Carry out the following matrix calculations.
$$ \pmatrix{0&1&0\cr}\pmatrix{a_{11} & a_{12} & a_{13} \cr a_{21} & a_{22} & a_{23} \cr a_{31} & a_{32} & a_{33}\cr}\pmatrix{1\cr0\cr0\cr}$$ and
$$\pmatrix{0&1&0\cr}\pmatrix{a_{11} & a_{12} & a_{13} \cr a_{21} & a_{22} & a_{23} \cr a_{31} & a_{32} & a_{33}\cr}\pmatrix{0\cr1\cr0\cr}\quad $$
What matrix multiplication would you do if you wanted the answer to be $a_{13}$?
The bra-ket language for the calulations in part $(a)$ are
$$\matrix{\langle2|A|1\rangle = ? & \hbox{and} & \langle2|A|2\rangle = ?}$$
Write the question to part $(b)$ in bra-ket language.