Central Forces Notes Section 13
This lecture reviews what students have learned about Schrödinger's equation and the Hamiltonian from previous classes.
$$\hat{H}= \frac{\hbar^2}{2 m_p} \nabla^2_p + \frac{\hbar^2}{2 m_e} \nabla^2_e -\frac{1}{4 \pi \epsilon_0} \frac{e^2}{|r_p-r_e|}$$ where $$\nabla^2_p = \frac{1}{r_p^2} \frac{\partial}{\partial r_p} \left(r_p^2 \frac{\partial}{\partial r_p} \right)+ \frac{1}{r_p^2 \sin(\theta_p)} \frac{\partial}{\partial \theta_p} \left(\sin(\theta_p) \frac{\partial}{\partial \theta_p} \right)+ \frac{1}{r_p^2 \sin^2(\theta_p)}\frac{\partial^2}{\partial \phi_p^2}$$ and $$\nabla^2_e = \frac{1}{r_e^2} \frac{\partial}{\partial r_e} \left(r_e^2 \frac{\partial}{\partial r_e} \right)+ \frac{1}{r_e^2 \sin(\theta_e)} \frac{\partial}{\partial \theta_e} \left(\sin(\theta_e) \frac{\partial}{\partial \theta_e} \right)+ \frac{1}{r_e^2 \sin^2(\theta_e)}\frac{\partial^2}{\partial \phi_e^2}$$
in spherical coordinates. This then leads into an optional derivation in which this Hamiltonian is simplified using the idea of reduced mass.