Navigating a Thermo Maze

Mary Bridget Kustusch, Corinne Manogue, David Roundy, and Tevian Dray Oregon State University

Paradigms in Physics
FFPER: Puget Sound, 21-24 June 2012
www.physics.oregonstate.edu/portfolioswiki
In recent years, there have been several studies suggesting that upper-division students often get lost in the maze of partial derivatives and complicated chain rules ubiquitous in thermodynamics. As part of a project researching how to help students learn to think like practicing physicists, we are interviewing experts (primarily faculty who teach thermodynamics) to understand how they navigate through this maze. We asked each exper to solve a challenging and novel thermodynamics problem using the van der Waals equations of state and to reflect upon their path(s) through the problem. To date, we have found a tremendous variety in both solution strategies and sense-making tools. Additionally, we gave the same problem to several junior-level physics majors who had just completed the Paradigms in Physics: Energy \& Entropy course, which will allow us to analyze how they dealt with the problem compared to the experts. This poster will present an overview of the project, some initial observations, and future directions.

The Maze

The following are the equations of state for a van der Waals gas, which modifies the ideal gas law by considering particles with non-zero volum

$$
\begin{aligned}
p & =\frac{N k T}{V-N b}-\frac{a N^{2}}{V^{2}} \\
S & =N k\left\{\ln \left[\frac{(V-N b) T^{3 / 2}}{N \Phi}\right]+\frac{5}{2}\right\} \\
U & =\frac{3}{2} N k T-\frac{a N^{2}}{V}
\end{aligned}
$$

Find the following quantity for a van der Waals gas:

$$
\left(\frac{\partial U}{\partial p}\right)_{S}
$$

Current \& Expected Data

6-8 Physics faculty
(ncl. two co-authors, one of whom is the Energy \& Entropy instructor) 2 Math faculty (incl. one co-author)
Rhysics grad student (graduate TA for Energy \& Entropy course)
6 Ld grad student (former Paradigms student)
Clandergraduate physics majors (just completed Energy \& Entropy)
Classroom video data (2009-2012) with groups solving similar problems

PERC Paper/Poster

An Expert Path Through a Thermo Maze
This case study will present one expert's path to a solution (using 1st law), including the his sense-making, detours, and dead-ends. It will also present his outline of two other approaches (using energy equation of state and using differentials), as well as his reflections on these methods and their utility in teaching undergraduates.

Acknowledgments

Collaborators:

University of Maine
Interviewed faculty from other institutions
National Science Foundation
DUE-9653250, 0231194, 0618877
DUE-0088901, 0231032, 1023120

Key Branch Points

Energy
Equation
$d U=T d S-p d V$

$H=U+p V$
$F=U-T S$
$G=H-T S$

Differentials
v. Partials
$\left(\frac{\partial V}{\partial \partial_{p}}\right)_{s}=\left(\frac{\partial V}{\partial T}\right)_{s}\left(\frac{\partial P}{\partial_{p}}\right)_{s}$
$d U=\left(\frac{\partial U}{\partial V}\right)_{T} d V+\left(\frac{\partial U}{\partial T}\right)_{V} d T$
$d p=\left(\frac{\partial p}{\partial V}\right)_{T} d V+\left(\frac{\partial p}{\partial T}\right)_{V} d T$
$\left(\frac{\partial V}{\partial T}\right)_{S}=-\left(\frac{\partial V}{\partial S}\right)_{T}\left(\frac{\partial S}{\partial T}\right)_{V}$
$d S=\left(\frac{\partial S}{\partial V}\right)_{T} d V+\left(\frac{\partial S}{\partial T}\right)_{V} d T$
$\left(\frac{\partial T}{\partial p}\right)_{s}=\left[\left(\frac{\partial p}{\partial T}\right)_{s}\right]^{-1}$

Explicit v.
Implicit
Derivatives

$$
d U=\frac{3}{2} N k d T+\frac{a N^{2}}{V^{2}} d V
$$

$$
d U=\left(\frac{\partial U}{\partial V}\right)_{T} d V+\left(\frac{\partial U}{\partial T}\right)_{V} d T
$$

Solving a

1. solve $d S$ equation for $d V$
2. substitute $d V$ into $d U$ equation
3. substitute $d V$ into $d p$ equation
4. solve $d p$ equation for $d T$
5. substitute $d T$ into $d U$ equation
6. set $d S=0$
7. divide $d U$ equation by $d p$
8. multiply $d p$ and $d S$ equations
by $d V$ coefficients and subtract.
.
9. multiply $d p$ and $d S$ equations
by $d T$ coefficients and subtract.
. write $d V$ and $d T$ in terms of $d p$ and $d S$
10. substitute $d V$ and $d T$ into $d U$ equation
11. set $d S=0$
12. divide $d U$ equation by $d p$

Navigational Tools

Dimensional Analysis

$$
p=\frac{N k T}{V-N b}-\frac{a N^{2}}{V^{2}}
$$

" "Ok, so, as I'm writing this, I'm thinking that these $[V, N b]$ are both extensive, that's $[N]$ extensive, this $[\phi]$ is intensive,
that's $[T]$ intensive, this $\left[a N^{2} / V^{2}\right]$ is intensive, b has densive, this $\left[a N^{2} / /^{2}\right]$ is intensive, all is good... it has dimensions of energy times volume, huh, interesting,"

Name the Experiment
Chain Rule
Diagrams
Draw/Sketch experiment that
would measure
$\left(\frac{\partial U}{\partial p}\right)_{S}$

Shortcuts

Variables held constant

Logarithm rules

Name the thing you don't know

