = −kBβ2 [ ∂

∂β
( 1
β
lnZgr)

μ,V

] . (12.23)

12.3.3 Grand potential

In addition to the grand partition function an open system grand potential, Ωgr, is defined

Ωgr = −
1

β
lnZgr . (12.24)

Using Ωgr Eq.12.22 can be rearranged as

Ωgr = U − TS − μ⟨Nop⟩ . (12.25)

With the Helmholtz potential F = U − TS we also have

Ωgr = F − μ⟨Nop⟩ (12.26)

and in terms of the Gibbs potential G = U − TS + pV

Ωgr = G − μ⟨Nop⟩ − pV . (12.27)
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Summarizing the grand potential’s role in the thermodynamics of open systems, Eqs.12.15, 12.17,
12.19 and 12.23 can be re-expressed as

⟨Nop⟩ = −(
∂Ωgr

∂μ
)
T,V

,

U = [ ∂

∂β
(βΩgr)]

μ,V

+ μ⟨Nop⟩ ,

p = −(∂Ωgr

∂V
)
T,μ

,

S = kBβ2 (∂Ωgr

∂β
)
μ,V

.

(12.28)

Finally, differentiating Ωgr =Ωgr (T, V, μ) ,

dΩgr = (
∂Ωgr

∂T
)
V,μ

dT + (∂Ωgr

∂V
)
T,μ

dV + (∂Ωgr

∂μ
)
T,V

dμ (12.29)

implies, from Eqs.12.28, the thermodynamic relation

dΩgr = −S dT − p dV − ⟨Nop⟩ dμ . (12.30)

12.3.4 G, Ωgr and Euler homogeneity

Combining Eqs.12.27 and 12.30 the differential of the Gibbs potential is

dG = −S dT + V dp + μ d⟨Nop⟩ (12.31)

so that its natural variables are T, p and ⟨Nop⟩. With ⟨Nop⟩ the only extensive variable among them
we write G (T, ⟨Nop⟩, p) in the Euler form,

G (T, λ⟨Nop⟩, p) = λ G (T, ⟨Nop⟩, p) , (12.32)

indicating that G is homogeneous in ⟨Nop⟩ of degree 1. Applying Euler’s homogeneity theorem (see
Chapter 4) gives

⟨Nop⟩ (
∂G

∂⟨Nop⟩
)
p,T

= G (T, ⟨Nop⟩, p) . (12.33)

But from Eq.12.31

( ∂G

∂⟨Nop⟩
)
p,T

= μ (12.34)

which leads to

G (T, ⟨Nop⟩, p) = μ⟨Nop⟩ . (12.35)
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For a multispecies system, say A1, A2, A3, . . ., this is generalized as

G = ∑
i=1

μAi ⟨Nop⟩Ai . (12.36)

According to Eq.12.30 the natural variables of Ωgr are T,V and μ, of which only V is extensive.
Writing Ωgr =Ωgr (T,V,μ) (see Eq.12.30) in its Euler form

Ωgr (T, λV, μ) = λΩgr (T, V, μ) , (12.37)

indicating that Ωgr is homogeneous in V of degree 1. Applying Euler’s homogeneous function
theorem

V (∂Ωgr

∂V
)
T,μ
=Ωgr , (12.38)

which, upon substituting from Eq.12.28 becomes

Ωgr = −pV . (12.39)

This – as we will see in the next sections – is a useful result for deriving equations of state.

12.4 A “grand" example: the ideal gas

The grand partition function is applied to the ideal gas. Examples are then given that build on the
ideal gas model to further illustrate the “grand" method.

Using results from Chapter 7 together with Eq.12.12,

Zgr = ∑
N=0,1,2,...

eβμNZ (N) (12.40)

= ∑
N=0,1,2,...

eβμN
1

N !
(nQV )N (12.41)

= ∑
N=0,1,2,...

ζN
1

N !
(nQV )N , (12.42)

where

ζ = eβμ (12.43)

is called the fugacity and where, as defined in Chapter 7,

nQ = (
m

2πh̵2β
)
3/2

. (12.44)
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Summing Eq.12.42 gives the ideal gas grand partition function4

Zgr = eζnQV (12.45)

and the ideal gas grand potential

Ωgr = −
ζnQV

β
. (12.46)

12.4.1 Ideal gas thermodynamic properties

1. From Eqs.12.28 and 12.46 the average particle number is

⟨Nop⟩ = ζnQV , (12.47)

which is solved to obtain the ideal gas chemical potential5

μ = 1

β
ln
⟨Nop⟩
nQV

. (12.48)

2. Similarly, from Eq.12.28 the internal energy U is

U = 3⟨Nop⟩
2β

. (12.49)

3. Again using Eq.12.28 the entropy is

S = ⟨Nop⟩ [
5

2
kB − ln

⟨Nop⟩
nQV

] (12.50)

which is the Sakur-Tetrode equation of Chapter 7.

4. Using Eqs.12.35 and 12.48 the Gibbs potential for the ideal gas is

G (T, ⟨Nop⟩, p) =
⟨Nop⟩

β
ln
⟨Nop⟩
nQV

, (12.51)

which is identical with

G (T, ⟨Nop⟩, p) = μ⟨Nop⟩ . (12.52)

4The ideal gas, even in this “grand" picture, is still semi-classical requiring the ad-hoc corrections of Chapter 7.
5Since nQ (the quantum concentration) depends on h̵, even the so-called “classical" ideal gas has a quantum

mechanical marker, suggesting “classical thermodynamics" is an oxymoron.
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5. Finally, using Eq.12.39 and the ideal gas value for Ωgr, i.e. Eq.12.46,

ζnQV

β
= pV , (12.53)

which, with ζ = eβμ and μ from Eq.12.48, gives

pV = ⟨Nop⟩kBT , (12.54)

the ideal gas law.

12.5 Van der Waals’ equation

An ideal gas (classical or quantum) is defined by neglecting interactions between particles. More
realistic models (theoretical or computational simulations) are generally based on pairwise forces
with a long-range attractive and short-range repulsive component. In 1873 van der Waals pursued
these ideas in his Ph.D. thesis, replacing the ideal gas law with a far reaching equation of state that
bears his name.6 For this he was awarded the 1910 Nobel Prize in Physics.

In contrast to an ideal gas, the van der Waals equation postulates an inter-molecular interaction
energy per particle U (r′ − r) that displays “hard core" repulsion as well as a long-range attraction,
as pictured in Figure 12.1. The hard core insures that a gas of atoms or molecules can occupy only
a finite volume.

����

��
�

Figure 12.1: Intermolecular potential.

6The microscopic reality of atoms was still being challenged by influential skeptics.
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Assume an interaction energy

Vint = −
1

2
∫ dr∫ dr′ [ρ (r)U (r′ − r)ρ (r′)] , (12.55)

with the density in units of particle number per unit volume. This many-particle intermolecular
interaction is manageable in the MFA,7,8 in which case

Vint = −
1

2
∫ dr∫ dr′ {2ρ (r′) − ⟨ρ̃⟩} ⟨ρ̃⟩U (r − r′) (12.57)

with ⟨ρ̃⟩ a uniform particle density,

⟨ρ̃⟩ = N

V
. (12.58)

The first term in Eq.12.57 evaluates to

−⟨ρ̃⟩∫ dr∫ dr′ρ (r′)U (r − r′) = − V ⟨ρ̃⟩∫ drU (r)ρ (r) (12.59)

which, with ρ (r) = ⟨Nop (r)⟩/V and assuming gas uniformity, becomes (noting Figure 12.1)

= − 4πN

V
⟨Nop⟩

∞

∫
r0

U (r)r2 dr . (12.60)

Representing the integral as

a = 4π
∞

∫
r0

U (r)r2 dr , (12.61)

and noting that the second term in Eq.12.57 evaluates to an ignorable constant, the mean field
interaction potential is9

Vint = −Na
⟨Nop⟩
V

, (12.62)

and the grand partition function is

Zgr = ∑
N=0,1,2...

e
β [μ + a

⟨Nop⟩
V

]N
Z (N) (12.63)

= exp

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

nQV e
β [μ + a

⟨Nop⟩
V

]
⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

. (12.64)

7The essence of a mean field approximation is the identity:

ρ (x′)ρ (x) = [ρ (x′) − ⟨ρ⟩] [ρ (x) − ⟨ρ⟩] + ρ (x′) ⟨ρ⟩ + ⟨ρ⟩ρ (x) − ⟨ρ⟩⟨ρ⟩ (12.56)

where ⟨ρ⟩ is the average density. The MFA neglects the first term, i.e. fluctuations around the average density.
8Peter Palffy-Muhoray, “The single particle potential in mean field theory", Am. J. Phys. 70, 433-437 (2002).
9This term is the inter-particle contribution to the internal energy.
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From this we find

⟨Nop⟩ =
1

β
( ∂

∂μ
lnZgr)

T,V

(12.65)

= 1

β
( ∂

∂μ
)nQV e

β [μ + a
⟨Nop⟩
V

]
(12.66)

= nQV e
β [μ + a

⟨Nop⟩
V

]
, (12.67)

with the van der Waals chemical potential

μ = −a ⟨Nop⟩
V

+ 1

β
ln
⟨Nop⟩
nQV

. (12.68)

Finally, the pressure is

p = 1
β
( ∂

∂V
lnZgr)

T,μ
(12.69)

=⟨Nop⟩
βV

− a(⟨Nop⟩
V

)
2

, (12.70)

with an equation of state, thus far,

p + a(⟨Nop⟩
V

)
2

= ⟨Nop⟩
βV

. (12.71)

The final step in the van der Waals argument assigns a minimum gas volume Vmin = b⟨Nop⟩ as
the fully packed space occupied by the gas molecules, where b = π

6
r30 is the “hard core" restricted

volume per molecule. Thus, van der Waals’ equation of state becomes

⎡⎢⎢⎢⎢⎣
p + a(⟨Nop⟩

V
)
2⎤⎥⎥⎥⎥⎦
[V − ⟨Nop⟩b] =

⟨Nop⟩
β

. (12.72)

[V − ⟨Nop⟩b] is usually labeled V ∗, the “effective volume".

12.6 A star is born

Star formation takes place inside cold (T ∼ 10 K), dense interstellar regions of molecular hydrogen
(H2), carbon monoxide (CO) and dust, called giant molecular clouds (GMCs). The process of star
formation is one of gravitational collapse, triggered by mutual gravitational attraction within the
GMC, to form a region called a protostar. GMCs have typical masses of 6 × 106 solar masses,
densities of 100 particles per cm3 and diameters of 9.5×1014 km. The process of collapse resembles
a phase transition in that its onset occurs at critical GMC values of temperature (Tc), mass (mc)
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and pressure (pc). Once begun the collapse continues until the GMC is so hot and compact that
nuclear fusion begins and a star is born (≈ 10 − 15 × 106 years).

12.6.1 Thermodynamic model

A thermodynamic model for a GMC is an ideal gas with mutual gravitational attraction between
the gas particles. Were it not for gravitational effects the GMC equation of state would simply
be pV = NkBT . But an attractive gravitational potential (proportional to 1/ ∣r∣) contributes the
additional interaction energy

Vgrav = −
1

2
G ∫ dr∫ dr′ [ρ (r) 1

∣r − r′∣ρ (r
′)] (12.73)

with ρ (r) the mass density of the cloud and G the universal gravitational constant. The many-
particle gravitational interaction is manageable for this application in a mean field approximation
(MFA), in which each particle sees the average potential of all the other particles as an effective
interaction, i.e.

Veff = −
1

2
∫ dr ⟨ρ̃⟩Φ (r) . (12.74)

Applying an MFA (see footnote Eq.12.56) the potential Φ (r) is

Φ (r) = G∫ dr′
{2ρ (r′) − ⟨ρ̃⟩}

∣r − r′∣ , (12.75)

with ⟨ρ̃⟩ a uniform particle mass density

⟨ρ̃⟩ = NmH

V
(12.76)

= 3NmH

4πR3
, (12.77)

and where

ρ (r) =mH⟨Nop (r)⟩/V (12.78)

is the particle density function. Here N is the number of molecules in the GMC, with mH the
mass of a hydrogen molecule (assumed to be the dominant species in the GMC) and V the cloud’s
volume.

Poisson’s equation under the MFA (see Eq.12.75) is

∇2Φ (r) = 4πG{2ρ (r) − ⟨ρ̃⟩} . (12.79)

which suggests Gauss’ gravitational flux law for integrating Eq.12.75. In this “bare bones" model
all GMC radial mass dependence is ignored, the cloud being assumed spherical with uniform den-
sity.10,11 Under this uniformity assumption ρ (r) → ⟨ρ̃⟩ and using Gauss’ flux law

Φ (r) = 2πG

3
⟨ρ̃⟩ (r2 − 3R2) , 0 < r ⪯ R , (12.80)

10This simplification has obvious shortcomings. Nevertheless, main features of gravitational collapse are preserved.
11W.B. Bonnor, “Boyle’s law and gravitational instability", Mon. Notices Roy. Astron. Soc., 116, 351 (1956).



12.6. A STAR IS BORN 181

so that

Veff =
1

2
⟨ρ̃⟩

R

∫
0

dr 4πr2Φ (r) (12.81)

= − 3GM2

5R
(12.82)

= −N mH
3GM

5R
. (12.83)

As in Eq.12.40, a grand partition function may now be written

Zgr = ∑
N=0,1,2,...

e
β [μ + 3mHGM

5R
]N
Z (N) , (12.84)

which from Eq.12.63 is12

Zgr = exp
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
nQV e

β [μ + 3mHGM

5R
]
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

. (12.85)

Using this we find

1. the mean number of hydrogen molecules in the GMC:

⟨Nop⟩ =
1

β
( ∂

∂μ
lnZgr)

T,V

(12.86)

= 1

β
( ∂

∂μ
)nQV e

β [μ +mH (
3GM

5R
)]

(12.87)

= nQV e
β [μ +mH (

3GM

5R
)]

; (12.88)

2. the chemical potential:

μ = −mH (
3GM

5R
) + 1

β
ln
⟨Nop⟩
nQV

; (12.89)

3. the pressure in the GMC:

p = 1

β
( ∂

∂V
lnZgr)

T,μ
, (12.90)

which, with R = (3V
4π
)
1/3

and Eq.12.89, gives the GMC equation of state

p = ⟨Nop⟩kBT

V
− ⟨Nop⟩mH

5
(4π
3
)
1/3

GMV −4/3 . (12.91)

12The factor 3/5 is due to assumed spherical symmetry of the GMC.
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Restoring M = ⟨Nop⟩mH the equation of state becomes

p = ⟨Nop⟩kBT

V
− ⟨Nop⟩2m2

H

5
(4π
3
)
1/3

GV −4/3 . (12.92)

12.6.2 Collapse criterion

A criterion for collapse is that the cloud’s adiabatic compressibility

κS = −
1

V
(∂V
∂p
)
S

(12.93)

= 1

V γ
(∂V
∂p
)
T

, (12.94)

becomes infinite.13 At that critical point the cloud becomes gravitationally unstable, spontaneously
shrinking until some new pressure source (nuclear fusion) overcomes gravity.14 As a first step
towards visualizing Eq.12.92, set γ = 1

5
(4π

3
)1/3. Then form the dimensionless variables

p̂ = (G3M2β4m4
H) p (12.98)

and

V̂ = (GMβmH)−3 V (12.99)

to give a reduced GMC equation of state

p̂ = 1

V̂
− γ

V̂ 4/3
. (12.100)

This is plotted in Figure 12.2. The slope of the curve is zero at V̂c = 0.0794 and p̂c = 3.147, the
reduced coordinates of instability.

13As previously defined, γ = Cp/CV .
14This is equivalent to the Jeans criterion [J. H. Jeans, “The stability of a spherical nebula", Phil. Trans. Royal

Soc.(London). Series A, 199, 1 (1902)] that the velocity of sound cs in the GMC becomes imaginary ! Since the
velocity of sound in a gas is

c2s = KS

ρ
, (12.95)

where KS is the gas’ adiabatic bulk modulus,

KS = −V ( ∂p
∂V
)
S

(12.96)

= γV ( ∂p
∂V
)
T

, (12.97)

and ρ is its density, the Jeans criterion is that the adiabatic bulk modulus (the reciprocal of compressibility) becomes
zero.
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Figure 12.2: Reduced equation of state for GMC. V̂c = 0.0794. p̂c = 3.147.

Alternatively, from Eqs.12.92 and 12.94 the adiabatic compressibility is

kS =
1

γV
[⟨Nop⟩kBT V −2 − 4

15
(4π
3
)
1/3
⟨Nop⟩2m2

H GV −7/3]
−1

(12.101)

so that with ρ = ⟨Nop⟩/V the critical radius for collapse, rc, is

rc = (
45

16π
)
1/2
x
yyz kBT

m2
HGρ

(12.102)

and the critical pressure is

pc =
ρkBT

4
. (12.103)

Star formation is triggered by GMC compression to p ≈ pc by collisions with other GMCs or
compression by a nearby supernova event. Alternatively, galactic collisions can trigger bursts of
star formation as the gas clouds in each galaxy are compressed.

12.7 Closing comment

Beginning with a thermal Lagrangian, Eq.12.8, the grand canonical picture unfolds, introducing the
indispensable chemical potential and bringing a workable methodology to open systems – physical
situations in which particle number is variable and particle interactions can be included. The
next chapter discusses the chemical potential’s role in diffusion within inhomogeneous systems and
extends μ’s application to chemical reactants and distinct physical phases.

Problems and exercises

12.1 Find the internal energy of a van der Waals gas.
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12.2 Find Cp − CV for the van der Waals gas.



Gibbs’ “Equilibrium of Heterogeneous Substances" has practically unlimited scope. It
spells out the fundamental thermodynamic theory of gases, mixtures, surfaces, solids,
phase changes, chemical reactions, electrochemical cells, sedimentation and osmosis. It
has been called, without exaggeration, the Principia of Thermodynamics.

William H. Cropper, “Great Physicists," Oxford University Press US (2004)

Chapter 13

The amazing chemical potential

13.1 Introduction

The chemical potential μ, a creation of J. W. Gibbs,1 is the essential state variable for studying the
thermodynamics of open systems, in particular chemical reactions, phase transitions, non-uniform
systems, surfaces and other cases which can be characterized by varying particle number.2,3,4,5

Although sometimes regarded as vague,6 when Schrödinger’s fixed particle number theory is ex-
tended by including HN = −μNop, μ provides both utility and clarity to these processes. In par-
ticular, thermal Lagrangians can now provide unambiguous rules governing a variety of diffusive
processes.

In order to improve understanding of the thermodynamics of reactions, phase transformations
and heterogeneous diffusion, this chapter includes supplementary examples and applications of the
chemical potential.

1J. W. Gibbs, “A method of geometrical representation of the thermodynamic properties of substances by means
of surfaces", Transactions of the Connecticut Academy (1873).

2G. Cook and R. H. Dickerson, “Understanding the chemical potential", Am.J.Phys. 63, 737Ð42 (1995).
3T. A. Kaplan, “The chemical potential", J. of Stat. Physics. 122, 1237-1260 (2006).
4R Baierlein, “The elusive chemical potential", Am.J.Phys. 69, 423 (2001).
5G. Job and F. Herrmann, “Chemical potential – a quantity in search of recognition", Eur. J. Phys. 27, 353-371

(2006).
6In the preface to Introduction to Solid State Physics (Wiley New York 1971), C. Kittel writes: “A vague dis-

comfort at the thought of the chemical potential is still characteristic of a physics education. This intellectual gap
is probably due to the obscurity of the writings of J. Willard Gibbs who discovered and understood the matter 100
years ago."
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13.2 Diffusive Equilibrium

Consider a single system (equivalently referred to as a phase) at temperature T and pressure p
composed of, say, two distinct species A and B. Allow the species to initially be diffusively isolated
and chemically non-reactive. This species composite can be described in terms of an open system
macroscopic hamiltonian

Ĥcomposite = hop − [μANA
op + μBNB

op] (13.1)

with a corresponding thermal Lagrangian

L = −kBP̂ ln P̂ − λ0P̂ −
1

T
⟨hop⟩ +

1

T
[μA⟨NA

op⟩ + μB⟨NB
op⟩] (13.2)

where, for total species isolation μA ≠ μB . The abbreviations

P̂ ln P̂ = ∑
N=0,1,2,...

{∑
s

P̂ [εs (N) ,N] ln P̂ [εs (N) ,N]} (13.3)

P̂ = ∑
N=0,1,2,...

{∑
s

P̂ [εs (N) ,N]} , (13.4)

imply sums over all species, as does ⟨hop⟩.
If the two species A and B are in complete diffusive contact, at equilibrium the individual ⟨NA

op⟩
and ⟨NB

op⟩ are no longer distinguishable being replaced by the cumulative ⟨Nop⟩ = ⟨NA
op⟩ + ⟨NB

op⟩
and, therefore, by the corresponding thermal Lagrangian

L = −kBP̂ ln P̂ − λ0P̂ −
1

T
⟨hop⟩ +

μ

T
[⟨NA

op⟩ + ⟨NB
op⟩] , (13.5)

i.e., if species A and B freely diffuse, A and B must have the same chemical potential, μA = μB = μ.

13.2.1 Examples

Ideal gas in the Earth’s gravitational field

At a distance z above – but close to – the Earth’s surface, ideal gas molecules experience a quasi-
classical gravitational potential energy per particle PE = mgz. Here g is the Earth’s gravitational
constant and m the molecular mass. As introduced earlier (see Table 5.1 and Chapter 12) a thermal
Lagrangian, and ultimately Zgr, can be written to reflect this additional gravitational potential
(work) contribution:

Zgr = ∑
N=0,1,...

eβ(μN−mgzN)Z (N) , (13.6)

where Z (N) is the N -particle (canonical) partition function for the ideal gas (see Chapter 7)

Z (N) = 1

N !
(nQV )N . (13.7)
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Upon summing N Eq.13.6 becomes

Zgr = exp [eβ(μ−mgz)nQV ] , (13.8)

and then, as also shown in Chapter 12 (see Eq.12.15), the average particle number at a distance z > 0
above the Earth’s surface is

⟨Nop (z)⟩ =
1

β
( ∂

∂μ
lnZgr)

T,V

(13.9)

= 1

β
( ∂

∂μ
) eβ(μ−mgz)nQV (13.10)

= eβμe−βmgznQV . (13.11)

The chemical potential of gas molecules at any height z is, therefore,

μ (z) = 1

β
ln
⟨Nop (z)⟩

nQV
+mgz . (13.12)

Gas particles (at height z) can freely diffuse to any adjacent level, say z ±Δz, so that in diffusive
equilibrium μ must be uniform throughout the atmosphere, i.e. independent of z. At ground level,
i.e. z = 0, the chemical potential for ideal gas molecules is

μ (0) = 1

β
ln
⟨Nop (0)⟩

nQV
, (13.13)

so in diffusive equilibrium Eqs.13.12 and 13.13 are equated to give

⟨Nop (z)⟩ = ⟨Nop (0)⟩e−βmgz , (13.14)

the well-known “barometric" equation.

Charged ideal gas between capacitor plates

Ideal gas molecules, each with charge q, lie between a pair of large, parallel capacitor plates placed
a distance d apart and charged to a potential V = Ex d, where Ex is a uniform electric field between
the plates. An electric potential energy per particle, PE = −qxEx adds, quasi-classically, to the
N -particle ideal gas eigen-energies so that, as in Eq.13.11, the number of charged molecules a
distance x from the positive plate is

⟨Nop (x)⟩ = eβμeβqxExnQV . (13.15)

Solving for the chemical potential,

μ (x) = 1

β
ln
⟨Nop (x)⟩

nQV
− q xEx . (13.16)

When x = 0 (the positive plate),

μ (0) = 1

β
ln
⟨Nop (0)⟩

nQV
. (13.17)
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For diffusive equilibrium, in the region between the plates μ is independent of x and

⟨Nop (x)⟩ = ⟨Nop (0)⟩eβqxEx . (13.18)

At x = d, i.e. the negative plate,

⟨Nop (d)⟩ = ⟨Nop (0)⟩eβqV , (13.19)

where V = Ex d is the electric potential difference between the plates.

