Table of Contents

Navigate back to the activity.

Time Dependence for a Particle on a Ring: Instructor's Guide

Main Ideas

Students' Task

Estimated Time: 30-45 minutes

Students calculate probabilities for energy, angular momentum and position as a function of time for an initial state that is a linear combination of energy/angular momentum eigenstates for a particle confined to a ring written in bra-ket notation. The purpose of this activity is to help students build an understanding of when they can expect a quantity to be time dependent and to give them more practice moving between representations.

Prerequisite Knowledge

Props/Equipment

Activity: Introduction

It is a good idea at the start of this activity to give students the initial state as a linear combination of energy eigenstates and ask them to write $\vert\psi(t)\rangle$ on small whiteboards. This provides a chance to remind students how to write a state as function of time before they begin to wrestle with the probabilities.

Activity: Student Conversations

$$P_{E={m^2\,\hbar^2\over 2I}}=\vert \langle m\vert \psi\rangle\vert^2+\vert \langle -m\vert \psi\rangle\vert^2$$

Activity: Wrap-up

This is a good activity to have a group present their results. This allows the whole class to see the worked out solution without redoing it for them, but still allows you to point out the important features of the problem.

Extensions