{{page>wiki:headers:hheader}} =====Normalization of Quantum State Vectors (5 minutes)===== * If an arbitrary quantum state vector is presented that is not normalized, normalizing the quantum state vector before performing any other computations is absolutely necessary to finding the correct probability calculations. * In general, a quantum state vector is normalized if $\left\vert\langle \psi\vert\psi \rangle\right\vert^{2}=1$. So, if we have an arbitrary wave state $$\vert\psi \rangle=ae^{i \alpha}\vert+ \rangle + be^{i \beta}\vert- \rangle \; \; , $$ the quantum state vector is normalized if $$\left\vert ae^{i \alpha}\right\vert^{2} + \left\vert be^{i \beta}\right\vert^{2}=1 \; \; ,$$ $$a^{2}+b^{2}=1 \; \; .$$ * Let the students know that if this is //not// the case for a given quantum state vector, insert a normalization constant $\frac{1}{N}$ into the quantum state vector, that is, $$\vert\psi \rangle=\frac{1}{N}\left(ae^{i \alpha}\vert+ \rangle + be^{i \beta}\vert- \rangle\right) \; \; $$ and solve for N such that $$\frac{a^{2}+b^{2}}{N^{2}}=1 \; \; .$$ {{page>wiki:footers:courses:spfooter}}