Table of Contents

Navigate back to the activity.

Superposition States for a Particle on a Ring: Instructor's Guide

Main Ideas

Students' Task

Estimated Time: 30-45 minutes

Students calculate probability for energy, angular momentum and position for a wavefunction that is not easily separated into eigenstates for a particle on a ring.

Prerequisite Knowledge

Props/Equipment

Activity: Introduction

If the previous activities (Energy and Angular Momentum for a Particle on a Ring and Time Dependence for a Particle on a Ring) have been done, little introduction is needed. It might be helpful to ask a small whiteboard question to help them remember what the eigenfunctions for a particle on a ring are.

In many cases, students will not think to rewrite the function as a linear combination of eigenstates and if they do know to do this, many will have forgotten how. Thus, it is sometimes useful to start this activity in class and have them finish the calculations for homework.

Activity: Student Conversations

$$P_{E={m^2\,\hbar^2\over 2I}}=\vert \langle m\vert \psi\rangle\vert^2+\vert \langle -m\vert \psi\rangle\vert^2$$

Activity: Wrap-up

Use their work to demonstrate how finding all of the probabilities allows you to rewrite the wavefunction as a linear combination of eigenstates. $$P_{L_z=m\hbar}=\vert\langle m\vert\Psi\rangle\vert^2=\left|\int_{-\infty}^{\infty} \Phi_m^*(\phi)\Psi(\phi)\,d\phi\right|^2=\vert c_m \vert^2$$ $$\vert\Psi\rangle=\sum_m c_m \vert m\rangle \doteq \sum_m c_m e^{im\phi}$$

Extensions