Having a thorough understanding of the differential operations provides students with a concrete means by which to interpret Maxwell's equations and transition from the integral to differential form of the equations. The sequence is split into two parts which separately address divergence and curl to build to the Gauss and Ampere Maxwell equations for both electric and magnetic fields. This sequence is assuming static fields and therefore does not build time dependence into Maxwell's equations.
Geometric understanding of divergence as a flux per unit volume allows students to physically interpret two of Maxwell's equations. For instance, the divergence of the electric field indicates the charge density at a particular location in the electric field by $\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\epsilon_0}$. In the absence of charge, the divergence of the electric field must be zero. Similarly, the divergence of the magnetic field, $\vec{\nabla}\cdot\vec{B}=0$, is always zero because there are no magnetic monopoles.
Geometric understanding of the curl as a circulation per unit area also provides a means for student to physically interpret two of Maxwell's equations. The curl of a static magnetic field is related to the current density by $\vec{\nabla} \times \vec{B} = \mu_0 \vec{J}$ which means the curl is non-zero at the location of a current density and zero where there is no current density. The corresponding equation for electric field states that the curl of a static electric field is zero, $\vec{\nabla}\times \vec{E} = 0$.