Infinite Chain of One-Dimensional Atoms (30 minutes)

Consider an infinite chain of one-dimensional atoms, as seen below.

$$x_{n}=\sin{kna} \; \; $$

where $na$ is the location of the nth atom and $k$ is the wave vector of the envelope function. The position function can be generalized by writing it as

$$x_{n}=Re\left[Ae^{ikna}\right] \, \, at \, \, t=0 \; \; .$$

$$when \; t>0,$$

$$x_{n}(t) \, = \, Re\left[Ae^{ikna}e^{i\omega_{k} t}\right] \; \; , $$

where $\omega_{k}$ is the frequency of the normal mode associated with this particular envelope function.

Similarly, the position function for the neighboring particles can be written as

$$x_{n+1}(t) \, = \, Re\left[Ae^{ik(n+1)a}e^{i\omega_{k} t}\right] \; \; $$

and

$$x_{n-1}(t) \, = \, Re\left[Ae^{ik(n-1)a}e^{i\omega_{k} t} \right] \; \; . $$

$$m\ddot{x}_{n} \, = \, -\kappa\left(x_{n}-x_{n-1}\right) - \kappa \left(x_{n}-x_{n+1}\right) \; \; .$$

$$-m\omega_{k}^{2}e^{ikna} \, = \, -\kappa\left(e^{ikna}-e^{ik(n-1)a}\right) - \kappa \left(e^{ikna}-e^{ik(n+1)a}\right) \; \; .$$

Factoring out a term of $e^{ikna}$ will then give

$$m\omega_{k}^{2}=\kappa\left(1-e^{-ika}\right) + \kappa\left(1-e^{ika}\right) \; \; ,$$

$$m\omega_{k}^{2}=2\kappa -\kappa\left(e^{ika}+e^{-ika}\right) \; \; ,$$

$$m\omega_{k}^{2}=2\kappa\left(1- \cos{ka}\right) \; \; , $$

$$m\omega_{k}^{2}=2\kappa\left(2 \: \sin{^{2}\frac{ka}{2}}\right) \; \; , $$

$$\omega_{k}(k)=\left|\sqrt{\frac{4\kappa}{m}}\; \sin{\frac{ka}{2}}\right| \; \; . $$

Some important observations:

$$\omega \approx v_{sound}\, k $$

for small $k$.