Central Forces Notes Section 9
$$\mathbf{\hat{r}}:\; f(r)=\mu(\ddot{r}-r\dot{\phi}^2)$$ $$\mathbf{\hat{\phi}}:\;0=\mu(r\ddot{\phi}+2\dot{r}\dot{\phi})$$
This is a good place to emphasize that when one is trying to solve coupled differential equations, it is a good idea to look for conserved quantities $$\ell=\mu r^2\dot{\phi}=\text{constant}.$$ SWBQ: Calculate $\frac{d\ell}{dt}$ in polar coordinates $$\dfrac{d\ell}{dt}=\dfrac{d}{dt}(\mu r^2\dot{\phi})=\mu(r\ddot{\phi}+2\dot{r}\dot{\phi})=0.$$ Thus, the $\hat{\phi}$ equation of motion is simply equivalent to a statement of conservation of angular momentum.
Emphasize that when trying to de-couple the equations, we want only one variable in each equation. So we want to get rid of all of the $\dot{\phi}$'s in our $\bf\hat{r}$ equation and we can once again use conservation of angular momentum.
$$\ell=\mu r^2\dot{\phi}\longrightarrow \dot{\phi}=\dfrac{\ell}{\mu r^2}$$ $$f(r)=\mu(\ddot{r}-r\dot{\phi}^2)\longrightarrow \ddot r = \frac{l^2}{\mu^2 r^3}+\frac{1}{\mu} f(r)$$