Ideal gas in a rotating cylinder

Ideal gas particles, mass m, in a cylinder rotating with angular frequency ω, acquire a rotational
potential energy per particle (in the rotating frame) which, quasi-classically, is PErot = −1

2
mω2r2.

Here r is a particle’s radial distance from the cylinder axis. The grand partition function is

Zgr = ∑
N=0,1,...

eβ(μ+
1
2mω2r2)NZ (N) , (13.20)

where Z (N) is, as in Eq.13.7, the N -particle ideal gas partition function. After summing N , the
average particle number at a distance r from the axis of rotation is

⟨Nop (r)⟩ =
1

β
( ∂

∂μ
lnZgr)

T,V

(13.21)

= 1

β
( ∂

∂μ
) eβ(μ− 1

2mω2r2)nQV (13.22)

= eβμe
β
2 mω2r2nQV . (13.23)

Hence, the chemical potential at r is

μ (r) = 1

β
ln
⟨Nop (r)⟩

nQV
− 1

2
mω2r2 , (13.24)

whereas the chemical potential at r = 0 is

μ (0) = 1

β
ln
⟨Nop (0)⟩

nQV
. (13.25)

In diffusive equilibrium μ must be uniform throughout the cylinder, i.e. independent of r, giving
the radial distribution of particles in a centrifuge

⟨Nop (r)⟩ = ⟨Nop (0)⟩ exp(
β

2
mω2r2) . (13.26)

13.3 Thermodynamics of chemical equilibrium

Consider the concrete example of a system at temperature T containing three species A, B and
AB. Initially allow all three species to be non-interacting so that a thermal Lagrangian is

L = −kBP̂ ln P̂ − λ0P̂ −
1

T
⟨hop⟩ +

1

T
[μA⟨NA

op⟩ + μB⟨NB
op⟩ + μAB⟨NAB

op ⟩] , (13.27)
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where μA, μB and μAB are the chemical potentials for each of the isolated species.

Now let the species react according to the chemical equation

A +B ⇆ AB . (13.28)

In such a chemical reaction all reactants and products coexist with small fluctuations about mean
equilibrium concentrations of the participants.7 This balanced chemical equation defines “atom"
diffusion such that at equilibrium only the average sums

⟨NA
op⟩ + ⟨NAB

op ⟩ = νA (13.29)

and

⟨NB
op⟩ + ⟨NAB

op ⟩ = νB (13.30)

are still identifiable (atom conservation). These constraints coordinate with a diffusive equilibrium
condition

μA + μB = μAB (13.31)

to give the thermal Lagrangian

L = −kBP̂ ln P̂ − λ0P̂ −
1

T
⟨hop⟩ +

1

T
[μA (⟨NA

op⟩ + ⟨NAB
op ⟩) + μB (⟨NB

op⟩ + ⟨NAB
op ⟩)] . (13.32)

As a second example consider a hypothetical reaction among the diatoms A2, B2 and the molecule
AB,

A2 +B2 ⇆ 2AB . (13.33)

Assuming uniform reaction temperature T and pressure p, consider the chemical species as initially
non-reactive. In that case the thermal Lagrangian is

L = −kBP̂ ln P̂ − λ0P̂ −
1

T
⟨hop⟩ +

1

T
[μA2⟨NA2

op ⟩ + μB2⟨NB2
op ⟩ + μAB⟨NAB

op ⟩] . (13.34)

According to Eq.13.33 the atom-reaction constraints for this case are

⟨NA2
op ⟩ +

⟨NAB
op ⟩
2

= νA (13.35)

and

⟨NB2
op ⟩ +

⟨NAB
op ⟩
2

= νB , (13.36)

7There are a few rare chemical reactions where concentrations of reactants and products oscillate in time so that
“equilibrium" is never attained.
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where νA and νB are the still identifiable equilibrium atom numbers (atom conservation). These
reaction constraints coordinate with chemically reactive equilibrium

μA2 + μB2 = 2μAB , (13.37)

resulting (see Eq.13.34) in the thermal Lagrangian

L = −kBP̂ ln P̂ − λ0P̂ −
1

T
⟨hop⟩ +

1

T
[μA2 (⟨NA2

op ⟩ +
1

2
⟨NAB

op ⟩) + μB2 (⟨NB2
op ⟩ +

1

2
⟨NAB

op ⟩)] . (13.38)

These results can be generalized to any chemical reaction, e.g.

a1 A1 + a2 A2 + a3 A3⇆ z1 Z1 + z2 Z2 + z3 Z3 , (13.39)

in which case the atom reaction constraints are

⟨NA1
op ⟩ +

a1
z3
⟨NZ3

op ⟩ = νa1 , (13.40)

⟨NA2
op ⟩ +

a2
z3
⟨NZ3

op ⟩ = νa2 , (13.41)

⟨NA3
op ⟩ +

a3
z3
⟨NZ3

op ⟩ = νa3 , (13.42)

⟨NZ1
op ⟩ −

z1
z3
⟨NZ3

op ⟩ = νz1 , (13.43)

⟨NZ2
op ⟩ −

z2
z3
⟨NZ3

op ⟩ = νz2 , (13.44)

where νa1
, νa2

, νa3
, νz1 and νz2 are still identifiable atom numbers in accord with the chemically

diffusive equilibrium condition

a1 μ
A1 + a2 μ

A2 + a3 μ
A2 − z1 μ

Z1 − z2 μ
Z2 − z3 μ

Z3 = 0 (13.45)

to generate the thermal Lagrangian

L = −kBP̂ ln P̂ − λ0P̂ −
1

T
⟨hop⟩

+ 1

T
[μA1 (⟨NA1

op ⟩ +
a1
z3
⟨NZ3

op ⟩) + μA2 (⟨NA2
op ⟩ +

a2
z3
⟨NZ3

op ⟩) + . . . + μZ2 (⟨NZ2
op ⟩ −

z2
z3
⟨NZ3

op ⟩)] .

(13.46)

13.4 A law of mass action

Chemical reactions such as (hypothetically) defined in Eqs.13.28, 13.33, 13.39 do not usually go to
completion. A sealed reaction “vessel" contains an equilibrium mixture of reactants and products.
For example, the gaseous reaction

3H2 + N2 ⇆ 2NH3 (13.47)
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in which at thermal equilibrium

3μH2 + μN2 − 2μNH3 = 0 , (13.48)

yields only a small amount of NH3 (ammonia), with reactants H2 and N2 still having a substantial
presence. The equilibrium concentrations of reactants and products in the closed reaction “vessel"
is, however, well described by a “law of mass action" which is arrived at by first exponentiating
Eq.13.48

exp (3μH2) × exp (μN2)
exp (2μNH3) = 1 (13.49)

or

[exp (μH2)]3 × [exp (μN2)]
[exp (μNH3)]2

= 1 . (13.50)

Continuing in the spirit of the example, assume all participating gases g are ideal and at suffi-
ciently low temperature that no internal modes of the reactive molecules (rotational, vibrational or
electronic) are excited. In which case

βμ(g) = ln
⎡⎢⎢⎢⎢⎣

C (g)

n
(g)
Q

⎤⎥⎥⎥⎥⎦
(13.51)

= ln
⎧⎪⎪⎨⎪⎪⎩
[ m(g)

2πh̵2β
]
−3/2

C (g)
⎫⎪⎪⎬⎪⎪⎭

, (13.52)

where m(g) is the molecular mass of the gas g and

C (g) = ⟨N
(g)
op ⟩
V

(13.53)

is the gas concentration. From this and Eq.13.50 follows a typical “mass action" result

[C NH3]2

[C H2]3 [C N2]
=
{nH2

Q }
3 {nN2

Q }

{nNH3

Q }2
(13.54)

=K (T ) , (13.55)

where K depends only on T . Specific mass action constants K are associated with different
chemical reactions or molecular models. If, for example, in the previous model temperature is raised
sufficiently to excite molecular rotational and vibration (internal modes) the N -particle canonical
partition function becomes

⌣

Z (N) = 1

N !
[Zint]N [nQV ]N (13.56)
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where Zint is the partition function for the internal (rotational and vibrational) modes. In that case
we redefine nQ for the molecular gas g

n
(g)
Q → Z

(g)
int n

(g)
Q = n

(g)
int (13.57)

so that the mass action expression becomes

[C NH3]2

[C H2]3 [C N2]
=Kint (T ) , (13.58)

where

Kint (T ) =
{nH2

int}
3 {nN2

int}

{nNH3

int }
2

. (13.59)

13.5 Thermodynamics of phase equilibrium

A phase is a chemically and physically uniform macroscopic state of matter. Vapor, liquid and
solid are among the familiar examples of phases. Other examples include different coexisting crystal
structures with the same chemical composition or the more exotic He4 −Bose-Einstein condensate
phases. Phase equilibrium describes a situation in which two or more homogeneous regions (phases)
coexist in thermodynamic equilibrium within a rigid container but are separated by physical bound-
aries. An example are the three phases of H2O – ice, liquid water and water vapor – in which any
two or all three can coexist. Distinct phases may also exist within a given state, such as in solid iron
alloys and in the several phases that can coexist for liquid states. Those phases that are possible
depend on temperature and pressure. If two coexisting phases, designated α and β, composed of a
single species, freely exchange particles at temperature T within a fixed volume (V α + V β), then a
thermal Lagrangian is8

LE,N,V = −kB [P̂α ln P̂α + P̂β ln P̂β] − λ0αP̂α − λ0βP̂β

− 1

T
[⟨hα

op⟩ + ⟨hβ
op⟩] −

1

T
⟨pop⟩ (V α + V β) + μ

T
[⟨Nα

op⟩ + ⟨N β
op⟩] , (13.60)

with

Tα = Tβ = T ,

μα = μβ = μ ,

⟨pα
op⟩ = ⟨pβ

op⟩ = ⟨pop⟩ .
(13.61)

13.6 Gibbs-Duhem relation

Long before his monumental treatise on statistical mechanics Gibbs had already extended the
fundamental equation of thermodynamics to include particle transfer. For a single phase and a

8Mechanical energy, pV , is included in the Lagrangian.
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single species the fundamental equation becomes

T dS = dU + p dV − μ d⟨Nop⟩ . (13.62)

When U is expressed in terms of its natural variables

U = U (S, V, ⟨Nop⟩) (13.63)

all of which are extensive, then in the Euler form

U (λS, λV, λ⟨Nop⟩) = λU (S, V,N) , (13.64)

Euler’s homogeneous function theorem gives

S (∂U
∂S )V,⟨Nop⟩

+ V (∂U
∂V
)
S,⟨Nop⟩

+⟨Nop⟩ (
∂U

∂⟨Nop⟩
)
V,S
= U (S, V, ⟨Nop⟩) . (13.65)

Comparing this with Eq.13.62, the fundamental equation is effectively integrated to get

U − TS + V p − μ⟨Nop⟩ = 0 . (13.66)

Taking the total differential

dU − T dS − S dT + V dp + p dV − μ d⟨Nop⟩ − ⟨Nop⟩ dμ = 0 (13.67)

and combining it with the fundamental equation Eq.13.62, we have for a single phase with one
species

−S dT + V dp − ⟨Nop⟩ dμ = 0 . (13.68)

This is called the Gibbs-Duhem equation. In the case of a single phase with M species Gibbs-Duhem
becomes

−S dT + V dp −
M

∑
i

⟨Nop⟩i dμi = 0 , (13.69)

showing that intensive variables T, p, μi are not independent.

13.7 Multiphase equilibrium

Gibbs-Duhem opens the door to basic understanding of coexistence between different phases, such
as between liquid water and water vapor, or between ice and liquid water, etc.

Begin by rewriting Eq.13.68 in the form

dμ = −s dT+v dp (13.70)

where intensive quantities

s = S
⟨Nop⟩

v = V

⟨Nop⟩
(13.71)
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have been defined. Taking advantage of p and T as natural variables of μ, for two phases, α and β,
at the same T and p and composed of only a single species (pure phases), the chemical potentials
are

μ(α) = μ(α) (p, T ) , (13.72)

μ(β) = μ(β) (p, T ) . (13.73)

If these phases are to coexist, then

μ(α) (p, T ) = μ(β) (p, T ) , (13.74)

which is a “system" of one equation with two unknowns, T and p. Although there is no unique
solution, T can be found in terms of p so that the α and β phases can coexist along some curve in
the {p, T}-plane.

Now suppose there are three pure phases, α, β and γ. Then for coexistence between the three
phases

μ(α) (p, T ) = μ(β) (p, T ) , (13.75)

μ(α) (p, T ) = μ(γ) (p, T ) , (13.76)

which is a “system" of two equations and two unknowns with a unique solution – a single point in
the {p, T}-plane. The three phases can coexist at what is called a triple point.9 Figure 13.1 is an
example of a phase diagram for a single component system, e.g. water10 in which temperature and
pressure form the coordinate axes. As shown in the diagram, only certain phases are possible at a
particular temperature and pressure, with each phase separated from the others by a curve in the
{p, T} plane called a phase boundary which indicates the values of T and p along which two phases
can coexist.

9Triple point of water: Ttp = 273.16 K, ptp = 0.00604 atm (1 atm = 101.3 k Pa).
10The experimental solid-liquid boundary for water has an anomalous negative slope so the diagram is only an

approximate representation for water. This is due to the peculiarity of ice being less dense than liquid water.
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dp/dT co
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Figure 13.1: Single-species phase diagram. The point where the solid-liquid and liquid-vapor phase
lines meet is called the triple point. At that point all three phases – solid, liquid and vapor – can
coexist.

A unique coexistence property is the point at which the phase boundary between liquid and vapor
abruptly disappears. This is called a critical point. Beyond this point liquid phase and vapor phase
lose their usual meaning, becoming instead a supercritical fluid having properties of both vapor and
liquid.11

13.8 The Clausius-Clapeyron equation

For the case of two coexisting pure phases α and β (μ(α) = μ(β)), Gibbs-Duhem gives

−s(α) dT + v(α) dp = −s(β) dT + v(β) dp , (13.77)

so that the slope of a coexistence curve is (see Figure 13.1)

[ dp

dT
]
coexistence

= s
(α) − s(β)

v(α) − v(β)
(13.78)

=Δs

Δv
, (13.79)

11Critical point of water: Tc = 647 K, pc = 217.7 atm. Critical point of CO2: Tc = 304 K, pc = 72.8 atm.
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which is called the Clausius-Clapeyron equation. As a concrete example that relates to Figure 13.1
let α ≡ � (liquid phase), and β ≡ g (gas phase). Then Δs is the liquid-gas entropy difference per
particle and Δv is the liquid-gas volume difference per particle. Moreover

Δs = Qvap

⟨Nop⟩T
, (13.80)

where Qvap/⟨Nop⟩ is the heat of vaporization per particle,12 so that

[ dp

dT
]
coexistence

= Qvap

T ⟨Nop⟩Δv
. (13.81)

In general
Qvap

T ⟨Nop⟩Δv
is not a simple function of p and T so that integrating Eq.13.81 to obtain

the vapor pressure may not be straightforward. On the other hand, assuming an ideal gas phase
and since, in general, v(gas) >> v(�), the differential equation simplifies to

[ dp

dT
]
coexistence

= pQvap

kBT 2
. (13.82)

Since generally v(solid) < v(�) for most systems, as suggested in Figure 13.1, the solid-liquid co-
existence curve is nearly vertical but positively sloped. In the unusual case of water for which
v(solid) > v(�) the curve is also nearly vertical, but now slightly negatively sloped.

13.9 Surface adsorption: Langmuir’s model

In the process of film growth or surface doping, atoms or molecules in gas phase or in dilute solution,
bind to the film surface (Figure 13.2). A theory of solid surface coverage by these molecules was
formulated by Irving Langmuir (1916), the acknowledged pioneer of surface chemistry.

Assumptions of the model are as follows.

1. The solid surface is in contact with ideal monatomic gas atoms at temperature T and pressure
p0.

2. There are a fixed number of sites N on the surface available for bonding.

3. Each surface site can be only singly occupied (monolayer coverage).

4. Adsorption at a given site is independent of occupation of neighboring sites (no interactions).

5. A gas molecule bound to the surface has the non-degenerate eigen-energy

Ebound = − ∣ε∣ (13.83)

with respect to the energy of a free gas atom.

6. The energy difference between adsorbed gas atoms and free gas atoms is independent of surface
coverage.

12The heat required to evaporate one particle.
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7. Atoms bound to the surface (Abd) are in thermal and diffusive (phase) equilibrium with gas
atoms (Agas) as described by the reaction

Agas ⇆ Abd . (13.84)

With Langmuir’s model the fractional surface coverage

θ =
⟨N bd

op ⟩
Nmax

(13.85)

can be determined, where ⟨N bd
op ⟩ is the average number of gas atoms bound to Nmax accessible solid

surface sites.

Diffusive (phase) equilibrium in the surface phenomenon of Eq.13.84 is described by the thermal
Lagrangian

LE,N = −kB [P̂bd ln P̂bd + P̂gas ln P̂gas] − λ0bdP̂bd − λ0gasP̂gas

− 1

T
[⟨hbd

op⟩ + ⟨hgas
op ⟩] −

μ

T
[⟨N bd

op ⟩ + ⟨N gas
op ⟩] , (13.86)

which correlates with

μgas = μbd = μ , (13.87)

where μbd is the chemical potential of atoms bound to surface sites and μgas is the chemical potential
for ideal gas atoms.

Figure 13.2: Gas molecules interacting with solid surface.

Finding the average number of atoms bound to surface sites ⟨N bd
op ⟩ follows discussions in Chapter 12

where it was shown that

⟨N bd
op ⟩ =

Nmax

∑
N=0

∑
s
Ne−β{[Es(N)]−μbdN}

Nmax

∑
N=0

∑
s
e−β{[Es(N)]−μbdN}

, (13.88)
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with the number of bound atoms limited by Nmax and where Es (N) = −N ∣ε∣. The denominator in
Eq.13.88 is the grand partition function Zgr,

Zgr =
Nmax

∑
N=0

eβμbdNZ (N) , (13.89)

where Z (N) is the partition function for N -bound atoms

Z (N) = g (N,Nmax) eNβ∣ε∣ . (13.90)

Since the bound atom’s only eigen-energy (see Eq.13.83) has the configurational degeneracy

g (N,Nmax) =
Nmax!

(Nmax −N)!N !
(13.91)

the grand partition function is

Zgr =
Nmax

∑
N=0

Nmax!

(Nmax −N)!N !
eNβ(μbd+∣ε∣) (13.92)

= [1 + eβ(μbd+∣ε∣)]Nmax (13.93)

and the fractional surface coverage is (see Eq.13.88)

θ =
⟨N bd

op ⟩
Nmax

(13.94)

= 1

Nmax
× 1

β

∂

∂μbd
lnZgr (13.95)

= eβμbdeβ∣ε∣

1 + eβμbdeβ∣ε∣
. (13.96)

The ideal gas in contact with the surface has the chemical potential (see Eq.12.48)

μgas =
1

β
ln
⟨N gas

op ⟩
nQV

. (13.97)

Equating the chemical potentials (see Eq.13.87) (diffusive equilibrium) and using the ideal gas

equation of state p0V =
⟨N gas

op ⟩
β

gives the Langmuir fractional surface coverage

θ = p0
Π0 + p0

, (13.98)

where Π0 is the temperature-dependent factor

Π0 =
nQ e−β∣ε∣

β
. (13.99)

This is known as the Langmuir isotherm.
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13.10 Dissociative adsorption

A diatomic gas molecule, say A2, may not simply bind to a surface site, but may dissociate, with
each component atom binding to a single site. This is referred to as dissociative adsorption and is
described by the “chemical reaction"

A2 ⇆ 2Abound . (13.100)

Therefore, the thermal equilibrium chemical potentials satisfy

μA2 − 2μA = 0 , (13.101)

where μA2 is the chemical potential of the ideal diatomic gas and μA is the chemical potential
of surface bound atoms. The ideal diatomic gas in contact with the surface has the chemical
potential

μA2 =
1

β
ln
⟨NA2

op ⟩
nA2

intV
, (13.102)

which includes the effect of internal (rotational and vibrational) modes (see Eq.13.56). Once again
taking Ebound = − ∣ε∣ the fractional surface occupation is, according to Eq.13.96,

θ = eβμAeβ∣ε∣

1 + eβμAeβ∣ε∣
. (13.103)

Now applying Eq.13.101 the surface coverage is

θ = e(1/2)βμA2 eβ∣ε∣

1 + e(1/2)βμA2 eβ∣ε∣
. (13.104)

Using the ideal gas result, Eq.13.102, we finally have

θ =
√
p

ΠD +
√
p
, (13.105)

where p is the gas pressure and the Langmuir isotherm is

ΠD =

x
yyznA2

int

β
e−β∣ε∣ . (13.106)

13.11 Crystalline bistability

In an ordered crystal it is common for atoms to be bistable, i.e. atoms at normal crystalline sites
can migrate to “abnormal" sites (usually accompanied by a lattice distortion), where they have a
different binding energy. If a crystal at a temperature T has “normal" sites and “displaced" sites,
the latter lying on an interstitial sublattice (see Figure 13.3), after a long time a certain fraction of
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the atoms will occupy “displaced" sites. Since the total number of atoms – normal plus defect – is
conserved, the atom constraint is

⟨N norm
op ⟩ + ⟨N dis

op ⟩ = Nnormal (the total number of normal sites) . (13.107)

The migration process can be interpreted as the “chemical reaction"

Anorm ⇆ Adis . (13.108)

Figure 13.3: Lattice atoms migrating from “normal" to “displaced" sites.

Following details of Langmuir’s model and assuming:

1. an equal number of “normal" and “displaced" sites, Ns;

2. “displaced" atoms have energy ε0 > 0 with respect to “normal" sites;

3. only single occupancy of “normal" and “dispaced" sites is permitted;

the grand partition function for single occupancy of a “normal" site is

Znorm
gr =

Ns

∑
N=0

eNβμn { Ns!

(Ns −N)!N !
} (13.109)

= (1 + eβμn)Ns
, (13.110)

while the grand partition function for single occupancy of a “displaced" site is

Zinter
gr =

Ns

∑
N=0

eNβμdis { Ns!

(Ns −N)!N !
eNβε0} (13.111)

= (1 + eβε0eβμdis)Ns
. (13.112)

From grand partition functions, Eqs.13.110 and 13.112,

⟨N norm
op ⟩ = 1

β

∂

∂μnorm
lnZnorm

gr (13.113)

= Ns
λnorm

1 + λnorm
(13.114)
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and

⟨N dis
op ⟩ =

1

β

∂

∂μdis
lnZdis

gr (13.115)

= Ns
λdise

−βε0

1 + λdise−βε0
, (13.116)

where

λnorm = eβμnorm (13.117)

and

λdis = eβμdis . (13.118)

At thermal equilibrium

μnorm = μdis (13.119)

or

λnorm = λdis = λ . (13.120)

Applying Eq.13.107 (Nnormal = Ns) together with Eqs.13.114, 13.116, 13.120,

dis

s

Figure 13.4: Fractional occupation number of displaced sites.

λ

1 + λ
+ λe−βε0

1 + λe−βε0
= 1 , (13.121)
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we find

λ = eβε0/2 . (13.122)

Therefore, according to Eq.13.116 the average fractional occupation of “displacement" sites is

⟨N dis
op ⟩
Ns

= 1

1 + exp (βε0/2)
(13.123)

as shown in Figure 13.4.

Problems and exercises

13.1 An absorbed surface layer of atoms uniformly covers an area A. The atoms, although free to
move, interact with a two-dimensional potential V (ρ) where ρ is the interatomic separation.
(See Figure 13.5.)

Find the surface pressure pS of this two-dimensional gas as a function of atom density
n = ⟨Nop⟩/A up to order n2.

ρ

ρ

Figure 13.5: Two-dimensional potential.

13.2 Atoms are bound to solid surface sites with binding energy ε0 relative to vapor (free, ideal
gas) atoms with which they are in equilibrium. Bound atoms are modeled as two-dimensional
Einstein oscillators with frequency ω0 so that the eigen-energies of the αth bound surface atom
are

E = −ε0 + h̵ω0 (nα,x + nα,y) , (13.124)

where nα,x, nα,y = 0,1,2,3, . . . ,∞.
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a Find the grand potential Ω that describes bound surface atoms.

b Find the chemical potential μ for the bound surface atoms.

c Find an expression for the pressure of the ideal gas vapor that is in equilibrium with surface
atoms.

