$$\vert\psi \rangle=ae^{i \alpha}\vert+ \rangle + be^{i \beta}\vert- \rangle \; \; , $$
the quantum state vector is normalized if
$$\left\vert ae^{i \alpha}\right\vert^{2} + \left\vert be^{i \beta}\right\vert^{2}=1 \; \; ,$$
$$a^{2}+b^{2}=1 \; \; .$$
$$\vert\psi \rangle=\frac{1}{N}\left(ae^{i \alpha}\vert+ \rangle + be^{i \beta}\vert- \rangle\right) \; \; $$
and solve for N such that $$\frac{a^{2}+b^{2}}{N^{2}}=1 \; \; .$$