spins_unit_operators_and_measurements.ppt Page 14
$$\vert +\rangle \langle + \vert \; + \; \vert- \rangle\langle -\vert=1 \; \; . $$
Be sure to note that this can be done in any basis, but you have to pick one and stick to it to satisfy the completeness relation.
$$\langle\psi \vert\Big(\: \vert +\rangle\langle+ \vert \; \; + \; \; \vert- \rangle\langle -\vert \: \Big)\vert\psi \rangle \; \; .$$
Now, we can FOIL the expression to expand, which yields
$$\langle\psi \vert +\rangle\langle+ \vert\psi \rangle \; \; + \; \; \langle\psi \vert- \rangle\langle -\vert\psi \rangle \; \; . $$
$$\left\vert \langle+ \vert\psi \rangle\right\vert ^{2} \; + \; \left\vert\langle -\vert\psi \rangle\right\vert^{2} \; \; . $$
Now, if the term on the left is the probability of finding $\vert \psi \rangle$ in the $\vert + \rangle$ state, and the right term is the probability of finding $\vert \psi \rangle$ in the $\vert- \rangle$ state, then the total probability must add up to 1. So, we have
$$\left\vert\langle+ \vert\psi \rangle\right\vert^{2} \; + \; \left\vert\langle -\vert\psi \rangle\right\vert^{2}= 1 \; \; . $$
$$\Big(\: \vert +\rangle\langle+ \vert \; + \; \vert- \rangle\langle -\vert\: \Big)\vert\psi \rangle= \vert\psi \rangle \; \; .$$
The only way this will hold true is if
$$\vert +\rangle\langle+ \vert \; + \; \vert- \rangle\langle -\vert=I \; \; .$$