13.3 A particular mesh surface is employed as a catalyst for removal of ozone O3 from exhaust
gases by converting it to oxygen molecules O2 according to the reaction

2O3 ⇄ 3O2 . (13.125)

If the binding energy of an oxygen molecule to a surface site is EB = −ε and the ozone pressure
is pO3 , what is the covering fraction

θ = ⟨nO2⟩
N

, (13.126)

where ⟨nO2⟩ is the average number of oxygen molecules bound to the surface per unit area
and N is the number of possible O2 binding sites per unit mesh area?
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A new scientific truth does not triumph by convincing its opponents and making them see
the light, but because its opponents eventually die, and a new generation grows up that is
familiar with it.

Max Planck, “Scientific Autobiography and Other Papers",
Copyright: Philosophical Library.

Chapter 14

Thermodynamics of radiation

14.1 Introduction

In 1900 Max Planck discovered that the temperature-dependent law of radiating bodies could not be
derived solely from Maxwellian electrodynamics according to which the energy of an electromagnetic
field is1

E = 1

2
∫ dx [E (x, t)2 + B (x, t)2] . (14.1)

Planck arrived, instead, at results consistent with the relevant electromagnetic experiments by treat-
ing radiation of a given frequency ν as though it consisted of “packets" of energy – “photons" – each
with energy hν, with a corresponding electromagnetic field energy

EPlanck = nhν , (14.2)

where n = 0,1,2, . . . is the number of “photons" in the packet and h is Planck’s universal con-
stant.

Planck’s hypothesis2 was the initial link in the chain of 20th-century discoveries that is quantum
physics.

1In rationalized c.g.s. units.
2Likely inspired by Boltzmann’s concept of “microstates".

205
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14.2 Electromagnetic eigen-energies

Proceeding directly to the thermodynamics of radiation, Eq.14.2 is replaced by the electromagnetic
quantum eigen-energies for photons of a single mode k having polarization λ

Ek,λ = hνk,λ [n (k, λ) +
1

2
] , (14.3)

where n (k, λ) = 0,1,2, . . . is the number of photons. k and λ are quantum numbers for a single
photon of frequency νk,λ.3

Photons are fundamental, particle-like “excitations" of the electromagnetic field. They have zero
mass and are their own antiparticle. They can be created and absorbed (destroyed) without number
conservation and therefore have zero chemical potential. They appear in an almost limitless variety
of atomic, molecular or nuclear processes as well as continuous radiation (synchrotron radiation) as-
sociated with kinematic acceleration of particles. The photon carries “spin" angular momentum ±h̵
corresponding to right and left circular polarization.

The Maxwellian total electromagnetic energy (see Eq.14.1) is similarly replaced by the quantum
average

⟨HEM ⟩ = ∑
λ=1,2

∑
k

hνk,λ [⟨nop (k, λ)⟩ +
1

2
] (14.4)

where HEM is the electromagnetic hamiltonian,

HEM = ∑
λ=1,2

∑
k

hνk,λ [nop (k, λ) +
1

2
] . (14.5)

The “photon" mode number operator nop (k, λ) is identified by a three-component wave vector
k, with k ≡ kx, ky, kz, and two mutually perpendicular polarization directions λ ≡ λ1, λ2. The
eigenvalues of nop (k, λ) are n (k, λ) = 0,1,2, . . . and ⟨nop (k, λ)⟩ is the average number of photons in
the mode k, λ. The wave vector k is the direction of propagation of the photon and the polarization
λ is the vector direction of the concurrent electric field E (see Figure H.1). In free space the two-
component polarization vector is perpendicular (transverse) to k. This follows from the Maxwell
equation4 ∇ ⋅ E = 0. For electromagnetic radiation in free space, the energy of a photon associated
with a particular mode (k, λ) is

hνk,λ =
h

2π
c ∣k∣ , (14.6)

which depends only on the magnitude ∣k∣ and is independent of the polarization λ. Here c is
the speed of light in vacuum. As indicated in Appendix H, in free space ⟨nop (k, λ)⟩, the aver-
age number of photons in the mode (k, λ), also depends only on ∣k∣ and is independent of the
polarization λ.

3Arriving at Planck’s result from Maxwell’s equations is the realm of quantum field theories, the details of which
are well beyond the scope of this book. Nevertheless, for completeness an outline of the method is discussed in
Appendix H.

4Since there is no analog to this Maxwell equation in crystalline elastic equations of motion, there remain three
phonon polarization components.
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14.3 Thermodynamics of electromagnetism

Based on macroscopic electromagnetic eigen-energies given by Eq.14.3 (see Appendix H), a thermal
electromagnetic Lagrangian LEM is constructed:

LEM = −kB ∑
nk,λ

P (nk,λ) lnP (nk,λ) − λ0 ∑
nk,λ

P (nk,λ) (14.7)

− 1

T
∑
nk,λ

P (nk,λ) ∑
k

λ=1,2

{hνk,λ (nk,λ +
1

2
)} ,

where P (nk,λ) is the probability that nk,λ photons are in the mode k with polarization λ. The
sum

∑
nk,λ

(14.8)

ranges over nk,λ = 0,1,2, . . . for each mode k and both polarizations (λ = 1,2). The Lagrange multi-
plier λ0 assures normalized probabilities. Following familiar procedures, we find from Eq.14.7

P (nk,λ) =

exp

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−β ∑

k
λ=1,2

hνk,λ (nk,λ +
1

2
)
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

∑
nk,λ

exp

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−β ∑

k
λ=1,2

hνk,λ (nk,λ +
1

2
)
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

, (14.9)

where the normalizing denominator is the thermal equilibrium electromagnetic partition func-
tion,

ZEM = ∑
nk,λ

exp

⎧⎪⎪⎨⎪⎪⎩
−β ∑

λ=1,2
∑
k

hνk,λ (nk,λ +
1

2
)
⎫⎪⎪⎬⎪⎪⎭
. (14.10)

14.3.1 Thermodynamics for a single photon mode

To simplify evaluation of Eq.14.10 we first examine the partition function for a single mode kα

Zα
EM = ∑

nkα,λ=0,1,2,3...
exp

⎧⎪⎪⎨⎪⎪⎩
−β ∑

λ=1,2
hνkα,λ (nkα,λ +

1

2
)
⎫⎪⎪⎬⎪⎪⎭
, (14.11)

where

∑
nkα,λ=0,1,2,3,...

(14.12)
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is the sum over all integer photon numbers for a single mode (kα, λ) . Explicitly summing over
both polarizations in the exponent of Eq.14.11,

Zα
EM = e−βhνkα ∑

nka,1

exp [−βhνkαnkα,1] ∑
nka,2

exp [−βhνkαnkα,2] (14.13)

= e−βhνkα

⎧⎪⎪⎨⎪⎪⎩
∑

nka,1

exp [−βhνkαnkα,1]
⎫⎪⎪⎬⎪⎪⎭

2

, (14.14)

where the factor e−βhνkα results from the vacuum radiation term in the eigen-energies. The sum
over photon numbers nkα,1 = 0,1,2, . . . is just a geometric series, giving for the single mode kα and
both polarizations

Zα
EM =

⎡⎢⎢⎢⎢⎢⎣
e
−βhνkα

2
1

1 − e−βhνkα

⎤⎥⎥⎥⎥⎥⎦

2

. (14.15)

14.3.2 Average photon number

From Eq.14.9 the average number of photons in the single mode kα with a single polarization λ = 1,
say ⟨nkα,1⟩, is

⟨nkα,1⟩ =
∑

nkα,1

nkα,1 exp{−βhνkα,1nkα,1}

∑
nkα,1

exp{−βhνkα,1nkα,1}
. (14.16)

This is identical with

⟨nkα,1⟩ = [
1

2hνka,1

∂

∂β
ln (−Zα

EM)] −
1

2
(14.17)

= 1

eβhνka,1 − 1
, (14.18)

which is called a Planck distribution function.

14.3.3 Helmholtz potential and internal energy

The Helmholtz potential Fα for a single mode kα is

Fα = −
1

β
logZα

EM (14.19)

= hνkα +
2

β
log (1 − e−βhνkα ) . (14.20)

Similarly, for a single mode kα (counting both polarizations) the radiation field internal energy Uα
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is

Uα = −
∂

∂β
lnZα

EM (14.21)

= hνkα (
eβhνkα + 1
eβhνkα − 1) (14.22)

= 2hνkα (
1

2
+ 1

eβhνkα − 1) (14.23)

= 2hνkα (
1

2
+ ⟨nkα⟩) . (14.24)

14.4 Radiation field thermodynamics

The thermal electromagnetic field assembles all photon modes k with both transverse polarizations
λ = 1,2, requiring the full evaluation of Eq.14.10. Rewriting ZEM as

ZEM =
⎡⎢⎢⎢⎢⎣

∑
nk1
=0,1,2,...

e−βhνk1
(nk1

+1/2)
⎤⎥⎥⎥⎥⎦

2 ⎡⎢⎢⎢⎢⎣
∑

nk2
=0,1,2,...

e−βhνk2
(nk2

+1/2)
⎤⎥⎥⎥⎥⎦

2

. . . (14.25)

=∏
k

[e−βhνk ( 1

1 − e−βhνk
)
2

] , (14.26)

in analogy with Eqs.14.19 and 14.24, the Helmholtz potential FEM is

FEM = − 1
β
∑
k

ln [e−βhνk ( 1

1 − e−βhνk
)
2

] (14.27)

= ∑
k

[hνk +
2

β
ln (1 − e−βhνk)] (14.28)

and the internal energy UEM is

UEM = 2∑
k

hνk (
1

2
+ ⟨nk⟩) . (14.29)

14.5 Stefan-Boltzmann, Planck, Rayleigh-Jeans laws

In the limit of macroscopic volume V the sum over k in Eq.14.29 is replaced by (see Appendix
H)

∞

∑
k

⇒ V

(2π)3
∞

∫
−∞

dkx

∞

∫
−∞

dky

∞

∫
−∞

dkz , (14.30)

so that ignoring the divergent, constant vacuum energy

UEM = 2 V

(2π)3
∞

∫
−∞

dkx

∞

∫
−∞

dky

∞

∫
−∞

dkz (
hνk

eβhνk − 1) . (14.31)
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But in vacuum we have Eq.14.6 so that the integrals can be carried out in spherical coordinates, in
which case

∞

∫
−∞

dkx

∞

∫
−∞

dky

∞

∫
−∞

dkz =
2π

∫
0

dϕ

π

∫
0

dθ sin θ

∞

∫
0

d ∣k∣ ∣k∣2 (14.32)

and the internal energy UEM is (with h = 2πh̵)

UEM = h̵cV

π2

∞

∫
0

d ∣k∣ ∣k∣3 ( 1

eβh̵c∣k∣ − 1) . (14.33)

The integral can be brought into a more standard form with the substitution

∣k∣ = x

βh̵c
(14.34)

so that

UEM = h̵cV

π2 (βh̵c)4
∞

∫
0

dxx3 ( 1

ex − 1) . (14.35)

The integral of Eq.14.35 is one of several similar integrals that appear in thermal radiation theory.
They can be found in comprehensive tables or computed with Mathematica with the result

∞

∫
0

dxx3 ( 1

ex − 1) =
π4

15
(14.36)

so that the radiation energy density is

UEM

V
= π2

15β4 (h̵c)3
. (14.37)

This is called the Stefan-Boltzmann radiation law .

If in Eq.14.35 we substitute x = βhν, the radiation energy density may be written

UEM

V
=
∞

∫
0

dν u (ν) , (14.38)

where

u (ν) = 8πh

c3
ν3

eβhν − 1 , (14.39)

which is the frequency distribution of thermal radiation at any temperature T . It is called the
spectral density or Planck’s radiation law. In the high temperature limit, βhν << 1, the Planck law
becomes the classical Rayleigh-Jeans law (See Figure 14.1):

uclassical (ν) =
8πkBT

c3
ν2 . (14.40)
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u(ν)

Figure 14.1: Planck radiation law u(ν) and Rayleigh-Jeans approximation.

The cancellation of Planck’s constant removes any quantum reference.

Example

What is the average number density of thermal photons – all modes, both polarizations – at tem-
perature T?

Beginning with Eq.14.17 the average photon number is

⟨n⟩ = ∑
k

λ=1,2

⟨nk,λ⟩ (14.41)

= 2V

(2π)3 ∫
dk

1

eβhνk − 1 . (14.42)

In spherical coordinates this becomes (with νk = ck
2π )

⟨n⟩ = 2V

(2π)3
2π

∫
0

dφ

π

∫
0

dθ sin θ

∞

∫
0

dk
k2

eβh̵ck − 1 (14.43)

= V

π2

∞

∫
0

dk
k2

eβh̵ck − 1 . (14.44)
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After the change of variable βh̵ck = x the number density is

⟨n⟩
V
= 1

π2 (βh̵c)3
∞

∫
0

dx
x2

ex − 1 . (14.45)

This integral resembles Eq.14.36, but unlike that integral this one has no result in terms of elemen-
tary constants. But it can be estimated in the following series of steps.

∞

∫
0

dx
x2

ex − 1 =
∞

∫
0

dx
x2e−x

1 − e−x
(14.46)

=
∞

∫
0

dxx2e−x
∞

∑
s=0

e−sx (14.47)

=
∞

∑
s=0

∞

∫
0

dxx2e−x(s+1) (14.48)

=
∞

∑
s=0

2

(s + 1)3
(14.49)

= 2
∞

∑
s′=1

1

s′3
. (14.50)

The last sum is called the Riemann ζ function.5 In this case we have ζ (3) which can be evaluated
by summing, term by term, to any desired accuracy, giving ζ (3) = 1.20206 . . .
Therefore the photon number density is

⟨n⟩
V
= 2ζ (3)

π2 (βh̵c)3
. (14.51)

14.6 Wien’s law

In stellar astronomy two revealing parameters are a star’s surface temperature and its luminosity.
The surface temperature is found from its color, which corresponds to the frequency peak in the
spectral density curve of Eq.14.39. Determining luminosity is more complex, involving observed
brightness and the distance to the star.

These two pieces of information determine the star’s location on the empirical but important
Hertzsprung-Russel diagram (which you can read about in any introductory astronomy text). From
this it is possible to determine the chemistry of the star, its age and its stage of evolution.

The spectral peak is determined from Eq.14.39 by differentiation, i.e.

W (βhν) = d

dν
( ν3

eβhν − 1) = 0 (14.52)

5ζ (z) = ∞∑
n=1

1
nz . For even integer values of z (but not for odd values) the ζ function can be found in closed form.

In general, ζ is complex.
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which gives

W (βhν) = 3eβhν − 3 − βhν eβhν = 0 . (14.53)

Solving graphically (See Figure 14.2)

Figure 14.2: Graphical determination of Wien’s law constant.

hνmax = 2.82kB T . (14.54)

The frequency νmax at which the peak of Planck’s radiation curve is located is proportional to the
absolute temperature of the radiating source. This is called Wien’s law.

14.7 Entropy of thermal radiation

The entropy of thermal radiation is

SEM = −kB ∑
nk,λ=0,1,2,...

P (nk,λ) lnP (nk,λ) (14.55)

with P (nk,λ) as found in Eq.14.9. This is equivalent to

SEM = −kBβ2 ∂

∂β
ln ZEM (14.56)

= kBβ2 (∂FEM

∂β
)
V

, (14.57)
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where ZEM is the partition function (see Eq.14.10) and FEM is the electromagnetic Helmholtz
potential (see e.g. Eq.14.19). Completing the full radiation field calculation of Eq.14.19 requires
summing over all modes. Substituting x = βhν into that equation and ignoring the vacuum field
contribution (it does not depend on β), the Helmholtz potential is the integral

FEM = 8πV

β4 (hc)3
∞

∫
0

dxx2 ln (1 − e−x) . (14.58)

Integrating by parts gives

FEM = 8πV

3β4 (hc)3
∞

∫
0

dx
x3

(ex − 1) (14.59)

= − V π2

45h̵3c3β4
, (14.60)

where the integral Eq.14.36 has been used. Finally, applying Eq.14.56, the entropy is

SEM = 4π2kBV

45 (βh̵c)3
(14.61)

which is proportional to V T 3, consistent with a conjecture that with increasing “radius" the tem-
perature of the “universe" falls proportional to 1

T
.

14.8 Stefan-Boltzmann radiation law

An object at temperature T radiates electromagnetic energy from its surface (see Figure 14.3). The
energy radiated per unit area per unit time (energy current density) is the Poynting vector S, which
in the classical theory is

Sclassical =
1

8π
∫
V

dxE × B . (14.62)

The Poynting vector for photons k, λ is

Sk,λ = V −1hνk⟨nk,λ⟩ c k̂ , (14.63)

where k̂ is the unit vector in the direction of propagation of the mode k, λ and from Eq.14.17

⟨nk,λ⟩ =
1

eβhνk − 1 . (14.64)

The differential radiation flux density dΦk,λ of the mode k with polarization λ from the element
of area dA = n̂ dA (see Fig 14.3) is

dΦk,λ = Sk,λ ⋅ dA . (14.65)
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n

Figure 14.3: Photon k leaving the surface of a radiating body.

Applying Eq.14.63 the total radiation flux differential dΦ is

dΦ = V −1 ∑
k

λ=1,2

hνk⟨nk,λ⟩ c k̂ ⋅ n̂ dA, (14.66)

where n̂ is the unit vector normal to the surface element dA (see Fig 14.3). The total radiation
flux density per unit area is therefore

dΦ

dA
= V −1 ∑

k
λ=1,2

hνk⟨nk,λ⟩ c k̂ ⋅ n̂ . (14.67)

With k̂ ⋅ n̂ = cos θ the total outward (0 < θ < π/2) radiation flux density per unit area is

dΦ

dA
= 2

(2π)3
2π

∫
0

dφ

π/2

∫
0

dθ sin θ cos θ

∞

∫
0

dk
chνkk

2

eβhνk − 1 , (14.68)

which is integrated to give

dΦ

dA
= π2 (kB T )4

60h̵3c2
(14.69)

or

dΦ

dA
= σB T 4 , (14.70)

where

σB =
π2kB

4

60h̵3c2
(14.71)

= 5.67 × 10−8 Wm−2 K−4 (14.72)
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is called the Stefan-Boltzmann constant.

Example: Surface temperature of exoplanet Gliese 581d

Gliese 581, an M-class red-dwarf star in the constellation Libra, has an approximate radius of
2 × 105 km and an approximate surface temperature T∗ =3480 K. A recently discovered exoplanet,
designated Gliese 581d, orbits 3.27 × 107 km from the star. Assuming the star and the exoplanet
behave as perfect absorbers and radiators, estimate the surface temperature of Gliese 581d.

4πR2
∗σBT 4

∗
�mmmmmmmmmmmmmmmmmmmmmmmmm�mmmmmmmmmmmmmmmmmmmmmmmm�

energy rate radiated from star

×

fraction intercepted by exoplanetary disk
lmmmmmmmmmmmmmmmmmmmmmmmmmnmmmmmmmmmmmmmmmmmmmmmmmmo

{
πr2p

4πR2
∗→p

} (14.73)

= 4πr2pσBT 4
p

�mmmmmmmmmmmmmmmmmmmmmm�mmmmmmmmmmmmmmmmmmmmm�
energy rate reradiated from exoplanet

(14.74)

where rp is the exoplanet radius, Tp is the exoplanet temperature, R∗ is the star radius and R∗→p

is the exoplanet’s orbital radius.

After simplification we have

Tp = (
R2
∗

4R2
∗→p

)
1/4

T∗ . (14.75)

In particular, for Gliese 581d

Tp =192 K , (14.76)

not too far off from the “Goldilocks" zone for supporting life.

14.9 Radiation momentum density

The momentum p of a photon (a massless particle) is related, by special relativity, to its energy Eγ
by

p = Eγ

c
. (14.77)

Therefore the radiated momentum flux density Π per unit area from an object at temperature T
is

dΠ

dA
= V −1 ∑

k
λ=1,2

hνk⟨nk,λ⟩k̂ ⋅ n̂ , (14.78)
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which is evaluated, as in Eqs.14.67-14.69, to give

dΠ

dA
= π2 (kBT )4

60h̵3c3
. (14.79)

Example: Star dust blow-out

When stars are formed by gravitational collapse they are initially embedded in “cocoons" of tiny
silicate dust particles, a dust so dense that at this stage the star can be detected only from secondary
infrared radiation emitted by the heated dust. When the newly formed star reaches a sufficiently
high temperature the radiation from the star begins blowing out the dust cocoon allowing the star
to be seen in visible light.

Assuming that the radiation absorption cross-section of a dust particle is approximately half of the
physical cross-section and the dust particles have radii a < 10−7 m, at what stellar temperature will
all cocoon dust particles be blown away from the star?

The total momentum density per unit time radiated by the star is

Π = π2 (kBT∗)4

60h̵3c3
× 4πR2

∗ (14.80)

where T∗ is the star’s temperature and R∗ is its radius. Therefore the momentum density per unit
time intercepted by a dust particle of radius a at a distance Rdust from the star is

Πdust =
π2 (kBT∗)4

60h̵3c3
× 4πR2

∗ × (
πa2

4πR2
dust

) . (14.81)

Taking into account the estimated 50% absorption cross-section, the momentum density per unit
time absorbed by a dust particle is

ΠA
dust =

π2 (kBT∗)4

60h̵3c3
× 4πR2

∗ × (
πa2

4πR2
dust

) × (1/2) . (14.82)

On the other hand, the force of gravity acting on the particle is, by Newton’s Law of gravita-
tion,

Fgrav =
GM∗
R2

dust

× (4πa
3

3
ρdust) (14.83)

where G is the gravitational constant and ρdust = 3×103 kgm−3 is the approximate density of silicate
dust.

For the radiation-momentum absorbing dust particle to be in gravitational equilibrium

π2 (kBT∗)4

60h̵3c3
× 4πR2

∗ × (
πa2

4πR2
dust

) × (1/2) = GM∗
R2

dust

× (4πa
3

3
ρdust) , (14.84)

where M∗ is the mass of the star, so that

T 4
∗ =

8a

3
× cGM∗ρdust

σBR2
∗

, (14.85)
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where σB is the Stefan-Boltzmann constant (see Eq.14.71).

Assuming, for numerical specificity, that the newly formed star is sun-like with 1 solar mass and 1
solar radius, i.e.

M∗ = 1.99 × 1030 kg (14.86)

R∗ = 6.95 × 108 m (14.87)

G = 6.67−11 Nm2 kg−2 (14.88)

the "dust blow-out" temperature is T ≈ 6000K, independent of the distance between the star and
the dust particles.

Problems and exercises

14.1 Show that the work done by photons during an isentropic expansion is

W = ( π2

15h̵3c3
)k4

B (Ti − Tf)ViT
3
i (14.89)

where the subscripts i and f refer to initial and final states.

14.2 The total energy radiated by the Sun and received per unit time per unit area at the Earth’s
orbital distance is KS , the solar constant, which has the value KS = 0.136J s−1 cm−2.

The mean Earth-Sun distance is RES = 1.5×1011 m and the radius of the Sun is approximately
R⊙ = 7 × 108 m.

Find the effective blackbody temperature of the Sun.

14.3 Show that the average square fluctuations of blackbody internal energy,

⟨(ΔU)2⟩ = ⟨(U − ⟨U⟩)2⟩ (14.90)

is equal to

⟨(ΔU)2⟩ = ∂2

∂β2
lnZ . (14.91)

14.4 Gliese 581, an M-class red-dwarf star in the constellation Libra, has an approximate radius of
2 × 105 km and an approximate surface temperature T∗ =3480 K.

Estimate the peak frequency at which the star radiates energy.

