Table of Contents

Navigate back to the activity.

Eigenvalues and Eigenvectors: Instructor's Guide

Main Ideas

This is a small group activity for groups of 3-4. The students will be given one of 10 matrices. The students are then instructed to find the eigenvectors and eigenvalues for this matrix and record their calculations on their medium-sized whiteboards. In the class discussion that follows students report their finding and compare and contrast the properties of the eigenvalues and eigenvectors they find. Two topics that should specifically discussed are the case of repeated eigenvalues (degeneracy) and complex eigenvectors, e.g., in the case of some pure rotations, special properties of the eigenvectors and eigenvalues of hermitian matrices, common eigenvectors of commuting operators.

Students' Task

Estimated Time: 15 min for student task, 30 min for class discussion

Prerequisite Knowledge

This activity works really well when paired with the Linear Transformations activity.

Props/Equipment

Activity: Introduction

Give a mini-lecture on how to calculate eigenvalues and eigenvectors. It is often easiest to do this with an example. We like to use the matrix $$A_7\doteq\pmatrix{1&2\cr 9&4\cr}$$ from the Linear Transformations activity since the students have already seen this matrix and know what it's eigenvectors are. Then every group is given a handout, assigned a matrix, and then asked to:

  1. Find the eigenvalues
  2. Find the (unnormalized) eigenvectors
  3. Normalize the eigenvectors
  4. Describe what this transformation does

Activity: Student Conversations

Activity: Wrap-up

The majority of the this activity is in the wrap-up conversation.

The Eigenvalues and Eigenvectors Narrative provides a detailed narrative interpretation of this activity, focusing on the wrap-up conversation.

Extensions