No templates needed	to traditional courses	Python	Electrostatics	Conclusions

Learning through Computation in Upper-Division Physics

David Roundy

Oregon State University

No templates needed

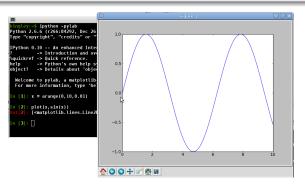
- students write their programs from scratch
- they google for help

Pair programming

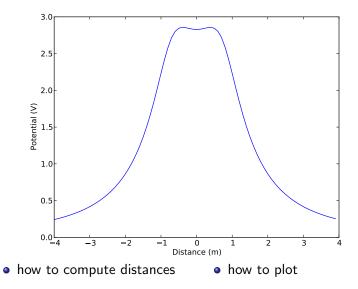
- students work in pairs: a drive and a navigator
- roles are swapped every 30 minutes or so
- "show and tell" when projects are done

A computational lab for traditional courses

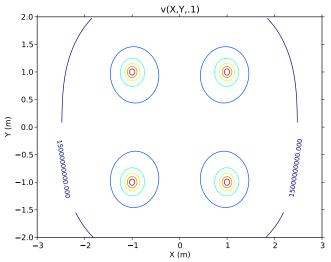
- students have a very busy schedule: just one credit
- reinforce learning in traditional courses
- save time by not having to introduce the physics

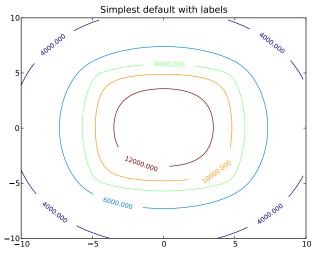

All work is done in the lab

- Today all physicists need to program
- Struggling students make little progress outside of class
- These are the students who need a computational course

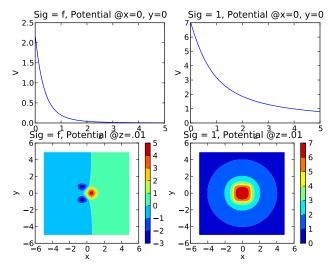


Reasoning


- free software, readily available to students
- ease of use and power comparable to Matlab
- used by professional scientists
- tutorials and help readily available on web



• plotting with slices



chopping and adding

googling for help

visualizing in multiple dimensions

No templates needed O	to traditional courses 0	Python O	Electrostatics 0000	Conclusion •
The physics	continues			
• cu	s, cylinders and hemis rvilinear coordinates stances in curvilinear co pendulum			
• Ve • fir	erlet's method st integral of the motion purier transforms	n		
•				

Conclusions (or keys to success)

- no templates required
- alongside traditional course
- all-in-class
- pair programming
- python/matplotlib