14.5 Consider a volume V containing thermal equilibrium electromagnetic radiation at a tempera-
ture T . Given that the partition function for electromagnetic radiation is (neglecting zero-point
energy)

Z =∏
k

{(1 − e−βh̵ωk)−2} , (14.92)
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with the product over all modes k and counting both polarizations, evaluate Eq.14.91 and
show that the average square fluctuations in electromagnetic energy is

⟨(ΔU)2⟩ = 4

15h̵3c3
(kBT )5 . (14.93)

14.6 Find the average square fluctuations in blackbody radiation particle number. Hint: You may
need the integrals

∞

∫
0

dxx3 ( 1

ex − 1) =
π4

15
,

∞

∫
0

dx
x4ex

(ex − 1)2
= 4π4

15
. (14.94)

14.7 The ideal Carnot engine operates reversibly between an energy source, in which the working
substance (usually an ideal gas) absorbs heat isothermally at high temperature TH , and an
energy sink, to which it exhausts heat isothermally at a low temperature TL. The remaining
curves which close the Carnot cycle are adiabats. The efficiency η of such an engine is defined
as

η = Wr

QH
, (14.95)

whereWr is the work done in the cycle andQH is the heat absorbed from the high temperature
energy source.

If light is used as the working substance, find the Carnot engine efficiency.

14.8 When nucleons collide at very high energy, say by shooting a proton beam into a metallic tar-
get, they annihilate and produce an amount of energy W mainly in the form of short-lived sub-
atomic pions (quark-antiquark pairs) which can be positively charged, π+, negatively charged
π− or neutral π0. The π+ and π− are particle-antiparticle pairs while the π0 is its own antipar-
ticle. The pions have ultra-relativistic energies so their rest masses are negligible, i.e. they
behave like “photons" with energies

E = h̵c ∣k∣ (14.96)

with periodic boundary conditions by which

∣k∣2 = kx
2 + ky

2 + kz
2 (14.97)

where

kj =
2π

L
νj ; νj = 0,±1,±2, . . . (14.98)

Whereas photons have two polarizations (λ1 and λ2), pions are regarded as having three
polarizations, i.e. (π+, π0, π−). Assuming:

• the pions have zero chemical potential,

• thermal equilibrium is rapidly reached (times shorter than the pion lifetimes.)
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• all the collision energy is produced within a volume Vπ ,

a. find an expression, in terms of W and Vπ, for the temperature of the pion “spark";

b. find an expression, in terms of W and Vπ, for the mean number of pions produced
in the collision.



Why is it that particles with half-integer spin are Fermi particles whereas particles with
integer spin are Bose particles? An explanation has been worked out by Pauli from
complicated arguments from quantum field theory and relativity. He has shown that the
two must necessarily go together .... but we have not been able to reproduce his arguments
on an elementary level. This probably means we do not have a complete understanding of
the fundamental principle involved...

R. P. Feynman, R.B. Leighton and M. Sands, Feynman Lectures on Physics, Volume 3,
Chapter 4 Section 1, Addison-Wesley, Reading, MA (1963).

Chapter 15

Ideal fermi gas

15.1 Introduction

Particles with half-integer angular momentum obey the Pauli Exclusion Principle (PEP) – a re-
striction that a non-degenerate single-particle quantum state can have occupation number of only
0 or 1. This restriction was announced by W. Pauli in 1924 for which, in 1945, he received the
Nobel Prize in Physics. Soon after Pauli, the exclusion principle was generalized by P. Dirac and E.
Fermi who – independently – integrated it into quantum mechanics. As a consequence half-integer
spin particles are called Fermi-Dirac particles or fermions. PEP applies to electrons, protons,
neutrons, neutrinos, quarks – and their antiparticles – as well as composite fermions such as He3

atoms. Thermodynamic properties of metals and semiconductors are largely determined by elec-
tron (fermion) behavior. Metals, for example, exhibit the uniquely fermionic low-temperature heat
capacity CV ∝ T , while some Fermi-Dirac systems undergo a transition to a distinctive supercon-
ducting state with signature properties of magnetic flux exclusion (no interior B field) and zero
electrical resistivity.

221
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15.2 Ideal gas eigen-energies

The eigen-energies and eigenfunctions of any ideal (non-interacting) gas are constructed from the
eigenvalue problem

hop∣εs⟩ = εs∣εs⟩ (15.1)

with εs the single-particle eigen-energies and ∣ε̄s⟩ the corresponding single-particle eigenstates. hop

is the single particle hamiltonian operator for the ith particle:1

hop (i) = −
h̵2

2m
∇2

i + V (i) . (15.2)

Generally V (i) represents some charge neutralizing positive background potential, e.g. positive
ions, so obtaining a solution to the single particle problem, i.e. Eqs.15.1 and 15.2, may be com-
putationally intensive. It is often convenient to assume that the background ions are replaced by
a uniform positive charge – the free electron approximation. Presuming a solution to this reduced
problem is obtained, we can proceed to investigate Fermi-Dirac system thermodynamics.

15.3 Grand partition function

A many-particle (open system) thermodynamic hamiltonian is

Ĥop = hop − μNop (15.3)

where the many-particle hamiltonian Ĥop is a sum of single-particle hamiltonians

Ĥop = ∑
i=1
{hop (i) − μNop (i)} . (15.4)

The macroscopic eigen-energies of Ĥop are

Ê (n1, n2, . . . ) = ∑
s

(εs − μ)ns , (15.5)

where ns = 0,1,2, . . . are the number of particles occupying the single-particle eigenstate ∣ε̄s⟩ and μ
is the system chemical potential. The sum over s is a sum over all states.2

However, temporarily ignoring spin, each (non-degenerate) single-particle state is restricted by the
PEP to have occupation number 0 (no particles) or 1 (one particle), i.e. ns = 0 or 1. Constructing

1This applies to particles of either spin.
2Each single-particle state can be pictured as an “open system" into and out of which particles “diffuse" so that

in thermodynamic (diffusive) equilibrium all particles have the same chemical potential.
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a thermal Lagrangian3

LFD = −kB ∑
n1,n2,...=0,1

P̂FD (n1, n2, . . . ) ln P̂FD (n1, n2, . . . ) (15.6)

− 1

T
∑

n1,n2,...=0,1
P̂FD (n1, n2, . . . )∑

s

(εs − μ)ns

− λ0 ∑
n1,n2,...=0,1

P̂FD (n1, n2, . . . ) ,

where λ0 insures normalization.

P̂FD (n1, n2, . . . ) is the probability there are n1 particles in the single-particle state ∣ε1⟩, n2 particles
in the single-particle state ∣ε2⟩, etc. and where the occupation numbers are restricted by the PEP,
so that the sums mean

∑
n1,n2,...=0,1

⇒ ∑
n1=0,1

∑
n2=0,1

. . . . (15.7)

Maximizing LFD with respect to P̂FD (n1, n2, . . . ) we find the probabilities

P̂FD (n1, n2, . . . ) =
e
−β∑

s
(εs−μ)ns

∑
n1,n2,...=0,1

e
−β∑

s
(εs−μ)ns

. (15.8)

The denominator in Eq.15.8 is identified as the grand partition function,

ZFD
gr = ∑

n1,n2,...=0,1
e
−β∑

s
(εs−μ)ns

. (15.9)

It is evaluated by rearranging the sum over states s in the exponential to give

ZFD
gr =∏

s
∑

ns=0,1
e−β(εs−μ)ns (15.10)

and summing ns = 0, 1

ZFD
gr =∏

s

[1 + e−β(εs−μ)] . (15.11)

15.4 Electron spin

Taking electron spin into account, a pair of single-particle states, ∣εs,↑⟩, ∣εs,↓⟩ emerges with corre-
sponding eigen-energies εs,↑ and εs,↓. Assuming them initially to be non-degenerate

ZFD
gr =∏

s

[1 + e−β(εs,↑−μ)] [1 + e−β(εs,↓−μ)] . (15.12)

3See Appendix B.
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However, in zero magnetic field a two-fold degeneracy arises with εs,↑ = εs,↓ = εs producing the
partition function

ZFD
gr =∏

s

[1 + e−β(εs−μ)]2 . (15.13)

15.5 Fermi-Dirac thermodynamics

Thermodynamic properties of Fermi-Dirac systems are determined from ΩFD
gr , the grand poten-

tial,

ΩFD
gr = − 1

β
lnZFD

gr , (15.14)

which, with Eq.15.13, is

ΩFD
gr = − 2

β
∑
s

ln [1 + e−β(εs−μ)] , (15.15)

where the sum ∑
s

is over all states ∣εs⟩.

1. The average particle number ⟨Nop⟩ follows from Eq.15.8,

⟨Nop⟩ =
2∏

s
[ ∑
ns=0,1

nse
−β(εs−μ)ns]

∏
s
[ ∑
ns=0,1

e−β(εs−μ)ns]
, (15.16)

the factor 2 accounting for spin degeneracy. An equivalent result is

⟨Nop⟩ = −(
∂ΩFD

gr

∂μ
)
T,V

(15.17)

= 2∑
s

[ 1

eβ(εs−μ) + 1] (15.18)

= 2∑
s

⟨nFD
s ⟩ , (15.19)

where ⟨nFD
s ⟩ is a single-particle average occupation number for the state ∣ε̄s⟩,

⟨nFD
s ⟩ = [ 1

eβ(εs−μ) + 1] , (15.20)

which is called the Fermi-Dirac function.

Using Eq.15.18, the chemical potential can be calculated as a function of ⟨Nop⟩/V and tem-
perature T . (See the examples below.) In free electron models the average fermion (electron)
density ⟨Nop⟩/V (see Table 15.1) is a parameter that distinguishes among different materials.4

4At T = 0 the electron chemical potential is referred to as the Fermi energy, εF : i.e.μ (T = 0) ≡ εF .
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Element ⟨Nop⟩
V

Cu 8.47
Ag 5.86
Au 5.90
Al 18.1
Be 24.7
Sn 14.8
Mg 8.61
Fe 17.0
Pb 13.2
Hg 8.65

Table 15.1: Average electron density ⟨Nop⟩/V for several elemental metals. Densities are in units
of 1028 m−3.

Figure 15.1: The Fermi-Dirac function in Eq.15.20. The solid line represents ⟨ns⟩ at low tempera-
ture. The short dashed curve is representative of higher temperatures approaching, with increasing
temperature, the semi-classical limit: ⟨ns⟩ → exp (−βEs). At T = 0, ⟨ns⟩ is a step function (solid
grey line) with unit jump at Es = EF .

2. The Fermi-Dirac internal energy UFD is found from the general result of Eq.12.28

UFD = [
∂

∂β
(βΩFD

gr )]
V,μ

+ μ⟨Nop⟩ (15.21)
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which, using Eq.15.15, yields the intuitively apparent

UFD = 2∑
s

εs ⟨nFD
s ⟩ . (15.22)

3. The equation of state of the Fermi-Dirac gas is

pV = −ΩFD
gr (15.23)

= 2

β
∑
s

ln (1 − ⟨nFD
s ⟩) . (15.24)

4. The entropy S, as discussed in Chapter 6, is

S = −kB ∑
n1,n2,...=0,1

P̂FD (n1, n2, . . . ) ln P̂FD (n1, n2, . . . ) (15.25)

where P̂FD (n1, n2, . . . ) is as in Eq.15.8. Equivalently,

S = kBβ2 [
∂ΩFD

gr

∂β
]
μ,V

(15.26)

= −2kB∑
s

[(1 − ⟨nFD
s ⟩) ln (1 − ⟨nFD

s ⟩) + ⟨nFD
s ⟩ ln ⟨nFD

s ⟩] . (15.27)

15.6 Independent fermion model

The independent fermion approximation for metals usually includes interactions with a static back-
ground of positive ions (band structure approximation) but neglects both electron-electron repulsion
(correlations) and interactions with vibrating ions (electron-phonon interactions).5

Independent fermion thermodynamics begins with ΩFD
gr (see Eq.15.15) where, using the Dirac δ function6

∞

∫
−∞

dωf (ω) δ (ω − εs) = f (εs) , (15.28)

ΩFD
gr may be strategically rewritten as

ΩF−D
gr = − 2

β

∞

∫
0

dω∑
s

δ (ω − εs) ln [1 + e−β(ω−μ)] . (15.29)

Identifying the density of single-particle states D (ω) (see Appendix E)7

D (ω) = ∑
s

δ (ω − εs) (15.30)

5These interactions can often be summarized for individual systems by a few parameters, such as an effective mass
m∗ and an electron-phonon coupling constant λ. The “Fermi gas" model has been successful in describing many
metals and semiconductors.

6δ (ω − εs) is the Dirac delta function.
7Density of single-particle states defined here does not include a factor 2 for spin. (See Eq.E.21).
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ΩFD
gr becomes

ΩFD
gr = − 2

β

∞

∫
0

dωD (ω) ln [1 + e−β(ω−μ)] . (15.31)

Introducing a density of states also enables some experimental results to be used in electronic
structure calculations.8

Using the δ function in an identical way, Eqs.15.18 and 15.22 become

⟨Nop⟩ = 2
∞

∫
0

dω
D (ω)

eβ(ω−μ) + 1 (15.32)

and

UFD = 2
∞

∫
0

dωω
D (ω)

eβ(ω−μ) + 1 . (15.33)

Evaluating, or even approximating, integrals Eqs.15.32, 15.33 and related types that appear in
degenerate fermion models (βμ ≫ 1) requires specialized techniques. The simplest of these is
Sommerfeld’s asymptotic approximation which is discussed in Appendix I.9,10

15.7 The chemical potential (T ≠ 0)

Thermodynamic properties of a degenerate Fermi gas (βμ >> 1) can be expressed as expansions11

in T . In particular, the chemical potential is determined from the density ⟨Nop⟩
V by expanding the

right-hand side of Eq.15.32 about μ = εF to linear order, where εF (Fermi energy) is the symbol
assigned to the chemical potential at T = 0, to give

⟨Nop⟩ = 2
∞

∫
0

dω
D (ω)

eβ(ω−εF ) + 1 +
β (μ − εF )

2

∞

∫
0

dωD (ω) sech2 [β
2
(ω − εF )] . (15.34)

8Approximate densities of states can be obtained from optical or tunneling experiments.
9Sommerfeld’s asymptotic approximation is not an expansion in the usual Taylor series sense. It takes advantage

of the property that for T ≈ 0 the Fermi-Dirac function ⟨nFD
s ⟩ approaches the unit step function at ω ≈ Ef (see

Figure 15.1).
10With increasing temperature, βμ << 1, the steepness of the step declines over a width ∼ kBT , eventually taking

the form of a smooth exponential 1

eβ(ω−μ)+1
→ e−β(ω−μ).

11These expansions are not the usual convergent Taylor series type but belong to a category called asymptotic
expansions. These, generally, must be handled with care.
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The first integral on the right-hand side can be approximated by Sommerfeld’s method (see Ap-
pendix I) to give

∞

∫
0

dω
D (ω)

eβ(ω−εF ) + 1 ≈
εF

∫
0

dωD (ω) + π2

6β2
D ′ (εF ) , (15.35)

while the second integral is approximated by

β

4

∞

∫
0

dωD (ω) sech2 [β
2
(ω − εF )] ≈ D (εF ) +

π2

6β2
D ′′ (εF ) , (15.36)

where D (ω) has been similarly expanded about μ = εF . Combining Eqs.15.35 and 15.36 with
Eq.15.34, while noting that

2

εF

∫
0

dωD (ω) = ⟨Nop⟩ , (15.37)

gives

μ = εF −
π2

6β2D ′ (εF )

D (εF ) + π2

6β2D ′′ (εF )
, (15.38)

which to order T 2 is

μ = εF −
π2

6β2

D ′ (εF )
D (εF )

. (15.39)

In the degenerate regime (where this expansion applies) chemical potential decreases with in-
creasing temperature. At very high temperature (where this expansion clearly does not apply)
μ→ −∞.

15.8 Internal energy (T ≠ 0)

Similar to the argument above, the internal energy (Eq.15.33) is first expanded about μ = εF ,

∞

∫
0

dω
ωD (ω)

eβ(ω−μ) + 1 ≈
∞

∫
0

dω
ωD (ω)

eβ(ω−εF ) + 1 +
β (μ − εF )

4

∞

∫
0

dωωD (ω) sech2 [β
2
(ω − εF )] . (15.40)

Applying Sommerfeld’s approximation to the first term on the right-hand side,

∞

∫
0

dω
ωD (ω)

eβ(ω−εF ) + 1 ≈
εF

∫
0

dω ωD (ω) + π2

6β2
{ d

dω′
[ω′D (ω′)]}

ω′=εF
, (15.41)
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while the second term becomes
∞

∫
0

dωωD (ω) sech2 [β
2
(ω − εF )] ≈

4

β
εFD (εF ) . (15.42)

Combining Eqs.15.40, 15.41, 15.42 with 15.39

UFD = 2
εF

∫
0

dωωD (ω) + π2

3β2
D (εF ) (15.43)

from which the constant volume heat capacity

CV = (
∂UFD

∂T
)
V

is

CV =
2π2

3
k2
BD (εF )T , (15.44)

quite different from both the constant-valued classical result and the T 3 phonon contribution.12

Macroscopic heat capacity is proportional to D (εF ), the density of states of the Fermi system
evaluated at the Fermi energy, a microscopic quantum property.

This particular form is a consequence of the PEP which allows only an effective number of particles
near εF , i.e. Neff ∼ NkBT , to participate in low-temperature thermal processes.

15.9 Pauli paramagnetic susceptibility

In the presence of an external magnetic field B0, the spin degeneracy of conduction electrons is
lifted (Zeeman splitting) and the single-particle states in Eq.15.48 become

εs,↑ → εs +Δ, (15.45)
εs,↓ → εs −Δ, (15.46)

where

Δ =m ⋅ B0 , (15.47)

with m the electron magnetic moment. In that case

ZFD
gr =∏

s

[1 + e−β(εs+Δ−μ)] [1 + e−β(εs−Δ−μ)] (15.48)

12The single-particle density of states defined in this work does not include the factor 2 for spin.
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and

ΩFD
gr = − 1

β
∑
s

{ln [1 + e−β(εs+Δ−μ)] + ln [1 + e−β(εs−Δ−μ)]} , (15.49)

where the sum ∑
s

is over all states ∣εs⟩. Using the single-particle density of states D (ω), the sums

are replaced by integrals13

ΩFD
gr = − 1

β

⎧⎪⎪⎨⎪⎪⎩

∞

∫
0

dωD (ω) ln [1 + e−β(ω+Δ−μ)] +
∞

∫
0

dωD (ω) ln [1 + e−β(ω−Δ−μ)]
⎫⎪⎪⎬⎪⎪⎭

. (15.50)

For weak fields, expansions in Δ produce

ln [1 + e−β(ω+Δ−μ)] + ln [1 + e−β(ω−Δ−μ)] ≈ 2 ln [1 + e−β(ω−μ)] + 1

4
β2Δ2 sech2 [β

2
(ω − μ)] (15.51)

so that keeping only the term of order Δ2

ΩFD
gr ≈ − 1

β

⎧⎪⎪⎨⎪⎪⎩

β2

4
Δ2

∞

∫
0

dωD (ω) sech2 [β
2
(ω − μ)]

⎫⎪⎪⎬⎪⎪⎭
. (15.52)

The integral is done as discussed in Appendix I, giving in the degenerate limit (βμ >> 1)

ΩFD
gr ≈ −Δ2D (εF ) (15.53)

where from Eq.15.39 only the leading term is used. With

M = −( ∂

∂B0
ΩF−D

gr )
T,μ

(15.54)

= 2m2B0D (εF ) (15.55)

the Pauli susceptibility, χM =M /B0, is14

χM = 2m2D (εF ) . (15.56)

15.10 Electron gas model

The electron gas model is used to describe the behavior of simple metals. It assumes a macroscopic
collection of non-interacting spin-half particles, neutralized only by a uniform positive background,
with a single particle hamiltonian for the ith particle

hop (i) = −
h̵2

2m
∇2

i . (15.57)

13The reason for not having incorporated the spin factor 2 into the density of states should now be apparent.
14If the density of states is defined to include the factor 2 for electron spin, as some authors prefer, χM =m2D (εF )
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Choosing periodic boundary conditions (see Appendix G), the single-particle eigen-energies are

ε (k) = h̵2 ∣k∣2

2m
(15.58)

where kj (j = x, y, z) are quantum numbers which assume the values

kj =
2π

L
νj (15.59)

where

νj = 0,±1,±2,±3, . . . (15.60)

Here L is the length of one side of a “notional" periodic cube with macroscopic volume V = L3.
From Appendix E the density of states, D (ω), corresponding to this model (see Eq.15.58) is

D (ω) = ∑
k

δ [ω − ε (k)]

= V

4π2
(2m
h̵2
)
3/2√

ω , (15.61)

(see Figure 15.2) which is the distinctive three-dimensional electron gas result.15

With Eq.15.61 the grand potential (see Eq.15.31) is

ΩFD
gr = − V

2π2β
(2m
h̵2
)
3/2 ∞

∫
0

dω
√
ω ln [1 + e−β(ω−μ)] , (15.62)

which is integrated by parts to give

ΩF−D
gr = − V

3π2
(2m
h̵2
)
3/2 ∞

∫
0

dω
ω3/2

eβ(ω−μ) + 1 . (15.63)

Since

p = −(∂Ωgr

∂V
)
T,μ

(15.64)

the fermion gas pressure is

pFD = 1

3π2
(2m
h̵2
)
3/2 ∞

∫
0

dω
ω3/2

eβ(ω−μ) + 1 . (15.65)

15The mass can be replaced by an effective mass, m→m∗, where m∗ approximates the effect of a crystal lattice.
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Figure 15.2: Density of states for the three-dimensional electron gas model. (See Eq.15.61).

In the degenerate case (βμ >> 1), Eq.15.65 is expanded in powers of T by applying the steps in
Appendix I, starting with an expansion of the integrand about μ = εF ,

∞

∫
0

dω
ω3/2

eβ(ω−μ) + 1 =
∞

∫
0

dω
ω3/2

eβ(ω−εF ) + 1 +
β (μ − εF )

4

∞

∫
0

dωω3/2 sech2 [β
2
(ω − εF )] . (15.66)

The first integral on the right-hand-side is approximated using Sommerfeld’s method
∞

∫
0

dω
ω3/2

eβ(ω−εF ) + 1 ≈
2

5
ε
5/2
F + π2

4β2
ε
1/2
F , (15.67)

while the second integral is
∞

∫
0

dωω3/2 sech2 [β
2
(ω − εF )] ≈

4

β
ε
3/2
F . (15.68)

Therefore Eq.15.66, together with Eqs.15.67, 15.68 and 15.39, gives the pressure of a degenerate
(βμ >> 1) Fermi-Dirac gas model

pFD = 2

15π2
(2m
h̵2
)
3/2

ε
5/2
F (1 + 5π2

12β2ε2F
) . (15.69)

Unlike a classical ideal gas for which p ≈ T , the pressure of a degenerate Fermi-Dirac gas is nearly
independent of temperature.

Finally, in the Fermi gas model we have (see Eq.15.37)

⟨Nop⟩
V

= 1

2π2
(2m
h̵2
)
3/2 εF

∫
0

dω
√
ω (15.70)

= 1

3π2
(2m
h̵2
)
3/2

ε
3/2
F (15.71)
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or

εF =
h̵2

2m
(3π2 ⟨Nop⟩

V
)
2/3

(15.72)

permitting thermodynamic properties to be expressed in terms of the fermion density (e.g. Table
15.1).

15.11 White dwarf stars

The thermodynamics of stars is a study in self-gravitating systems – a titanic struggle between
gravity, which compresses stellar matter, and outward gas pressure usually associated with high
temperatures within stellar interiors.16 As a result of nuclear and chemical evolution, equilibrium
between these forces is in constant flux, resulting in continuous stellar transformations.

Stars that are not too massive, say on the order of our Sun’s mass, eventually “burn" nearly all their
core hydrogen resulting in a cooler stellar core richer in helium (and heavier nuclei). Consequently
gas pressure is reduced which, seemingly, throws the dynamical advantage to gravitational forces,
suggesting the star’s continued collapse, perhaps without limit. Although ordinary gas pressure
is no longer capable of resisting gravitational collapse, star stability can now be maintained by
quantum behavior of degenerate (but not necessarily relativistic) electrons, whose source is the now
fully ionized He atoms.

These stars can collapse to radii the order of the Earth’s while maintaining masses on the order of the
Sun – a density of 106 times that of water. Such stars were discovered by British astronomer William
Herschel (1783) who failed to realize their significance. These relatively nearby (on a galactic scale)
but intrinsically dim stars are called white dwarfs. They are intermittently resurrected corpses in
the evolutionary stellar graveyard for stars of about a solar mass and less.

15.11.1 White dwarf thermodynamics

A white dwarf star can be modeled as densely packed He nuclei at the star’s hot central region.
The He nuclei intermingle with a degenerate (βμ >> 1) electron gas whose origin is the fully ionized
He atoms.

The degenerate electron gas behavior is governed by the PEP, so using Eqs.15.69 and 15.72,
the nearly temperature-independent outward pressure of the degenerate electron gas component
is

pe =
(3π2)2/3

5
( h̵2

me
)(
⟨N e

op⟩
V

)
5/3

, (15.73)

where me is the electron mass and
⟨N e

op⟩
V

is the electron number density. The stellar mass, M , is

16High temperatures result from nuclear fusion at the star’s center in which hydrogen “burns" to helium and,
eventually, heavier nuclei including carbon and oxygen.
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approximately

M = 2⟨N e
op⟩mHe , (15.74)

where mHe is the mass of a He nucleus.

The star’s dense He core exerts inward gravitational pressure

pcore = −(
∂Ωcore

gr

∂V
)
T,μ

(15.75)

where, for He nuclei (treated classically)

Ωcore
gr = − V

3π2
(2mHe

h̵2
)
3/2 ∞

∫
0

dωω3/2e−β(ω−μ+W ) (15.76)

= V

(2π3)1/2 β5/2
(mHe

h̵2
)
3/2

eβ(μ−W ) , (15.77)

with W the mean field gravitational potential energy per He nucleus (see Chapter 12). Assuming
a uniform, spherically distributed mass

ρ = M

V
(15.78)

= 3M

4πR3
, (15.79)

where R is the star radius, we find, as in Section 12.6.1,

W = −mHe
3GM

5R
, (15.80)

where G is the universal gravitational constant.

Applying Eq.15.75 the inward He nuclear core pressure is

pcore = 1

(2π3)1/2 β5/2
(mHe

h̵2
)
3/2

eβ(μ−W ) − 1

5
√
π

GM2

V 1/3 (
mHe

βh̵2
)
3/2
(
√
2

3π2
)
1/3

eβ(μ−W ) . (15.81)

Next, applying Eq.15.17 to Eq.15.77, the average number of He nuclei is

⟨NHe
op ⟩ =

V√
2
(mHe

πβh̵2
)
3/2

eβ(μ−W ) . (15.82)

Therefore, substituting for the chemical potential μ, the nuclear core pressure becomes

pcore =
⟨NHe

op ⟩
βV

− 1

5
(4π
3
)
1/3 GM2

V 4/3 (15.83)
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where the first term is the classical ideal He gas pressure, which is negligible for this cool star. The
total pressure – i.e. the equation of state – for the white dwarf star is therefore

ptotal =
(3π2)2/3

5
( h̵2

me
)(
⟨N e

op⟩
V

)
5/3

− 1

5
(4π
3
)
1/3 GM2

V 4/3 . (15.84)

At mechanical equilibrium ptotal = 0, giving

(3π2)2/3

5
( h̵2

me
)(
⟨N e

op⟩
V

)
5/3

= 1

5
(4π
3
)
1/3 GM2

V 4/3 , (15.85)

which, with

⟨N e
op⟩ = 2⟨NHe

op ⟩ (charge neutrality) (15.86)

= M

2mHe
, (15.87)

yields the remarkable (non-relativistic) white dwarf mass-radius condition

[ 34/3π2/3h̵2

8G(mHe)5/3me
] = RM1/3 . (15.88)

Problems and exercises

15.1 Eventually the Sun will pass through a red giant phase and collapse into a white dwarf star
(≈ 6 × 109 years). Neglecting the shedding of mass in the red dwarf stage, what fraction of its
present radius will the Sun be?

15.2 Consider a white dwarf star in an advanced stage of evolution with nearly all its fully degenerate
electrons behaving ultra-relativistically

h̵ω ≈ cp (15.89)

where c is the speed of light and p = h̵ ∣k∣.

(a) Find the single-particle density of states D (ω).

(b) Find an expression for the star’s pressure.

(c) Find a critical mass (in solar mass units) beyond which the star is no longer stable and
will gravitationally collapse into a neutron star or a black hole.

15.3 An uncharged degenerate, spin-half Fermi gas (say He3) at pressure p and temperature T is
confined to one half of a rigid insulated chamber, of total volume V . The other half of the
chamber is empty (vacuum). The partition separating the two halves suddenly dissolves and
the Fermi gas freely and adiabatically flows to occupy the entire chamber (free expansion).

Find the change in temperature of the Fermi gas.
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15.4 A cylinder is separated into two compartments by a sliding frictionless piston. Each compart-
ment is occupied by an ideal Fermi gas, say A and B, which differ only in that A is composed
of particles of spin 1

2
while B is composed of particles of spin 3

2
. Find the relative equilibrium

density of the two gases

a. at T = 0 K ;

b. as T →∞ .

15.5 A degenerate Fermi gas of non-interacting electrons moves in a uniform positive background
confined to one dimension. (An example is the conducting polymer trans-polyacetylene.)

a. Find an expression for the single-particle density of states D (ω) of independent particles
in one dimension.

b. Find the leading non-zero term for the chemical potential of a one-dimensional conductor
as a function of temperature in the limit of high degeneracy βμ >> 1.

15.6 In E. Fermi’s model for ultra-high energy particle collisions17 a microscopic “fireball" is created
consisting of:

(a) ultra-relativistic nucleon-antinucleon pairs:

• protons (two up quarks and one down quark),

• antiprotons (two up antiquarks and one down antiquark),

• neutrons (one up quark and two down quarks),

• antineutrons (one up antiquark and two down antiquarks);

(b) Ultra-relativistic pions π−, π+ and π0:

• π−, negatively charged (down quark and anti-up quark),

• π+, positively charged (up quark and anti-down quark),

• π0, uncharged and is its own antiparticle (up quark - anti-up quark – down quark -
anti-down quark superposition.)

All nucleons are spin-half Fermi-Dirac particles. All pions are spin-zero Bose-Einstein particles.

At these high energies particles have negligible rest masses, i.e. they behave like photons
(except for their statistics) with zero chemical potential and energies

E = h̵c ∣k∣ (15.90)

with periodic boundary conditions

∣k∣2 = kx
2 + ky

2 + kz
2 (15.91)

where

kj =
2π

L
νj ; νj = 0,±1,±2, . . . (15.92)

17E. Fermi, “High energy nuclear events", Prog. Theoret. Phys. (Japan), 5, 570-583 (1950).
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Dynamic assumptions are:

• Interaction between pions and nucleons is so strong that statistical equilibrium is attained
in times less than pion lifetimes.

• Energy and charge are conserved.

• The energy available in the center of mass system, W , is released in a small volume

V = 4
3
πR3, where R is the compton wavelength R ≈ h̵

μc
.

• Angular momentum conservation is ignored.

a. Find an expression for the temperature T ∗ of the “fireball" in terms of W and V .

b. Find the average density of pions and of nucleons produced.

Consider two alternative scenarios:

(1) A “fireball" entirely composed of ultra-relativistic spin-half fermions;

(2) A “fireball" entirely composed of photons;

c. Show that the internal energy per unit volume for the fermion “fireball" is exactly 7
2

the
internal energy per unit volume for the photon (EM radiation) “fireball".

Note: The four distinct fermion varieties give rise to eight-fold degeneracy, i.e. each of the
four created particles has two spin polarizations.

You may need the following integrals:

∞

∫
0

dxx3 ( 1

ex + 1) =
7π4

120
;

∞

∫
0

dxx3 ( 1

ex − 1) =
π4

15
. (15.93)
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From a certain temperature on, the molecules “condense” without attractive forces; that is,
they accumulate at zero velocity. The theory is pretty, but is there also some truth to it?

Albert Einstein, Letter to Ehrenfest (Dec. 1924). Abraham Pais, Subtle Is the Lord:
The Science and the Life of Albert Einstein, Oxford University Press, New York (1982)

Chapter 16

Ideal Bose-Einstein system

16.1 Introduction

For over 50 years the low-temperature liquid state of uncharged, spinless He4 was the only system
in which a Bose-Einstein (BE) condensation was considered experimentally realized.1,2,3 In that
case, cold (< 2.19 K) liquid He4 passes into an extraordinary phase of matter called a superfluid, in
which the liquid’s viscosity and entropy become zero.

With advances in atomic cooling4,5 (to ≈ 10−9 K) the number of Bose systems which demonstrably
pass into a condensate has considerably increased. These include several isotopes of alkali gas atoms
as well as fermionic atoms that pair into integer-spin (boson) composites.6

Although an ideal Bose gas does exhibit a low-temperature critical instability, the ideal BE gas
theory is not, on its own, able to describe the BE condensate wave state.7 In order for a theory of
bosons to account for a condensate wave state, interactions between the bosons must be included.
Nevertheless, considerable interesting physics is contained in the ideal Bose gas model.

1Peter Kapitza, “Viscosity of Liquid Helium below the λ − point," Nature 141, 74 (1938).
2John F. Allen and Don Misener, “Flow of liquid helium II", Nature 141, 75 (1938).
3Allan Griffin, “New light on the intriguing history of superfluidity in liquid 4He", J. Phys.: Condens. Matter

21, 164220 (2009).
4M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman and E.A. Cornell, “Observation of Bose-Einstein

Condensation in a Dilute Atomic Vapor", Science 269, 198 (1995).
5Eric A. Cornell and Carl E. Wieman, “The Bose-Einstein Condensate," Scientific American 278, 40 (1998).
6C. A. Regal, M. Greiner and D. S. Jin, “Observation of Resonance Condensation of Fermionic Atom Pairs", Phys.

Rev. Lett. 92, 040403 (2004).
7V.L. Ginzburg and L.D. Landau, Zh. Eksp. Teor. Fiz. 20, 1064 (1950).
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16.2 Ideal bose gas

The Bose-Einstein (BE) system allows any occupation number, n = 0,1,2,3, . . . ,∞, so that the
thermal Lagrangian is

LBE = −kB
∞

∑
n1=0

⋯
∞

∑
nN=0

P̂BE (n1, n2, . . .) ln P̂BE (n1, n2, . . .) (16.1)

− 1

T
{
∞

∑
n1=0

⋯
∞

∑
nN=0

P̂BE (n1, n2, . . .)∑
s

(Es − μ)ns}

− λ0

∞

∑
n1=0

⋯
∞

∑
nN=0

P̂BE (n1, n2, . . .) ,

where P̂BE (n1, n2, . . . ) is the probability8 there are n1 particles in the single-particle state ∣E1⟩,
n2 particles in the single-particle state ∣E2⟩, etc. Maximizing the thermal Lagrangian in the usual
way gives the Bose-Einstein probabilities

P̂BE (n1, n2, . . .) =
e
−β∑

s
ns(Es−μ)

∞
∑

n1=0
⋯

∞
∑

nN=0
e
−β∑

s
ns(Es−μ)

. (16.2)

The denominator is the BE grand partition function

ZBE
gr =

∞

∑
n1=0

⋯
∞

∑
nN=0

e
−β∑

s
ns(Es−μ)

(16.3)

=∏
s

∞

∑
ns=0

e−βns(Es−μ) . (16.4)

The infinite sum over ns converges only for e−β(Es−μ) < 1. Thus if the minimum value in the Es

energy spectrum is taken to be zero, convergence is guaranteed only if μ < 0. As will soon be shown,
this convergence criterion has astonishing physical implications!

Assuming convergence of the ns sum, the BE grand partition function is

ZBE
gr =∏

s

( 1

1 − e−β(Es−μ)
) (16.5)

and the corresponding grand potential is

ΩBE = 1

β

∞

∑
s=0

ln (1 − eβμe−βEs) . (16.6)

8These are “surrogate" probabilities.
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16.3 Bose-Einstein thermodynamics

Applying the probabilities from Eq.16.2:

1. Average number of particles in the pth single-particle state is

⟨np
BE⟩ =

∞
∑

np=0
npe

−βnp(Ep−μ)

∞
∑

np=0
e−βnp(Ep−μ)

(16.7)

or

⟨np
BE⟩ = 1

β

⎡⎢⎢⎢⎢⎣

∂

∂μ
ln

∞

∑
np=0

e−βnp(Ep−μ)
⎤⎥⎥⎥⎥⎦T

. (16.8)

After carrying out the sum and differentiation in Eq.16.8 the BE average occupation number
for the single particle state ∣Ep⟩ is

⟨np
BE⟩ = 1

eβ(Ep−μ) − 1
. (16.9)

Similarly, the average total particle number is

⟨NBE
op ⟩ = ∑

p=0
⟨np

BE⟩ (16.10)

= ∂

∂μ
ΩBE

gr (16.11)

= ∑
p=0

1

eβ(Ep−μ) − 1
. (16.12)

But Eq.16.9 presents a problem. Since the lowest value of Ep is taken to be zero, if μ > 0 the
average number of particles in state ∣Ep⟩ is negative, which is nonsense. It clearly must be
that

μBE ≤ 0 . (16.13)

This constraint (already mentioned above) has implications that will be discussed in the next
sections.

2. Internal energy of the ideal BE system is the intuitive result

UBE = ∑
p=0

Ep⟨np
BE⟩ . (16.14)
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16.3.1 The quasi-classical limit

The distinction between ⟨np
BE⟩ and ⟨np

FD⟩ – i.e. the sign in the denominator – has enormous
physical consequences at low temperature. But in the limit μ → −∞, i.e. the quasi-classical limit,
where n/nQ << 1, all distinctions disappear,

⟨np
BE⟩ ≡ ⟨np

FD⟩ → eβμe−βEp . (16.15)

16.4 The ideal BE gas and the BE condensation

Using the free-particle eigenstates and density of states previously applied in Fermi-Dirac thermo-
dynamics the spin= 0 (no spin degeneracy) BE grand potential (see Eq.16.6) is

ΩBE
gr = − 1

β
( V

4π2
)(2m

h̵2
)
3/2 ∞

∫
0

dω
√
ω ln (1 − eβμe−βω) (16.16)

with μ ≤ 0. Integrating by parts

ΩBE
gr = − V

6π2
(2m
h̵2
)
3/2 ∞

∫
0

dω
ω3/2

eβ(ω−μ) − 1 (16.17)

and then applying Eq.16.11 gives

⟨NBE
op ⟩ =

V

4π2
(2m
h̵2
)
3/2 ∞

∫
0

dω
ω1/2

eβ(ω−μ) − 1 . (16.18)

Now recalling the Fermi-Dirac expression

⟨NFD
op ⟩ = V

2π2
(2m
h̵2
)
3/2 ∞

∫
0

dω
ω1/2

eβ(ω−μ) + 1 , (16.19)

and the quasi-classical expression

⟨NQC
op ⟩ =

V

2π2
(2m
h̵2
)
3/2 ∞

∫
0

dωω1/2e−β(ω−μ) , (16.20)

the variation of μ with T can, in each case, be plotted to show any distinctions among the three
kinds of “statistics". At high temperature all three curves begin to merge as indicated in Eq.16.15.
As temperature falls the BE, FD and quasi-classical curves begin to diverge, as shown in Figure 16.1,
with FD and quasi-classical curves rising above μ = 0. However the BE curve cannot rise above
μ = 0 and, since the curve is single-valued, there is some temperature Tc given by

(
⟨NBE

op ⟩
V

)
T→T+c

= 1

4π2
(2m
h̵2
)
3/2 ∞

∫
0

dω
ω1/2

eβcω − 1 , (16.21)
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Figure 16.1: Bose-Einstein, Fermi-Dirac and quasi-classical result for βμ vs. T .

where βc = 1
kB Tc

, at which it continues for T < Tc as a horizontal line that coincides with μ = 0,
(see Figure 16.1) – although the BE curve is continuous, its slope is discontinuous. At temperatures
T < Tc the chemical potential assumes the fixed value μ = 0 and the average BE particle density
becomes

(
⟨NBE

op ⟩
V

)
T<Tc

= 1

4π2
(2m
h̵2
)
3/2 ∞

∫
0

dω
ω1/2

eβω − 1 . (16.22)

Comparing Eq.16.21 with Eq.16.22 we have the result that

(
⟨NBE

op ⟩
V

)
T<Tc
μ=0

< (
⟨NBE

op ⟩
V

)
T≥Tc
μ<0

. (16.23)

Bosons are “missing" ! Where are they? They have, in fact, thrown in their lot with an entirely new
state of matter, having its own wavefunction, the Bose Einstein condensate. For T < Tc, as T → T −c ,
ordinary bosons begin to reappear. Thus for T < Tc there are two coexisting phases – normal bosons
and a BE condensate. The transition temperature Tc at which the BE condensate begins to form
is found by integrating Eq.16.21. A procedure is to first expand the denominator

∞

∫
0

dx
xs

ex − 1 =
∞

∫
0

dxxs
∞

∑
n=0

e−(n+1)x (16.24)

and then integrate term by term
∞

∫
0

dx
xs

ex − 1 = Γ (s + 1)
∞

∑
ν=1

1

νs+1 , (16.25)
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where the Γ function is defined by

Γ (r) =
∞

∫
0

dz zr−1e−z; Re r > −1 . (16.26)

The remaining sum is the Riemann ζ function

ζ (s) =
∞

∑
n=1

1

ns
, (16.27)

which finally gives

∞

∫
0

dx
xs

ex − 1 = Γ (s + 1) ζ (s + 1) (16.28)

and therefore

(
⟨NBE

op ⟩
V

)
T→T+c

= Γ (3/2) ζ (3/2)
4π2

( 2m

βch̵2
)
3/2

. (16.29)

Solving for Tc,

Tc =
h̵2

2mkB
[ 4π2

Γ (3/2) ζ (3/2)]
2/3

(
⟨NBE

op ⟩
V

)
2/3

T→T+c

(16.30)

where Γ (3/2) = 0.886 and ζ (3/2) = 2.612. Therefore

Tc = 3.31(
h̵2

mkB
)(
⟨NBE

op ⟩
V

)
2/3

. (16.31)

For the case of He4 (mass=4.002602 u,9 ⟨NBE
op ⟩/V = 2.18 × 1022cm−3) we find Tc = 3.14 K. This

may be compared to the temperature Tλ = 2.19 K (the λ point) at which liquid He4 is observed to
undergo a transition to a remarkable superfluid phase.

16.4.1 The condensate

As noted above, at temperatures 0 < T < Tc the boson chemical potential remains μ = 0, generating
the missing boson “paradox". From what we know about the electromagnetic field’s photons as
well as elastic field’s phonons – whose chemical potential is inherently zero – these particles are

91 u= 1.660 538 782×10−27 kg.
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created and destroyed without regard to conservation. Similarly, at temperatures T < Tc Bose-
Einstein “particles" assume the property that they can be created and destroyed without regard
to number conservation. Here physical particles are freely disappearing into and emerging from a
condensate that no longer keeps track of particle number – condensate particle number has large
uncertainty with the uncertainty relation10 ΔnΔcos θ ≈ 1

2
describing the trade-off. The condensate

“wavefunction" is a superposition of states with different particle numbers – becoming instead a
coherent phase of matter. An emergent property of the condensate is classical phase.

In analogy with laser light (and superconductors) – which surrender particle number certainty
to acquire “good" phase – the condensate behaves like a classical macroscopic wave with definite
(or nearly definite) phase. Also in analogy with the photon vacuum, the condensate acts like a
Bose-Einstein particle vacuum, i.e. as temperature increases particles return from the condensate
(vacuum) into the ideal BE gas phase and vica versa.

The density of “missing" particles (the number subsumed into the condensate) is

(
⟨NBE

op ⟩
V

)
superfluid

= (N
V
)
T>Tc

− (N
V
)
T<Tc

. (16.32)

Therefore integrating Eq.16.22 to get

(
⟨NBE

op ⟩
V

)
T<Tc

= Γ (3/2) ζ (3/2)
4π2

( 2m
βh̵2

)
3/2

(16.33)

then taking its ratio with Eq.16.29 gives

(
⟨NBE

op ⟩
V

)
T<Tc

/(
⟨NBE

op ⟩
V

)
T>Tc

= (T /Tc)3/2 . (16.34)

The mystery of the “missing" bosons has been “solved". Specifically,

(
⟨NBE

op ⟩
V

)
superfluid

= (
⟨NBE

op ⟩
V

)
T>Tc

[1 − ( T

Tc
)
3/2

] . (16.35)

At T = 0 all the bosons are subsumed by the condensate, whereas at T = Tc the condensate is empty
(there is no condensate.) (See Figure 16.2.)

A behavior such as Eq.16.35 occurs in certain phase transitions. (See e.g. Chapter 12.) The
exponent 3/2 in the temperature dependence is this phase transition’s critical exponent.

Problems and exercises

16.1 When an ideal Bose-Einstein gas passes through the critical temperature Tc the heat capacity
CV remains constant but its temperature derivative is discontinuous, with

( dCV
dT

)
T+c

− ( dCV
dT

)
T−c

= γβc . (16.36)

Find the value of γ.
10L. Susskind and J. Glogower, “Quantum mechanical phase and time operator", Physica 1, 49-61 (1964).



246 CHAPTER 16. IDEAL BOSE-EINSTEIN SYSTEM

Figure 16.2: Fractional condensate occupation (Eq.16.35) vs. T /Tc.

16.2 Consider an ultra-relativistic Bose-Einstein gas with single particle eigen-energies

ε = h̵c ∣k∣ . (16.37)

a. Show that the single particle density of states is

D (ε) = V

2π2h̵3c3
ε2 . (16.38)

b. Find the critical temperature Tc of the B.E. gas.

16.3 The volume of an n-dimensional sphere with “radius" k is

Vn =
2πn/2

nΓ (n/2) k
n (16.39)

where

k2 =
n

∑
i=1

k2
i . (16.40)

(a) Assuming an n-dimensional Bose-Einstein gas with single particle eigenvalues

ε = h̵2k2

2m
(16.41)
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show that the single particle density of states is

D (ε) = nπn/2

Γ (n/2) (
2m

h̵2
) ε(n/2)−1 . (16.42)

(b) Find the critical temperature Tc for an n-dimensional BE gas.

(c) Show that the two-dimensional BE gas exhibits no Bose-Einstein condensation.
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We are quantifying the cosmos in a different way to open up a new window for
understanding the universe in its earliest times. Researchers have long been working to
test cosmological models for how the universe developed, but previously have not been able
to collect data that could provide a picture this clear.

Lyman Page, Princeton University, WMAP co-investigator (2006)

Chapter 17

Thermodynamics and the cosmic
microwave background

17.1 Introduction

The once super-hot but now cold afterglow from the creation of the universe has been studied by
the satellites COBE1 and WMAP2. WMAP’s continuing task, and that of the European Space
Agency’s Planck satellite, is to measure small-scale temperature anisotropies in the cosmic mi-
crowave background (CMB) in order to better determine cosmological parameters which are a test
of inflationary scenarios.3

The satellite moves through the microwave background with a local group velocity ∣v∣ = 627 ± 22 km sec−1

in the galactic coordinate4 direction (� ∶ 276○ ± 3○ , b ∶ 33○ ± 3○) relative to the CMB rest frame, so
that WMAP’s local velocity parameter is ∣vc ∣ = 0.002. Relativistic effects will therefore produce
measurable temperature variations that must be subtracted from the total signal.5 This effect was

1COsmic Background Explorer.
2Wilkinson Microwave Anisotropy Probe.
3M. White, and J. D. Cohn, “Resource Letter: TACMB-1: The theory of anisotropies in the cosmic microwave

background", Am. J. Phys. 70, 106-118 (2002).
4A celestial coordinate system centered on the Sun and aligned with the apparent center of the Milky Way galaxy.

The “equator" is aligned to the galactic plane. � represents galactic longitude; b is galactic latitude.
5M. Kamionkowski, and L. L. Knox, “Aspects of the cosmic microwave background dipole", Phys. Rev. D 67,

63001-63005 (2003).
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first calculated exactly by Peebles and Wilkinson (PW)6 only a few years after the discovery of the
CMB.7

The intent in this chapter is not to re-derive the well-known PW result, but is solely for the
purpose of discussing relativity in blackbody thermodynamics by applying the “thermal Lagrangian"
formulation8 and, by happenstance, derive the PW result.

To find thermodynamic properties measured in a frame of reference moving with velocity v through
a blackbody radiation rest frame (CMB), we start with a “thermodynamic" hamiltonian which con-
tains, in addition to the formal electromagnetic quantum hamiltonian, the energy (work) required
to transport the satellite through the radiation field,

Hop = ∑
k

λ=1,2

h̵ωk,λ [a†
k,λak,λ +

1

2
] − ∑

k
λ=1,2

v ⋅ pop , (17.1)

where

pop = h̵ka†
k,λak,λ , (17.2)

and

a†
k,λak,λ = Nop (k, λ) (17.3)

is the photon number operator whose eigenvectors and eigenvalues are given by

a†
k,λak,λ ∣nk,λ⟩ = nk,λ ∣nk,λ⟩ . (17.4)

Here k is the photon wavevector, λ = 1,2 covers the two transverse photon polarizations and
nk,λ = 0,1,2, . . . is the occupation number of photons with wavevector k and polarization λ.

The eigen-energies of the thermodynamic hamiltonian (including the contribution from the satel-
lite’s uniform velocity v relative to the CMB rest frame) are, from Eq.17.1,

E (n) = ∑
k

λ=1,2

h̵ωk,λ [nk,λ +
1

2
] − ∑

k
λ=1,2

v ⋅ h̵knk,λ . (17.5)

6P. J. E. Peebles, and D. T. Wilkinson, “Comment on the anisotropy of the primeval fireball", Phys. Rev. 174,
2168 (1968).

7A. A. Penzias and R. W. Wilson, “A Measurement of Excess Antenna Temperature at 4080 Mc/s", Astrophysical
Journal, 142, 419-421 (1965).

8See Appendix B.
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17.2 Thermodynamic method

Using the eigen-energes of Eq.17.5, the moving frame thermal Lagrangian is

L = − kB ∑
nk,λ

P (nk,λ) lnP (nk,λ)

− 1

τ
∑
nk,λ

P (nk,λ)
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∑
k

λ=1,2

h̵ωk,λ [nk,λ +
1

2
] − ∑

k
λ=1,2

v ⋅ h̵knk,λ

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
− λ0 ∑

nk,λ

P (nk,λ) .

(17.6)

The P (nk,λ) are probabilities that nk,λ photons are in the mode k with polarization λ. Here τ
is the temperature in the moving frame. Maximizing the Lagrangian of Eq.17.6 with respect to
P (nk,λ) (following by now familiar steps) gives, in the moving frame, the probabilities

P (nk,λ) =

exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−β̃ ∑

k
λ=1,2

[h̵ωk,λ (nk,λ + 1
2
) − h̵nk,λ ∣v∣ ∣k∣ cos θ]

⎫⎪⎪⎪⎬⎪⎪⎪⎭

∑
nk,λ

exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−β̃ ∑

k
λ=1,2

[h̵ωk,λ (nk,λ + 1
2
) − h̵nk,λ ∣v∣ ∣k∣ cos θ]

⎫⎪⎪⎪⎬⎪⎪⎪⎭

, (17.7)

where β̃ = (kBτ)−1 and θ is the angle (in the moving frame) between the local velocity vector
v and the direction of CMB observation. The frequency ωk,λ is also in the moving frame. The
denominator in Eq.17.7 is identified as the moving frame blackbody partition function.

17.3 Moving frame thermodynamic potential Ω̃

The thermodynamic entropy S is

S = −kB ∑
nk,λ

P (nk,λ) lnP (nk,λ) , (17.8)

which after substituting the probabilities of Eq.17.7 is evaluated to give

τS = Ũ − v ⋅ ⟨p̃op⟩ +
1

β̃
ln Z̃ , (17.9)

where Ũ is the moving frame blackbody internal energy, ⟨p̃op⟩ is the moving frame average radiation
momentum and Z̃ is the moving frame blackbody partition function. We can now define a moving
frame thermodynamic potential function

Ω̃ = − 1
β̃
ln Z̃ (17.10)
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where from the denominator of Eq.17.7,

Z̃ = ∏
k

{∑
nk

exp [−h̵β̃nk (ωk − ∣v∣ ∣k∣ cos θ)]}
2

, (17.11)

with “squaring" accounting for the two transverse photon polarizations. Combining Eqs.17.9 and
17.10 we can write

Ω̃ = Ũ − τS − v ⋅ ⟨p̃op⟩ . (17.12)

Moreover, by direct differentiation of Eq.17.8, we find a corresponding thermodynamic identity, i.e.
a moving frame “fundamental thermodynamic equation"

τ dS = dŨ + p̃ dṼ − v ⋅ d ⟨p̃op⟩ , (17.13)

where p̃ is the moving frame radiation pressure. Combining this with the total differential of
Eq.17.12

dΩ̃ = −p̃ dṼ − S dτ − ⟨p̃op⟩ ⋅ dv , (17.14)

from which follow the thermodynamic results

S = −(∂Ω̃
∂τ
)
Ṽ ,v

,

p̃ = −(∂Ω̃
∂Ṽ
)
τ,v

,

⟨p̃op⟩ = −(
∂Ω̃

∂v
)
τ,Ṽ

.

(17.15)

17.3.1 Moving frame blackbody thermodynamics

The partition function of Eq.17.11 is evaluated by first summing over nk to get

Z̃ = ∏
k

⎧⎪⎪⎨⎪⎪⎩

1

1 − exp{−β̃ [h̵c ∣k∣ (1 − ∣v/c∣ cos θ)]}

⎫⎪⎪⎬⎪⎪⎭

2

, (17.16)

where ω = c ∣k∣ has been used. In the CMB rest frame v = 0 and β̃ → β, where β = (kB T0)−1 with
T0 the CMB rest frame temperature.

The moving frame thermodynamic potential is

Ω̃ = − 1
β̃
ln Z̃ (17.17)

= 2

β̃
∑
k

ln{1 − exp{−β̃ [h̵c ∣k∣ (1 − ∣v/c∣ cos θ)]}} . (17.18)
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In the large volume limit this is expressed as the integral

Ω̃ = Ṽ

2π2β̃

2π

∫
0

dϕ

π

∫
0

dθ sin θ

∞

∫
0

d ∣k∣ ∣k∣2 ln{1 − exp [−β̃h̵c ∣k∣ (1 − ∣v/c∣ cos θ)]} , (17.19)

which, with the change in variable

z = β̃h̵c (1 − ∣v/c∣ cos θ) (17.20)

dz = β̃h̵c ∣v/c∣ sin θ dθ (17.21)

followed by an integration by parts, is

Ω̃ = − π2k4
B

45h̵3c3
× Ṽ τ4

(1 − ∣v/c∣2)
2
. (17.22)

Using this result with Eq.17.15, the moving frame radiation pressure is

p̃ = π2k4
B

45h̵3c3
× τ4

(1 − ∣v/c∣2)
2
. (17.23)

Again applying Eq.17.15, we find an expression for the “moving frame" entropy

S = 4

3
× π2k4

B

45h̵3c3
× Ṽ τ3

(1 − ∣v/c∣2)
2
. (17.24)

However, in the CMB rest frame

S0 =
4

3
× π2k4

B

45h̵3c3
× V0T

3
0 , (17.25)

where V0 is a rest frame volume and T0 is the rest frame temperature. But entropy is not altered
by changing reference frames,9 so that S = S0. In the moving frame the rest frame volume is
Lorentz-contracted,

Ṽ = V0

√
1 − ∣v/c∣2 , (17.26)

so that equating Eqs.17.24 and 17.25 gives

1

[1 − ∣v/c∣2]
3/2 τ

3 = T 3
0 (17.27)

so that

τ = T0 [1 − ∣v/c∣2]
1/2

, (17.28)

9N. G. Van Kampen, “Relativistic thermodynamics of moving systems", Phys. Rev. 173, 295 (1968).
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which is the Lorentz transformation for temperature.10

Completing this part of the discussion, an application of Eq.17.15 gives

⟨p̃op⟩ = −
4k4

Bπ2vτ4Ṽ

45h̵3c5 (1 − ∣v/c∣2)
3
. (17.29)

Finally, with Eqs.17.22, 17.24 and 17.29, we get from Eq.17.12 the moving frame radiation field
internal energy Ũ

Ũ = π2k4
BṼ

15h̵3c3

(1 + 1
3
∣v/c∣2)

(1 − ∣v/c∣2)
3
τ4 (17.30)

or

Ũ = U0
(1 + 1

3
∣v/c∣2)

(1 − ∣v/c∣2)
1/2 , (17.31)

where

U0 =
π2k4

BT 4
0 V0

15h̵3c3
(17.32)

is the rest frame radiation field energy (see Eq.14.37).11 Finally, since entropy is Lorentz invariant,
for quasi-static heat transfer

dS = d̃−Q
τ
= d−Q

T0
(17.33)

so that

d̃−Q = d−Q(1 − v2

c2
)
1/2

. (17.34)

17.4 Radiation energy flux

That part of the CMB anisotropy (frequency ωk,λ and velocity v at a particular angle θ with respect
to the local group velocity) which arises solely from satellite motion with respect to the microwave
CMB rest frame, provides a “base" anisotropy to be subtracted12 from the microwave signal in
order to obtain the anisotropy of the 13.7 billion year old CMB fireball itself.

10D. Mi, H. Y. Zhong and D. M. Tong, “Different proposals for relativistic temperature transforms: Whys and
wherefores", Mod. Phys. Lett. 24, 73-80 (2009).

11C Mo/ller, The Theory of Relativity, Clarendon Press, Oxford (1952).
12Along with other known galactic radiation corrections
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For this we write the Poynting vector S (θ,v) (energy per unit time per unit detector area) observed
from the angle θ with respect to the moving frame velocity v. For a single mode k and one
polarization λ

d ∣Sk,λ (θ,v)∣
dA

= (1/Ṽ ) ch̵ωk,λ ⟨ñ (k, λ; θ,v)⟩
k

∣k∣ ⋅
v

∣v∣ , (17.35)

where Sk,λ (θ,v) is the radiation flux for the mode k with polarization λ, and ⟨ñ (k, λ; θ,v)⟩ is the
moving frame average photon occupation number. Using Eq.17.7 we find directly

⟨ñ (k, λ; θ,v)⟩ = 1

eβ̃h̵ (ωk,λ − ∣v∣ ∣k∣ cos θ) − 1
, (17.36)

which is a Bose-Einstein average occupation number. With ωk,λ = c ∣k∣ and in the large volume
limit the sum in Eq.17.35 – including both polarizations – becomes, per unit solid angle dΩ, the
integral

d2 ∣Sk,λ (θ,v)∣
dA dΩ

= 2Ṽ

(2π)3
(1/Ṽ ) c2h̵

∞

∫
0

d ∣k∣ ∣k∣3

eβ̃h̵c ∣k∣ [1 − (∣v∣ /c) cos θ] − 1
. (17.37)

Integrating over all modes k for a particular radiation reception angle θ gives

d2 ∣Sk,λ (θ,v)∣
dA dΩ

= π

60c2h̵3 (1 − ∣v/c∣ cos θ)4 β̃4
(17.38)

= πk4
BT 4

0 (1 − ∣v/c∣)
2

60c2h̵3 (1 − ∣v/c∣ cos θ)4
. (17.39)

In other words, the moving observer’s Planck radiation function is

u (ω,T0; θ,v) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
exp

⎡⎢⎢⎢⎢⎢⎣

h̵ω (1 − ∣v/c∣ cos θ)

kBT0

√
1 − ∣v/c∣2

⎤⎥⎥⎥⎥⎥⎦
− 1
⎫⎪⎪⎪⎬⎪⎪⎪⎭

−1

(17.40)

and the moving frame temperature for the admittance angle θ is

τ (θ,v) =
T0

√
1 − ∣v/c∣2

(1 − ∣v/c∣ cos θ) (17.41)

which is the PW result.

The sensitivity of modern microwave satellite detectors assures that relativistic temperature anisotropy
effects will be observable up to several multipole orders. These have to be carefully subtracted in
order to extract the significant underlying cosmological information. Eq.17.41 is essential to such
analyses.

Problems and exercises

17.1 Find an expressions in terms of rest values H0, F0, G0 for:
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(a) moving frame blackbody enthalpy H̃ ;

(b) moving frame blackbody Helmholtz potential F̃ ;

(c) moving frame blackbody Gibbs potential G̃ .



Appendix A

How pure? An inequality

A.1 0 < Tr (ρτ
op)

2
≤ 1

For the general mixed state

Tr (ρτop)
2 = ∑

i,j,n

⟨n ∣ ψi⟩wi ⟨ψi ∣ ψj⟩wj ⟨ψj ∣ n⟩ , (A.1)

which is rearranged to read

Tr (ρτop)
2 = ∑

i,j,n

wi ⟨ψi ∣ ψj⟩wj ⟨ψj ∣ n⟩ ⟨n ∣ ψi⟩ . (A.2)

Explicitly carrying out the trace operation (sum over n)

Tr (ρτop)
2 = ∑

i,j

wi ⟨ψi ∣ ψj⟩wj ⟨ψj ∣ ψi⟩ . (A.3)

"Sharing" the classical (real, positive) probabilities wk among the terms

Tr (ρτop)
2 = ∑

i,j

⟨ψi
√
wi ∣ ψj

√
wj⟩ ⟨ψj

√
wj ∣ ψi

√
wi⟩ . (A.4)

By the Schwartz inequality

∑
i,j

⟨ψi
√
wi ∣ ψj

√
wj⟩ ⟨ψj

√
wj ∣ ψi

√
wi⟩

≤ {∑
i

⟨ψi
√
wi ∣ ψi

√
wi⟩}

⎧⎪⎪⎨⎪⎪⎩
∑
j

⟨ψj
√
wj ∣ ψj

√
wj⟩
⎫⎪⎪⎬⎪⎪⎭

(A.5)

or

0 < Tr (ρτop)
2 ≤ (Trρτop)

2 = 1 (A.6)

257



258 APPENDIX A. HOW PURE? AN INEQUALITY



Appendix B

Bias and the thermal Lagrangian

B.1 Properties of F

We seek a functional1 of probabilities F(P1, P2, P3, . . . ) that serves as a mathematical measure of
“bias" (uncertainty). The possibilities for F can be considerably narrowed by imposing reasonable
properties:2

1. Probabilities Ps are normalized to unity.

2. F(P1, P2, P3, . . . ) is a continuous function of the Ps.

3. Any incremental changes in any of the Ps produce only incremental changes in F(P1, P2, P3, . . .).
4. F(P1, P2, P3, . . .) is a symmetric function of its arguments. No change in ordering of the

arguments can change the value of the function.

5. F(P1, P2, P3, . . .) is a minimum when all probabilities but one are zero (only one possible
outcome – completely biased).

6. F (P1, P2, P3, . . .) is a maximum when all probabilities are equal (completely unbiased).

7. If an event of zero probability is added to the set, the value of the function remains unchanged,
i.e.

F (P1, P2, P3, . . . ,0) = F (P1, P2, P3, . . . ) . (B.1)

8. For the case in which all probabilities Ps are equal i.e.

P1 = p,P2 = p,P3 = p, . . . , Pn = p , (B.2)

a function f (n) is defined

F (p, p, p, . . . , Pn = p) ≡ f (n) (B.3)
1The abbreviation P (εs) ≡ Ps is used.
2J. N. Kapur, Maximum Entropy Models in Science and Engineering, John Wiley and Sons, New York (1989).
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such that f (n) is a monotonically increasing function of n. (More distinct outcomes mean
decreasing bias; fewer mean increased bias).

9. There is an addition rule for combining “bias" functions of independent events. For example
consider two independent probability distributions corresponding to events P and Q,

P = {P1, P2, P3, . . . , Pn} , (B.4)
Q = {Q1,Q2,Q3, . . . ,Qm} , (B.5)

with “bias" functions

FP (P1, P2, P3, . . . , Pn) , (B.6)
FQ (Q1,Q2,Q3, . . . ,Qm) . (B.7)

Let there be a set of joint events

P ∪Q = {P1Q1, P1Q2, . . . , P2Q1, P2Q2, P2Q3, . . . , PmPn} (B.8)

with “bias" function

FP∪Q (P1Q1, P1Q2, . . . , P2Q1, P2Q2, P2Q3, . . . , PmPn) . (B.9)

The addition rule is

FP∪Q (P1Q1, P1Q2, . . . , P2Q1, P2Q2, P2Q3, . . . , PmPn)
= FP (P1, P2, P3, . . . , Pn) + FQ (Q1,Q2,Q3, . . . ,Qm) . (B.10)

The addition rule excludes, for example, forms like purity I.

10. In the special case that all probabilities are equal, applying Eq.B.3 together with the addition
rule Eq.B.10 gives

f (n ×m) = f (n) + f (m) (B.11)

and

f (my) = yf (m) ; y > 0 . (B.12)

B.2 The “bias" function

From Eq.B.11 we can guess a solution

f(m) = κ lnm (B.13)

and since f (m) is a monotonically increasing function of m, κ is a positive constant. In particular,
since there are m events with equal probability p, that probability must be p = 1/m, so

F (p, p, p, . . .) = −κmp lnp (B.14)
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which, in the present restricted case p1 = p2 = p3 = . . . pm, may be written

F (p, p, p, . . .) = −κ
m

∑
r=1

pr lnpr . (B.15)

Relaxing this restriction to include pr that differ in value, say Pr, the result becomes a general
“bias" function

F (P1, P2, P3, . . . Pm) = −κ
m

∑
r=1

Pr lnPr (B.16)

which has the form of Gibbs-Shannon entropy.

B.3 A thermal Lagrangian

The method chosen for determining the “best" P (εs) is to:

1. Minimize the average total energy

⟨H⟩ =
n

∑
r=1

P̃ (εr) εr (B.17)

with respect to variations in the P̃. Here εr are macroscopic eigen-energies of the hamiltonian,

H = h0 − ∑
m=1

Xmxm (B.18)

and where Xm and xm are conjugate intensive and extensive variables, respectively (see
Eq.6.12);

2. Simultaneously minimize bias among the P̃ by maximizing the “bias" functional (see Eq.B.16)

F [P̃] = −κ
n

∑
r=1

P̃ (εr) ln P̃ (εr); (B.19)

3. Maintain normalization
n

∑
r=1

P̃ (εr) = 1 . (B.20)

Forming Λ [P̃], a functional combining “bias" and average energy with a Lagrange multiplier λ0 to
enforce normalization of the P̃ (εr),

Λ [P̃] = {−κ
n

∑
r=1

P̃ (εr) ln P̃ (εr) −
n

∑
r=1

P̃ (εr) εr} − λ0

n

∑
r=1

P̃ (εr) . (B.21)

Λ [P̃] is then maximized with respect to the P̃ (εr) by setting the functional derivatives δΛ/δP̃
equal to zero

δΛ

δP̃
= 0 = − κ (ln P̃ (εr) + 1) − εr − λ0 ; r = 1,2, . . . , n (B.22)
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along with

n

∑
r=1

P̃ (εr) = 1 . (B.23)

The “best" P (εr) are then

P (εr) =
exp (−κ−1εr)

Z (B.24)

where

Z =
n

∑
s=1

exp (−κ−1εs) , (B.25)

with κ still to be determined.

Taking the constant κ→ kBT the functional Λ [P̃] becomes

L [P] = −kB
n

∑
r=1

P (εr) lnP (εr) −
1

T

n

∑
r=1

P (εr)εr − λ0

n

∑
r=1

P (εr) . (B.26)

Now, identifying the entropy

S = −kB
n

∑
r=1

P (εr) lnP (εr) (B.27)

and β = (kBT )−1,

P (εr) =
exp (−βεr)

Z , (B.28)

with

Z =
n

∑
s=1

exp (−βεs) (B.29)

this becomes identical to determining the equilibrium thermodynamic configuration by maximizing
a negative Helmholtz potential functional −F [P] (see Subsection 5.1.3).



Appendix C

Euler’s homogeneous function
theorem

C.1 The theorem

If f (x1, x2, x3, . . . , xN) is a function with the property

f (λx1, λx2, λx3, . . . , λxN) = λn f (x1, x2, x3, . . . , xN) , (C.1)

it is said to be homogeneous of order n. Then, according to Euler’s homogeneous function theo-
rem,

N

∑
i=1

xi (
∂f

∂xi
) = nf (x1, x2, . . . , xN) . (C.2)

C.2 The proof

Differentiating Eq.C.1 with respect to λ

d

dλ
f (λx1, λx2, λx3, . . . , λxN) =

d

dλ
λn f (x1, x2, x3, . . . , xN) . (C.3)

But

d

dλ
f (λx1, λx2, . . . , λxN) =

N

∑
i=1

∂f

∂ (λxi)
d (λxi)

dλ
(C.4)

=
N

∑
i=1

∂f

∂ (λxi)
xi (C.5)
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and

d

dλ
λn f (x1, x2, x3, . . . , xN) = nλn−1f (x1, x2, x3, . . . , xN) . (C.6)

Now, setting λ = 1,

N

∑
i=1

xi (
∂f

∂xi
) = nf (x1, x2, . . . , xN) . (C.7)



Appendix D

Occupation number and the partition
function

Explicit determination of the “eigenstate” degeneracy g(E)1 has been used in arriving at Eq.8.6. In
some circumstances this is too limited or inconvenient for calculating a partition function.

A different method is demonstrated by reconsidering the two-level Schottky problem of Section 8.2.
The macroscopic eigen-energies may be written with a different emphasis as

E {[ n1
1

n1
2
] ; [ n2

1

n2
2
] ; [ n3

1

n3
2
] ; . . . [ nN

1

nN
2
]} =

N

∑
j=1
(ε1nj

1 + ε2n
j
2) (D.1)

where

[ nj
1

nj
2

] (D.2)

represent jth atom occupation number pairs, which for the two-level example of Section 8.2 – where
only ε1 or ε2 can be occupied on each atom – are

( nj
1 = 1

nj
2 = 0

) and ( nj
1 = 0

nj
2 = 1

) . (D.3)

The sum over j in Eq.D.1 is over all atom occupation pairs. Using Eq.D.1 the partition function

1Similar to Boltzmann’s “microstate” count, i.e. his classical idea of an “internal energy degeneracy".
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is

Z = ∑
⎡⎢⎢⎢⎢⎣

n1
1

n1
2

⎤⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎣

n2
1

n2
2

⎤⎥⎥⎥⎥⎦
,...,

⎡⎢⎢⎢⎢⎢⎣

nN
1

nN
2

⎤⎥⎥⎥⎥⎥⎦

exp

⎧⎪⎪⎨⎪⎪⎩
−β

N

∑
j=1
(ε1nj

1 + ε2n
j
2)
⎫⎪⎪⎬⎪⎪⎭

(D.4)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
⎡⎢⎢⎢⎢⎣

n1

n2

⎤⎥⎥⎥⎥⎦

exp{−β(ε1n1 + ε2n2)}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

N

, (D.5)

where the remaining sum is over the occupation pair

[ n1

n2
] ≡ ( 1

0
) and ( 0

1
) , (D.6)

i.e. there are only two terms, which gives

Z = (e−βε1 + e−βε2)N . (D.7)



Appendix E

Density of states

E.1 Definition

The density of states D (ω) of a quantum system is simply the number of states at the energy
level ω. This number is determined by sifting through all the quantum eigen-energies εs of the
system and counting how many belong in the energy bin ε = ω. If there is degeneracy among the
eigen-energies, e.g., ε1 = ε2 = . . . = εg = ω, all g of these degenerate energies must find their way into
the energy bin ω.

Finding a density of states D (ω) is a mathematical counting process defined by

D (ω) = ∑
s

δ (ω − εs) , (E.1)

where δ (ω − εs) is the Dirac delta function which carries out the task of adding εs to the number
of states accumulating in bin ω.

The Dirac delta function has the property of a well-chosen unity in the sense that

1 =
∞

∫
−∞

dω δ (ω − εs) . (E.2)

In calculating a density of states the eigen-energy subscript s is usually replaced by quantum
numbers that identify the eigen-energies, so that counting in Eq.E.1 can take place over quantum
numbers.

E.2 Examples

Particles in one-dimension

Consider a one-dimensional system of independent particles with only kinetic energy
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ε (k) = h̵2k2

2m
, (E.3)

where

−∞ < k < ∞ . (E.4)

Here εs in Eq.E.1 is replaced by ε (k), where k is the free particle quantum number and the density
of single particle states is written

D (ω) = ∑
k

δ [ω − ε (k)] (E.5)

= ∑
k

δ [ω − h̵2k2

2m
] (E.6)

with the sum over εs replaced by a sum over k.

The property of the Dirac delta function that is used in density of states calculations is

δ [f (k)] = ∑
k0

δ (k − k0)
∣ d
dk

f (k)∣
k=k0

(E.7)

where k0 denotes the zeros of f (k)

f (k0) = 0 (E.8)

and the sum in Eq.E.7 is over k0, all the zeros of f (k).
In this one-dimensional case where

D (ω) = ∑
k

δ [f (k)] (E.9)

with

f (k) = ω − h̵2k2

2m
, (E.10)

locating its zeros we find the pair

k01 = +
√

2mω

h̵2
(E.11)

and

k02 = −
√

2mω

h̵2
. (E.12)
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Next, the denominator in Eq.E.7 is evaluated,

∣ d

dk
f (k)∣

k=k01

= h̵2 ∣k01∣
m

, (E.13)

∣ d

dk
f (k)∣

k=k02

= h̵2 ∣k02∣
m

, (E.14)

so that, finally, the density of states is written

D (ω) = ∑
k

⎧⎪⎪⎪⎨⎪⎪⎪⎩

δ (k − k01)
h̵2

m

√
2mω
h̵2

+ δ (k − k02)
h̵2

m

√
2mω
h̵2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
. (E.15)

In the case of a macroscopically long line of particles the k-values become closely spaced so that in
one-dimension the “sum" becomes the integral

∑
k

→ L

2π

∞

∫
−∞

dk , (E.16)

where L is the line length.1,2

The integral is easily evaluated to give

D (ω) = L

π

√
m

2h̵2ω
. (E.19)

The density of single-particle states is customarily given per unit length,

D (ω)
L

= 1

π

√
m

2h̵2ω
. (E.20)

If there is spin degeneracy a factor g may be included,

D (ω)
L

= g
1

π

√
m

2h̵2ω
. (E.21)

where g = 2 in the case spin = ½.

1In two-dimensions

∑
k

→ A

(2π)2
∞

∫
−∞

∞

∫
−∞

dkx dky (E.17)

with A the two-dimensional area.
2In three-dimensions

∑
k

→ V

(2π)3
∞

∫
−∞

∞

∫
−∞

∞

∫
−∞

dkx dky dkz (E.18)

with V the 3 −D volume.
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The Debye model

In the case of the three-dimensional Debye model3

ω = ⟨cs⟩ ∣k∣ . (E.22)

Therefore, since the zero of Eq.E.22 is

∣k∣0 = ω/⟨cs⟩ , (E.23)

we can write

D (ω) = V

(2π)3
⎡⎢⎢⎢⎢⎣
4π

∞

∫
0

1

⟨cs⟩
δ (∣k∣ − ω/⟨cs⟩) ∣k∣2 d ∣k∣

⎤⎥⎥⎥⎥⎦
(E.24)

to finally give

D (ω) = 3V

2π2

ω2

⟨cs⟩3
(E.25)

where the approximated mode degeneracy (1 longitudinal+ 2 transverse) is accounted for by the
inserted factor g = 3.

3In this example the distinction between longitudinal (1 mode) and transverse (2 modes) phonons is ignored,
using instead an average speed of sound ⟨cs⟩ and a degeneracy g = 3.



Appendix F

Lab experiment in elasticity

F.1 Objectives

Here we will explore the possibility of finding the microscopic interchain interaction energy ε for
a particular elastomer sample using macroscopic thermodynamic measurements. The experiment
also serves to emphasize the physical meaning and importance of the partial derivatives that are
crucial in applying thermodynamics.

The experiment is based on the theoretical discussion in Section 10.5 on a non-ideal elastomer
model. We start by writing elastic tension τ as a function of length L = ⟨Lz⟩ and temperature T ,
i.e. τ = τ (L,T ) . The corresponding tension differential is

dτ = ( ∂τ
∂L
)
T
dL + ( ∂τ

∂T
)
L
dT. (F.1)

If we perform an experiment in which a rubber band’s length L is held fixed, the tension differential
becomes

dτ = ( ∂τ
∂T
)
L
dT. (F.2)

Furthermore, applying a Maxwell relation

(∂S
∂L
)
T
= −( ∂τ

∂T
)
L

, (F.3)

we can replace Eq. F.2 by

dτ = −(∂S
∂L
)
T
dT (F.4)

which demonstrates that −(∂S/∂L)T , a quantity in which we have some interest (see the discussion
below), is the slope on a τ vs. T curve acquired at fixed elastomer length.

Now, consider the Helmholtz potential F

F = U − TS (F.5)
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and its derivative with respect to L at constant T

(∂F
∂L
)
T
= (∂U

∂L
)
T
− T (∂S

∂L
)
T

. (F.6)

Taking the total differential of Eq. F.5 and combining it with the fundamental equation we have

dF = −S dT + τ dL (F.7)

from which we note
(∂F
∂L
)
T
= τ . (F.8)

Figure F.1: Experimental arrangement for measurement of τ vs. T. Add boiling water to the glass
tube or fill the tube with acetone and dry ice ≈ −78 C. Then allow the system to approach room
temperature.

Then we can rewrite Eq.F.6 as

τ = −T (∂S
∂L
)
T
+ (∂U

∂L
)
T

(F.9)

which is equivalent to having integrated Eq. F.4.

According to Eqs.F.4 and F.9, if we fix the length of a rubber band and measure the tension τ
while varying temperature T, the slope of the curve at any temperature is −(∂S/∂L)T while the
τ -intercept (at T = 0) is (∂U/∂L)T , which is another quantity of interest. In fact comparing

∣T (∂S
∂L
)
T
∣ , (F.10)

obtained from the slope, with

∣ (∂U
∂L
)
T
∣ , (F.11)

obtained from the τ -intercept, it is possible to assess the relative importance of entropy vs. internal
energy to an elastomer’s elasticity. This is one motivation for the proposed experiment, although
not the prime objective.
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F.2 Results and Analysis

The suggested apparatus for the experiment is illustrated in Figure F.1.

1. Using the Vernier instrumentation and “Logger Pro" computer software, obtain best τ vs.T
linear fits to the data. Identify the values of the slope and the τ−intercept.

2. Determine if the elasticity of this rubber band is entropy or internal energy driven?

3. Now we must see what the experiment can say about the parameter ε. According to the
model’s thermodynamics as expressed in Eqs. 10.78 and 10.80 of Chapter 10,

(∂S
∂L
)
T
= −kBβ {τ + 2ε sinh (βaτ)

a [eβε + 2 cosh (βaτ)]} . (F.12)

Verify this result.

Also, from Eqs. 10.78 and 10.81

(∂U
∂L
)
T
= − 2ε sinh (βaτ)

a [eβε + 2 cosh (βaτ)] . (F.13)

Verify this result.

Now expand Eqs. F.12 and F.13 for small τ. The resulting series have only odd powers of τ.
Do the same thing with the Equation of State (Eq.10.78) and use that result to eliminate τ
from each of the expansions obtained from F.12 and F.13. This gives

(∂S
∂L
)
T
≅ −kB [1 + 2e−βε (1 + βε)] (L/Na2) . (F.14)

Verify this result.

It also gives

(∂U
∂L
)
T
≅ −2ε e−βε (L/Na2) . (F.15)

Verify this result.

4. Evaluate Eqs. F.14 and F.15 in the limit ε → 0. Compare these results with ideal gas
counterparts, i.e. (∂S/∂V )T and (∂U/∂V )T .

5. To this order the ratio of Eq. F.14 and Eq. F.15 does not contain the length parameter L/Na2

and can therefore be used to estimate the interaction energy ε.

6. Use the experimental results to evaluate ε and (L/Na2) . (You may have to use Maple or
Mathematica to solve the equations.)



274 APPENDIX F. LAB EXPERIMENT IN ELASTICITY



Appendix G

Magnetic and electric fields in
matter

G.1 Introduction

Magnetic and electric fields and their response functions (magnetization and polarization) are gener-
ally defined, consistent with Maxwell’s equations, as local averages over microscopic regions. Except
for special sample geometries and field orientations, these fields within matter:

• Differ from external fields;

• Are non-uniform inside matter and in the surrounding free space.

This can make thermodynamic calculations and experimental interpretation a non-trivial prob-
lem.1

G.2 Thermodynamic potentials and magnetic fields

With magnetic work, as in Eq.11.10, the fundamental equation becomes

TδS = δU + p dV − 1

4π
∫
V

H ⋅ δB dV . (G.1)

1Experimentalists strive to fabricate samples which conform to special geometries for which internal demagnetizing
fields are usually – but not always – negligible.
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The Helmholtz potential differential δF is

δF = −S dT − p dV + 1

4π
∫
V

H ⋅ δB dV . (G.2)

The enthalpy differential δH is

δH = TδS + V dp − 1

4π
∫
V

B ⋅ δH dV . (G.3)

The Gibbs potential differential δG is

δG = −S dT + V dp − 1

4π
∫
V

B ⋅ δH dV . (G.4)

These results are based on average local fields (Maxwell’s equations) and are valid for any mechanism
of magnetization. They include, in principle, internal interactions.

G.3 Work and uniform fields

In quantum magnetic (electric) models, hamiltonians for magnetic (electric) moments depend only
on the the field present before the sample is introduced. After the sample is introduced interactions
between internal moments can produce magnetic effects (effective fields) acting in addition to the
external field, as can internal currents. In some circumstances fictitious surface “poles" (induced by
the external field) produce internal, geometry dependent “demagnetizing" fields.

Therefore microscopic based theory and experiment can be properly compared if magnetic models
use practical expressions for thermodynamic work in which matter is modeled as being inserted
into previously uniform external fields2,3,4 B0, E0 (see Section 11.9). To the experimentalist this
means:

• Constraining free currents associated with the external field H0 to remain unchanged when
matter is inserted into the field, so that ∇×H = ∇ ×H0 ;

• Constraining free charges associated with the external field D0 to remain unchanged when
matter is inserted into the field, so that ∇ ⋅ D = ∇ ⋅ D0 .

2LD Landau, LP Pitaevskii, EM Lifshitz,“Electrodymanics of Continuous Media", 2nd Edition, Elsevier Amster-
dam (1984).

3V. Heine, “The Thermodynamics of Bodies in Static Electromagnetic Fields", Proc. Camb. Phil. Soc. 52,
546-552 (1956).

4E. A. Guggenheim, “Thermodynamics: An Advanced Treatment for Chemists and Physicists, North-Holland,
Amsterdam, 1967.
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Because magnetization M and polarization P are both zero in the absence of matter, the defining
constitutive relations for H and D ,

H = B − 4πM , (G.5)
D = E + 4πP , (G.6)

specify that before the sample is introduced H0 = B0 and D0 = E0 . After the sample is introduced
B, H , E and D become the local average fields.

From this point we examine only magnetic contributions, the electric field case being formulated
by parallel arguments.

For the uniform pre-existant field (prior to insertion of matter) B0 =H0 and we can construct the
identity

1

4π
∫
V

B0 ⋅ δB dV − 1

4π
∫
V

H0 ⋅ δB dV = 0 , (G.7)

and use it to construct yet another identity for the difference between magnetic work with average
Maxwellian fields (see Eq.11.9) and magnetic energy of the uniform field before matter is introduced,
namely

1

4π
∫
V

H ⋅ δB dV − 1

4π
∫
V

B0 ⋅ δB0 dV

= 1

4π
∫
V

(H −H0) ⋅ δB dV + 1

4π
∫
V

B0 ⋅ (δB − δB0) dV .

(G.8)

Using the constitutive equation relating B and H

(H −H0) = (B − B0) − 4πM (G.9)

so that

(δH − δH0) = (δB − δB0) − 4πδM , (G.10)

where B0 and H0 are the prior existing fields, allows the right-hand side of Eq.G.8 to be re-expressed
in terms of magnetization as

1

4π
∫
V

H ⋅ δB dV − 1

4π
∫
V

B0 ⋅ δB0 dV

= 1

4π
∫
V

(H −H0) ⋅ δB dV + 1

4π
∫
V

B0 ⋅ [(δH − δH0) + 4πδM] dV

= 1

4π
∫
V

(H −H0) ⋅ δB dV + 1

4π
∫
V

B0 ⋅ (δH − δH0) dV + ∫
V

B0 ⋅ δM dV . (G.11)



278 APPENDIX G. MAGNETIC AND ELECTRIC FIELDS IN MATTER

Applying

B = ∇ ×A , (G.12)
δB = ∇ × δA , (G.13)
B0 = ∇ ×A0 , (G.14)

δB0 = ∇ × δA0 , (G.15)

where A and A0 are static magnetic vector potentials, the first term on the final line of Eq.G.11
is

1

4π
∫
V

(H −H0) ⋅ ∇ × δA dV (G.16)

and the second term is
1

4π
∫
V

(∇ ×A0) ⋅ (δH − δH0) dV . (G.17)

Then, with the vector identity

U ⋅ ∇ × V = V ⋅ ∇ ×U +∇ ⋅ (V ×U) (G.18)

the integral G.16 is transformed

1

4π
∫
V

(H −H0) ⋅ ∇ × δA dV

→ 1

4π
∫
V

δA ⋅ ∇ × (H −H0) dV −
1

4π
∫
V

∇ ⋅ [δA× (H −H0)] dV . (G.19)

Similarly, the integral G.17 is transformed

1

4π
∫
V

(∇ ×A0) ⋅ (δH − δH0) dV

→ 1

4π
∫
V

A0 ⋅ ∇ × (δH − δH0) dV − 1

4π
∫
V

∇ ⋅ [A ⋅ ∇ × (δH − δH0)] dV . (G.20)

Both resulting integrals, Eqs.G.19 and G.20, are zero since:

• The currents that create the external field are constrained to remain unchanged when in-
troducing the sample into the field. Therefore in the first terms of each of these integrals,
∇× (H −H0) = 0 = ∇ × (δH − δH0).

• The second term of each integral can be turned into a surface integral (Gauss’ Theorem) on
a very distant surface where static (non-radiative) fields fall off faster than 1

r2
.

With these simplifications Eq.G.11 is rearranged to become

1

4π
∫
V

H ⋅ δB dV = 1

4π
∫
V

B0 δB0 dV + ∫
V ′

B0 ⋅ δM dV . (G.21)
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The left-hand side is the magnetic work with average local fields while the right hand side in-
volves:

• the total magnetic field energy before insertion of matter;

• the energy associated with the magnetic material in the prior existing external field, B0.

Since B0 is constant and M= 0 outside matter, the volume in the second term, V ′, covers magne-
tized material only. Therefore, whether or not M is uniform,

M = ∫
V ′

M dV , (G.22)

where M is the total magnetization. The final result is therefore

1

4π
∫
V

H ⋅ δB dV = V

8π
δ(B0)2 + B0 ⋅ dM . (G.23)

Applying Eq.G.1 the resulting thermodynamic relations are

T dS = dU∗ + p dV − B0 ⋅ dM , (G.24)

T dS = dH ∗ − V dp +M ⋅ dB0 , (G.25)

dF ∗ = −S dT − pdV + B0 ⋅ dM , (G.26)

dG∗ = −S dT + V dp −M ⋅ dB0 , (G.27)

each having the advantage of B0 being a simple independent variable rather than a function of
position. (The field energies V δ (B0)2 /8π have been included in the internal energy and hence into
the thermodynamic potentials, which are now distinguished by superscripted stars.)

G.4 Thermodynamics with internal fields

But of course there is no free lunch. Although the potentials F ∗ and G∗, as defined in Eqs.G.26
and G.27, are convenient thermodynamic state functions (with mathematical properties discussed
in Chapter 4), they take no account of effective contributions to B from the remaining magnetized
matter. However they can be used in the usual thermodynamic calculations where, say, from
Eq.G.27 the magnetization M is given by

M = −(∂G
∗

∂B0
)
p,T

, (G.28)
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but it is a magnetization that takes no account of any internal fields. They are not true free
energies.

Nor do they carry information about currents and fields inside matter. For example the kinetic
energy in the hamiltonian cannot simply be p2/2m because that would ignore consequences of the
external field within matter. The kinetic energy should be

H = 1

2m
{p − e

c
(A0 +A)}

2

, (G.29)

where A0 is an external vector potential and A is the internal vector potential whose source is the
currents induced by the external field and which interacts with internal currents via the interaction
hamiltonian A ⋅ p.

Specifically, the final term in the mean field decomposition in Chapter 11

mop (i′)mop (i) = [mop (i′) − ⟨mop⟩] [mop (i) − ⟨mop⟩]
+mop (i′) ⟨mop⟩ + ⟨mop⟩mop (i) − ⟨mop⟩⟨mop⟩ (G.30)

constitutes an internal magnetic contribution to the Gibbs potential (see Eqs.11.97 and 11.98)

WMFA = −
1

2
Bint ⋅M (G.31)

so that the Gibbs potential G∗ becomes

G̃∗ = G∗ − 1

2
Bint ⋅M (G.32)

= G∗ − zK
2N

M ⋅ M , (G.33)

where G̃∗ denotes this additional dependence on the effective field, Eq.11.97. Furthermore

dG̃∗ = dG∗ − zK
N

MdM (G.34)

= −SdT −MdB0 −
zK
N

MdM (G.35)

= −SdT −Md(B0 +
zK
N

M) (G.36)

= −SdT −MdB∗ , (G.37)

which means that as a result of the internal field the magnetization is now

M = −(∂G̃
∗

∂B∗ )
T

. (G.38)

Therefore, re-examining Eq.11.99 we see a proper role for B∗ in the following way:

M = 1

β
( ∂

∂B∗ lnZM∗)
T

(G.39)

= Nμ½ tanh (βμ½B∗) . (G.40)
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Another internal field of practical importance is the so-called called “demagnetization" field. De-
magnetization is defined through geometrically based factors, ηj (demagnetization factors), which
describe a uniform field Hint,j inside an ellipsoid arising from magnetization

Hint,j =H0,j − 4πηj,kMk , (G.41)

with j = x, y, z. Formally, its source is the fictitious, classical magnetic surface “poles" arising from
the applied field H0. Demagnetization factors (actually tensors) ηj,k depend on sample geometry
and are obviously responsible for magnetic anisotropy. Calculating demagnetization “factors" for
different geometries remains an on-going activity in the field of practical magnetics.5

Applying the constitutive equation

Hint,j = Bint,j − 4πMj (G.42)

to Eq.G.41, we have (ignoring, for simplicity, the tensor character of η) the effective field

Bint,j = B0,j + 4π (1 − η)Mj . (G.43)

5M. Beleggia, M. DeGraff and Y. Millev, “Demagnetization factors of the general ellipsoid", Phil. Mag 86, 2451
(2006).



282 APPENDIX G. MAGNETIC AND ELECTRIC FIELDS IN MATTER



Appendix H

Electromagnetic fields

H.1 Maxwell’s equations

Electric fields E (x, t) and magnetic fields B (x, t) in free space satisfy the differential Maxwell
relations1

∇ ⋅ E(x, t) = 0 , (H.1)
∇ ⋅ B(x, t) = 0 , (H.2)

∇× E(x, t) = −1
c

∂B (x, t)
∂t

, (H.3)

∇×B(x, t) = 1

c

∂E (x, t)
∂t

. (H.4)

Unlike Schrödinger’s wave mechanics, which retains some suggestion of classical particle dynamics,
a quantum theory of radiation is guided by Maxwell’s field relationships and Planck’s “photon"
postulate which Dirac used in his theory of quantum2 fields.

H.2 Electromagnetic waves

In classical theory time-varying electric and magnetic fields propagate in free space as waves with
velocity c. This can be seen by combining the last of Maxwell’s equations, Eq.H.4, with Maxwell’s
first equation, Eq. H.1, to give the wave equation for an electric field

∇2E (x, t) = 1

c2
∂2E (x, t)

∂t2
. (H.5)

1In rationalized c.g.s. units.
2P. A. M. Dirac, “Quantum Theory of Emission and Absorption of Radiation", Proc. Roy. Soc. (London), A114,

243 (1927).
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Similarly, Eqs.H.2 and H.3 are combined for a corresponding wave equation for the magnetic
field

∇2B (x, t) = 1

c2
∂2B (x, t)

∂t2
. (H.6)

H.2.1 Solution in free space – periodic boundary conditions

Imagine a cube with side L and volume V = L3 within which a solution to Eq.H.5 is assumed
consisting of the sum of propagating waves

Ej (x, t) =
1√
V

∞

∫
−∞

dω

2π
∑
k

ej (k, ω) eik⋅xe−iωt , (H.7)

where Ej is the jth component of the Maxwell electric field vector (j = x, y, z) and ej is, corre-
spondingly, the Fourier vector component of the kth propagating wave amplitude. The vector k
in Eq.H.7 defines the spatial direction in which that particular Fourier component propagates (its
direction of propagation.) Each propagation vector k is identified as a mode index.

The solutions within the notional cubic volume are supplemented by sensible (but synthetic) bound-
ary conditions according to which translation in any direction x, y or z by the finite side length L,
results in exactly the same electric fields, i.e.

Ej (x +L, t) = 1√
V

∞

∫
−∞

dω

2π
∑
k

ej (k, ω) eik⋅(x+L)e−iωt = Ej (x, t) . (H.8)

These are called periodic boundary conditions. They are used in nearly all field theories, classical
and quantum. When the cube is finally made large enough to really look like infinite free space it
hardly matters what goes on at the boundaries since the cube’s surface-to-volume ratio is rapidly
diminishing to zero.

But in order for Eq.H.8 to hold, the following restrictions on k must apply:

kxL = 2πnx; nx = 0,±1,±2, . . . , (H.9)
kyL = 2πny; ny = 0,±1,±2, . . . , (H.10)
kzL = 2πnz; nz = 0,±1,±2, . . . , (H.11)

i.e. under periodic boundary conditions the propagation vectors can have only discrete positive and
negative values

kj =
2πnj

L
. (H.12)

However, as can be seen from Eq.H.12, in the limit of a large volume, i.e. L → ∞, the spacing
between successive values of kj becomes infinitesimal. This important result allows the sums in
Eq.H.19 (and other similar sums) to be treated as integrals.
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Properties of wave solutions

Substituting Eq.H.7 into the wave equation Eq.H.5,

∇2
⎧⎪⎪⎨⎪⎪⎩

1√
V

∞

∫
−∞

dω

2π
∑
k

ej (k, ω) eik⋅xe−iωt
⎫⎪⎪⎬⎪⎪⎭
= 1√

V

∞

∫
−∞

dω

2π
∑
k

[−k ⋅ k]ej (k, ω) eik⋅xe−iωt (H.13)

and

1

c2
∂2

∂t2

⎧⎪⎪⎨⎪⎪⎩

1√
V

∞

∫
−∞

dω

2π
∑
k

ej (k, ω) eik⋅xe−iωt
⎫⎪⎪⎬⎪⎪⎭
= 1√

V

∞

∫
−∞

dω

2π
∑
k

[−ω
2

c2
]ej (k, ω) eik⋅xe−iωt , (H.14)

showing that Eq.H.7 is a wave equation solution only if

k2 = ω2

c2
, (H.15)

where

k2 = kx
2 + ky

2 + kz
2 , (H.16)

i.e. the magnitude of the propagation vector k is proportional to the frequency ω.

Of course, the solution must also satisfy the first of Maxwell’s equations, i.e. Eq. H.1, which also
has important implications. Taking the divergence of Eq.H.7 and setting it equal to zero,

∇ ⋅E = 1√
V

∞

∫
−∞

dω

2π
∑
k

[kxex (k, ω) + kyey (k, ω) + kzez (k, ω)]eik⋅xe−iωt = 0 , (H.17)

from which is concluded

k ⋅ e (k, ω) = 0 , (H.18)

i.e. the fourier vector amplitude e (k, ω) must be perpendicular to the propagation vector k. The
fourier vector amplitude e (k, ω) can then be expressed in terms of two mutually perpendicular
unit vectors, ε̂ (k,1) and ε̂ (k,2) – a pair for each mode k – both of which are perpendicular to the
propagation vector k, i.e. ε̂ (k, λ) ⋅k = 0 where λ = 1,2. These two transverse unit vectors are called
electric field polarization vectors.3

In terms of unit polarization vectors the electric field is written

Ej (x, t) =
1√
V

∞

∫
−∞

dω

2π
∑
k

˘=1,2

ε̂ (k, λ) ∣ej,λ∣ (k, ω) eik⋅xe−iωt , (H.19)

where ∣ej,λ∣ is the projection of the jth cartesian component (j = x, y, z) of the field vector’s kth
fourier component along the λth polarization vector direction ε̂ (k, λ). (See Figure H.1.)

Each photon therefore requires two identifiers:

• k, the mode
3Vibrational modes in solids (phonons) have no governing relation similar to Maxwell’s first law, and so maintain

three independent polarization directions.
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• ε̂ (k, λ), the polarization (λ = 1 or 2).

Figure H.1: Propagation vector k and two transverse polarization unit vectors ε̂ (k,1) and ε̂ (k,2).
Each cartesian component of the fourier vector amplitude ej (k, ω) can be expressed as a linear
combination of ε̂ (k,1) and ε̂ (k,2).

H.3 Electromagnetic vector potential

The energy eigenvalues of an electromagnetic field in free space are expressed in terms of photons –
particle-like excitations first hypothesized by Planck. Quantum electrodynamics, the 20th-century
refinement of Planck’s theory, describes photons as quantum excitations of the vector potential field
A(x, t), where

B (x, t) = ∇ ×A(x, t) (H.20)

and

E (x, t) = −∇ϕ − 1

c

∂

∂t
A(x, t) , (H.21)

where φ is a scalar potential. Because the vector potential is not unique, gauge fixing is required.
One common choice is

∇ ⋅A (x, t) = 0 , (H.22)

which is called the Coulomb gauge4 or, alternatively, the transverse gauge (since A → A�).5 6 In
the Coulomb gauge and in the absence of sources we can take φ ≡ 0.

4Because Coulomb’s law is satisfied in this gauge.
5This gauge restricts the vector potential to have only transverse components.
6This gauge has the same consequence as Maxwell’s first law, i.e. Coulomb’s Law.
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In this gauge the classical wave equation becomes

∇2A� −
∂2A�
∂t2

= 0 . (H.23)

The (transverse) vector potential can be expanded in a Fourier series of plane waves

A� (x, t) = ∑
k

λ=1,2

( 1

2V ωk
)
½
[ε̂ (k, λ)ak,λ (t) eik⋅x + ε̂∗ (k, λ)a∗k,λ (t) e−ik⋅x] , (H.24)

where ak,λ and a∗k,λ are complex coefficients, ωk = c ∣k∣ is the vacuum electromagnetic dispersion re-
lation and the coefficient (2V ωk)−½ is chosen with an eye towards simplifying the final result.

It follows from the Coulomb gauge condition that

k ⋅ ε̂ (k, λ) = 0 , λ = 1, 2 , (H.25)

where the unit polarization vectors themselves are chosen to be mutually perpendicular and there-
fore satisfy the orthogonality condition

ε̂ (k, μ) ⋅ ε̂∗ (k, γ) = δμ,γ . (H.26)

The classical (transverse) electric field is from Eqs.H.21 and H.24 (ignoring circular or elliptical
polarization)

E� (x, t) =
1

c
∑
k

λ=1,2

( 1

2V ωk
)
1/2

ε̂ (k, λ) [∂ak,λ (t)
∂t

eik⋅x +
∂a∗k,λ (t)

∂t
e−ik⋅x] . (H.27)

However, by inserting the expansion Eq.H.24 into the wave equation Eq.H.23 the following simpli-
fying results are obtained:

∂ak,λ

∂t
= −iωkak,λ (H.28)

and

∂a∗k,λ

∂t
= iωka

∗
k,λ (H.29)

so that

E� (x, t) =
i

c
∑
k

λ=1,2

( ωk

2V
)
1/2

ε̂ (k, λ) [ak,λ (t) eik⋅x − a∗k,λ (t) e−ik⋅x] . (H.30)

The transverse magnetic field is, similarly,

B� (x, t) = ∇ ×A�

= i ∑
k

λ=1,2

( 1

2V ωk
)
1/2
[k × ε̂ (k, λ)] [ak,λ (t) eik⋅x − a∗k,λ (t) e−ik⋅x] . (H.31)
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H.4 Quantized electromagnetic hamiltonian

The field theoretic canonical quantization procedure postulates the complex coefficients in the
expansions for Eqs.H.30 and H.31 “morph" into Fock space operators

ak,λ ��⇒aop (k, λ) , (H.32)

a∗k,λ ��⇒a†
op (k, λ) , (H.33)

where the operators fulfill equal time commutator relations

[aop (k, μ) , a†
op (k′, μ′)] = δk,k′ δμ,μ′ , (H.34)

[aop† (k, μ) , aop† (k′, μ′)] = 0 , (H.35)

[aop (k, μ) , aop (k′, μ′)] = 0 , (H.36)

where

a†
op(k, μ)aop(k, μ) = nop(k, μ) (H.37)

with nop (k, μ) the photon number operator. Now we have the vector potential operatorAop (x, t)

Aop (x, t) = ∑
k

λ=1,2

( 1

2V ωk
)
½
ε̂ (k, λ) [aop(k, λ)eik⋅x + a†

op(k, λ)e−ik⋅x] , (H.38)

the electric field operator Eop (x, t)

Eop (x, t) =
i

c
∑
k

λ=1,2

( ωk

2V
)
½
ε̂(k, λ) [aop(k, λ)eik⋅x − a†

op(k, λ)e−ik⋅x] , (H.39)

and a magnetic field operator Bop (x, t)

Bop (x, t) = i ∑
k

λ=1,2

( 1

2V ωk
)
½
[k × ε̂ (k, λ)] [aop (k, λ) eik⋅x − a†

op (k, λ) e−ik⋅x] . (H.40)

The electromagnetic hamiltonian is

HEM
op = 1

2
∫
V

dx [E2op (x, t) + B2
op (x, t)] . (H.41)

Now substituting Eqs.H.39 and H.40, carrying out the required integrations, using the commutator
relations and applying the results

1

V
∫
V

dx eik⋅xeik⋅x = δk+p,0 , (H.42)

ε̂ (k, λ) ⋅ ε̂ (−k, μ) = ε̂ (k, λ) ⋅ ε̂ (k, μ) (H.43)
= δλ,μ (H.44)
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and

[k × ε̂ (k, λ)] ⋅ [−k × ε̂ (−k, μ)] = − [k × ε̂ (k, λ)] ⋅ [k × ε̂ (k, μ)] (H.45)

= − ∣k∣2 δλ,μ , (H.46)

we find

HEM
op = 1

2
∑
k

λ=1,2

ωk [aop (k, λ)a†
op (k, λ) + a†

op (k, λ)aop (k, λ)] (H.47)

= ∑
k

λ=1,2

ωk [a†
op (k, λ)aop (k, λ) +

1

2
] (H.48)

= ∑
k

λ=1,2

ωk [nop (k, λ) +
1

2
] . (H.49)
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Appendix I

Fermi-Dirac integrals

I.1 Introduction

The typical Fermi-Dirac integral in the theory of metals and semiconductors has the form

I FD (μ) =
∞

∫
0

dωD (ω) s (ω) 1

eβ(ω−μ) + 1 , (I.1)

where D (ω) is a density of states and s (ω) is some function of ω. The product D (ω) s (ω) is
often, a fractional or integer power of ω or a function that is analytic (differentiable) about ω ≈ μ.
(When this is not the case special techniques can be applied.1)

Analytic evaluation of these integrals is not possible so several approximations and numerical meth-
ods have appeared over the years.2,3,4,5

I.2 Expansion method: βμ≫ 1

The earliest published FD integral evaluation is the Sommerfeld asymptotic expansion,6 which

1A. Wasserman, T. Buckholtz and H. E. Dewitt, “Evaluation of some Fermi-Dirac integrals", J. Math. Phys. 11,
477 (1970).

2W. B. Joyce and R. W. Dixon, "Analytic approximations for the Fermi energy of an ideal Fermi gas", Appl.
Phys. Lett. 31, 354 (1977).

3A. Wasserman, “Fermi-Dirac Integrals", Phys. Lett. 27A, 360 (1968).
4T. M. Garoni, N. E. Frankel, and M. L. Glasser, "Complete asymptotic expansions of the Fermi-Dirac integrals",

J. Math. Phys. 42, 1860 (2001).
5Raseong Kim and Mark Lundstrom, "Notes on Fermi-Dirac Integrals (3rd Edition)", (2008)

[http://nanohub.org/resources/5475].
6A. Sommerfeld, “Zur Elekronentheorie der Metalle auf Grund der Fermischen Statisik", Z. Phys. 47, 1 (1928).
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exploits the approximate property that for βμ≫ 1

d

dω
[ 1

eβ(ω−μ) + 1] ≃ −
1

β
δ (ω − μ) . (I.2)

A logical first step in Sommerfeld’s method is to integrate Eq.I.1 by parts to get

I FD (μ) = β

4

∞

∫
0

dω

⎧⎪⎪⎨⎪⎪⎩

ω

∫
0

dω′ s (ω′)D (ω′)
⎫⎪⎪⎬⎪⎪⎭
sech2 [β

2
(ω − μ)] (I.3)

where, as in Eq.I.2, for βμ≫ 1 the function sech2 [β
2
(ω − μ)] peaks sharply at ω ≈ μ. Now, assuming

Taylor expandability, expanding the bracketed integral
ω

∫
0

dω′s (ω′)D (ω′) (I.4)

about ω = μ,

ω

∫
0

dω′s (ω′)D (ω′) =
μ

∫
0

dω′ s (ω′)D (ω′) + (ω − μ) d

dω

⎡⎢⎢⎢⎢⎣

ω

∫
0

dω′ s (ω′)D (ω′)
⎤⎥⎥⎥⎥⎦ω=μ

+ 1

2
(ω − μ)2 d2

dω2

⎡⎢⎢⎢⎢⎣

ω

∫
0

dω′ s (ω′)D (ω′)
⎤⎥⎥⎥⎥⎦ω=μ

+ . . .

=
μ

∫
0

dω′ s (ω′)D (ω′) + (ω − μ) s (μ)D (μ)

+ 1

2
(ω − μ)2 { d

dω′
[s (ω′)D (ω′)]}

ω′=μ
+ . . . (I.5)

After substituting z = β (ω − μ) we have the approximate result

4I FD (μ) =
μ

∫
0

dω′ s (ω′)D (ω′)
∞

∫
−∞

dz sech2 (z
2
)

+ s (μ)D (μ)
∞

∫
−∞

dz z sech2 (z
2
)

+ 1

2β2
{ d

dω′
[s (ω′)D (ω′)]}

ω′=μ

∞

∫
−∞

dzz2 sech2 (z
2
) + . . . (I.6)

where in the “degenerate case" (βμ >> 1) lower limits on the ω integrals have been extended,

−βμ → −∞. Since the function sech2 (z
2
) peaks sharply at z = 0, this introduces negligible error.7

7The extension of the integral’s lower limit −βμ → −∞ makes strict convergence questionable. The approximation
has become “asymptotic".
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Evaluating the integrals:

∞

∫
−∞

dz sech2 (z
2
) = 4 , (I.7)

∞

∫
−∞

dz z sech2 (z
2
) = 0 , (I.8)

∞

∫
−∞

dz z2 sech2 (z
2
) = 4π2

3
, (I.9)

∞

∫
−∞

dz z3 sech2 (z
2
) = 0 , (I.10)

we have the approximate result

I FD (μ) =
μ

∫
0

dω′ s (ω′)D (ω′) + π2

6β2
{ d

dω′
[s (ω′)D (ω′)]}

ω′=μ
+ . . . (I.11)
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Appendix J

Bose-Einstein integrals

J.1 BE integrals: μ = 0

In the Bose-Einstein (BE) problem we encounter two kinds of integrals. The first appears when
T < Tc so that μ = 0. These have the form

IBE =
∞

∫
0

dx
xs

ex − 1 . (J.1)

They can be done by first expanding the denominator

∞

∫
0

dx
xs

ex − 1 =
∞

∫
0

dxxs
∞

∑
n=0

e−(n+1)x (J.2)

and then integrating term by term

∞

∫
0

dx
xs

ex − 1 = Γ (s + 1)
∞

∑
ν=1

1

νs+1 (J.3)

where the Γ -function is defined by

Γ (r) =
∞

∫
0

dz zr−1e−z, Re > −1 . (J.4)

The remaining sum is the Riemann ζ-function

ζ (s) =
∞

∑
n=1

1

ns
(J.5)
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which finally gives

∞

∫
0

dx
xs

ex − 1 = Γ (s + 1) ζ (s + 1) . (J.6)

J.2 BE integrals: μ < 0

The second class of integrals is best demonstrated by the specific example

⟨NBE
op ⟩ =

V

4π2
(2m
h̵2
)
3/2 ∞

∫
0

dωω1/2 ( 1

eβ(ω−μ) − 1) (J.7)

= V

4π2
(2m
h̵2
)
3/2 ∞

∫
0

dωω1/2 ( λe−βω

1 − λe−βω
) , (J.8)

where λ = eβμ and therefore λe−βω < 1. Expanding the denominator in a binomial series

⟨NBE
op ⟩ =

V

4π2
(2m
h̵2
)
3/2 ∞

∫
0

dω1/2λe−βω
∞

∑
n=0

λne−nβω (J.9)

and integrating term by term

⟨NBE
op ⟩ =

V

4π2
(2m
h̵2
)
3/2
[Γ (3/2)

β3/2 ](λ + λ2

23/2
+ λ3

33/2
+⋯) (J.10)

= V

4π2
(2m
h̵2
)
3/2
[Γ (3/2)

β3/2 ] ζ (3/2, λ) , (J.11)

where

ζ (s, λ) = λ + λ2

2s
+ λ3

3s
+⋯ (J.12)

is a generalized ζ function. The function as studied by mathematicians (and in the computational
arsenal of, say, Mathematica) is Lerch’s Φ function (also called Hurwitz-Lerch ζ function) defined
as

Φ (z, s, a) =
∞

∑
n=0

zn

(n + a)s , (J.13)

where any term for which the denominator is “zero" is excluded. But the generalized ζ-function
appearing in Bose-Einstein integrals is

ζ (s, z) =
∞

∑
n=1

zn

ns
(J.14)
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which is related to Lerch’s Φ-function by

ζ (s, z) = zΦ (z, s,1) . (J.15)

Therefore

⟨NBE
op ⟩ =

λV

4π2
(2m
h̵2
)
3/2
[Γ (3/2)

β3/2 ]Φ (λ,3/2,1) . (J.16)

Using Mathematica it is a simple matter to plot ζ (3/2, λ) = λΦ (λ,3/2,1) vs. λ (see Figure J.1).

Figure J.1: ζ (3/2, λ) vs. λ.

It is useful to note that ζ (3/2, λ) ≈ λ when λ << 1 so that

⟨NBE
op ⟩ ≅

λ

4π2
( 2m
βh̵2

)
3/2

Γ (3/2) , (J.17)

which is the quasi-classical result.
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definition, 36
demagnetization, 229
sudden process as, 49
throttling, 108

adiabatic process, 58
antiferromagnetism, 213

bias in probabilities, 363
define, 362
entropy, 364
measure of, 359

Boltzmann
microcanonical theory, 123
constant, 39

Boltzmann, historical note, xiv
Bose-Einstein

condensate, 336, 341
condensate wave function, 342
condensation, 339
grand potential, 337
integrals, 405
internal energy, 338
occupation number, 338
thermodynamics, 337

bosons, 146, 341–343

Carnot, xiv
cycle, 96
engine, 90

chemical potential, 6, 8, 35, 38, 261
chemical reactions, 266
Clausius, 2, 117
Clausius, historical note, xiv
coherent, 12, 343
cosmic microwave background (CMB), 347

Debye model, 178

Debye temperature, 182
density of states, 373
heat capacity, 181
internal energy, 181

decoherence, 23, 119, 125
degeneracy, 128, 131

elastomer, 136
hydrogenic, 137
internal quantum, 131
macroscopic, 131
one-dimensional harmonic oscillator, 138

demagnetization
factor, 389
field, 389
tensor, 390

density of states
definition, 369
one-dimension, particles in, 370

density operator, 9
definition, 15
density matrix, 15
density matrix, examples, 27
equation of motion, 18
information and the, 16
mixed state, 19
properties, 16
pure state, 15, 18
thermal, defined, 24

diamagnetism, 212
diathermic, 54
differential, 67

exact, 37, 68
Euler’s criterion, 69
Green’s theorem, 70

diffusive equilibrium, 262
Dirac

delta function
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definition, 318
property, 371

Dirac notation, 11

Einstein model
one-dimensional, 170

partition function, 173
thermal Lagrangian, 173

three-dimensional, 175
Einstein temperature, 177
heat capacity, 177
internal energy, 176
partition function, 175

Einstein, historical note, 2
elasticity

elongation, 8, 35
entropy, 193
equation of state, 191
extension, 49
lab experiment, 206, 375
non-deal equation of state, 205
one-dimensional model, 185
partition function, 191
tension, 6, 35, 39
thermodynamics of, 194
three dimensional non-ideal, 202

elastomer, 39, 134
degeneracy, 136

electric
constitutive relation, 383
field, 6, 40
fields in matter, 381
polarization, 35, 40
susceptibility tensor, 40

electromagnetic
Maxwell’s equations, 391
polarizations, 395
vector potential, 395
wave equation, classical, 396
waves, 392

electromagnetic field
hamiltonian, quantized, 398, 399
operator, quantized, 399

energy
microscopic system, 13

ensembles, xv

enthalpy, 73
definition, 53, 103
Maxwell’s relation, 103

entropy, xiv, xv, 26, 27, 79, 82, 117, 127
definition, 72
examples, 82
of mixing, 155

equation of state, 38
dielectric, 40

equilibrium
thermodynamic, definition, 4

Euler’s homogeneous function theorem, 74, 365
proof, 366

exoplanet surface temperature, 304

Fermi energy, 316
Fermi gas model, 318
Fermi-Dirac

average particle number, 315
chemical potential, 320, 321
electron gas model, 324
free electron approximation, 312
function, 316
grand partition function, 314
grand potential, 315
heat capacity, 322
integrals, 401, 402
internal energy, 317, 321
occupation number, 316
pressure, equation of state, 317
thermodynamics, 315

fermions, 146
ferrimagnetism, 213
ferromagnetism, 213

critical exponent, 234
Curie-Weiss susceptibility, 236
Gibbs potential, 233
Heisenberg exchange, 231
Heisenberg model, 230
order parameter, 234

field
energy, 387
external, 382
external magnetic, 386
local average, 386
magnetic, effective, 389
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mean, 388
fields

demagnetizing, 381
First Law of Thermodynamics, 4

heat, 33, 36
incremental, 38
work, 34, 36

force, 34
free expansion, 76
functional, 122, 363

gamma function, 341
gas law, 39

ideal, 39
derivation, 147

pressure, 39
temperature, 39
van der Waals, 80, 156

derivation, 250
Gibbs, xv

canonical theory, 127
correction, 149
entropy paradox, 154
partition function, 128

Gibbs potential, 107
magnetic, 389

Gibbs-Duhem equation, 273
grand canonical

entropy, 244
Euler’s theorem, 246
ideal gas example, 248
internal energy, 244
particle number, 243
partition function, 242
potential function, 245
pressure, 244
thermodynamics, 243

heat, 4, 90
heat capacity, 51

constant pressure, 52
constant volume, 51
Dulong-Petit, 169
entropy, 111

Helmholtz potential
canonical, 130
definition, 105

Maxwell’s relation, 105

ideal gas, 145
barometric equation, 264
charged, 264
entropy, Sakur-Tetrode equation, 153
heat capacity, 152
Helmholtz potential, 153
in Earth’s gravitational field, 263
in rotating cylinder, 265
internal energy, 152
pressure, equation of state, 153
thermal Lagrangian, 148

information, 14, 23
missing, 30
purity, 18
Shannon, 118

internal energy, 5, 11, 25, 37, 49
blackbody, moving frame, 353
free expansion, 77
Maxwell’s relation, 102

isenthalpic, 72
isochoric, 52
isothermal, 42, 49

law of mass action, 269
line integration, 80

macroscopic, xv
averages, 5
definition, 3

magnetic
constitutive relation, 383
field

internal, 388
fields, in matter, 381
thermodynamic potentials, 382

magnetism, 211
constitutive relation, 216
de Haas-van Alphen effect, 212
enthalpy, 216
fundamental equation, 215, 219
Gibbs potential, 216
Helmholtz potential, 216
internal fields, 387
magnetic field, 6, 41
magnetic moment, 7
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magnetic susceptibility, 41
magnetic work, 213, 217
magnetization, 35, 387

fluctuations, 228
magnetization vector, 218
work in applied fields, 218

Mattis, xiii, xvi
Maxwell, xiv

thermodynamic relations, 69, 102, 105, 106,
108

mean field approximation, 388
ferromagnetism, 232
gravitational interaction, 254
van der Waals equation, 252

microstates, xiv
minimum bias, 122, 363
mixed state, 19

negative temperature, 164
normalization, state function, 13

open systems, 8, 261
operator

density, thermodynamic, 119
elongation, 5
fluctuations, 25
function of, 28
hamiltonian, 10
hamiltonian, thermal, 121
hermitian, 11, 13
magnetization, 5
particle number, 8
polarization, 5
pressure, 5
quantum hamiltonian, 5
trace, definition, 16
vector potential, 6

paramagnetism, 212, 219
Curie regime, 224
entropy, 225
fluctuations, 228
Gibbs potential, 225
heat capacity, 226
magnetization, 224
partition function, 222
thermal Lagrangian, 222

thermodynamics, 223
partial differentiation, 68, 75
partition function, 128

blackbody moving frame, 351
ideal gas, 148

Pauli exclusion principle, 145, 311
Pauli susceptibility, 322
periodic boundary conditions, 325
phonons, 172
Planck radiation function, CMB, 356
Planck, historical note, 2
polymer

rubber, 39
rubber band, 48

Poynting vector, 302
blackbody, moving frame, 355

pressure, 25, 35, 244
purity, 26, 28, 357

quantum
average value, 13
eigenfunctions, 11, 13
eigenvalues, 11, 13
expectation value, 10, 11, 13
fluctuations, 10
hamiltonian, 6, 10
microscopic, 9
probabilities, 10
probability, 12
probability amplitude, 12
pure state, 14, 15
state function, 10
superposition theorem, 12
wavefunction, 9, 14

quantum concentration, nQ, 151

radiation thermodynamics, moving frame, 351

Schottky model, 160
heat capacity, 162
two-level system, 160

Schrödinger, equation, 9
Schwartz inequality, 358
Second Law of thermodynamics, 74, 89, 95, 118
specific heat, 51
stars

formation of, 254
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giant molecular clouds, 254
gravitational collapse, 257
gravitational equation of state, 257

state function, 9
normalization, 17

Stern-Gerlach, 21
strain, 35, 56

definition, 39
stress, 35, 56

definition, 39
surface adsorption, 278

dissociative, 281
Langmuir isotherm, 281
Langmuir model, 278

temperature, 6, 36
tension

surface, 35
thermal expansivity, 57
thermal Lagrangian

Bose-Einstein, 336
canonical theory, 127
CMB, 349
definition, 364
elastic, 188, 190
Fermi-Dirac, 313
microcanonical theory, 124
open system, 242
radiation, 292
Schottky two-level model, 160

thermal radiation
entropy, 301
hamiltonian, classical, 289
Helmholtz potential, 295
momentum density, 305
partition function, 292
Planck constant, 290
Plank quantization, 289
stardust blow-out, 306
Stefan-Boltzmann law, 296, 302
thermodynamics of, 291
Wien’s law, 299

thermodynamic identity, 72
thermodynamics

equilibrium states, 42
fluctuations, definition, 4

surroundings, 4
surroundings, definition, 4
system, definition, 3

throttling, 108

van der Waals
equation, 253

van der Waals, historical note, 2
variables

conjugate pairs, 35
extensive, 34
intensive, 34
state, 37
thermal, 4

white dwarf stars, 327
mass-radius constant, 330

work, 4, 34
electric, 217
irreversible, 43, 45, 84
magnetic, 217
quasi-static, 41, 45, 49
reversible, 42

Young’s modulus, 57, 186

zeta function, 341


