%% -*- latex -*-
%/*
\input ../macros/Header
\if\Book0
\begin{document}
\setcounter{section}{4}
\setcounter{page}{93}
\fi
%*/
%*{{page>wiki:headers:hheader}}
%* Navigate [[..:..:activities:link|back to the activity]].
%/*
\Lab{The Pretzel}
\SecMark
\label{pretzel}
%*/
%*==== THE PRETZEL ====
%/*
\subsection{Essentials}
%*/
%*=== Essentials ===
%/*
\subsubsection{Main ideas}
%*/
%*== Main ideas ==
%/*
\Goal{
%*/
%/*
\begin{itemize}
\item
%*/
%*
-
Calculating (scalar) line integrals.
%*
%/*
\item
%*/
%*-
Use what you know!
%*
%/*
\end{itemize}
%*/
%/*
}
%*/
%/*
\subsubsection{Prerequisites}
%*/
%*== Prerequisites ==
%/*
\Req{
%*/
%/*
\begin{itemize}
\item
%*/
%*-
Familiarity with $d\rr$.
%*
%/*
\item
%*/
%*-
Familiarity with
%/*
``Use what you know''
%*/
%*"Use what you know"
strategy.
%*
%/*
\end{itemize}
%*/
%/*
}
%*/
%/*
\subsubsection{Warmup}
%*/
%*== Warmup ==
It is
%/*
\textit{not}
%*/
%*//not//
necessary to explicitly introduce scalar line integrals,
before this lab; figuring out that the (scalar) line element must be
$|d\rr|$ can be made part of the activity (if time permits).
%/*
\subsubsection{Props}
%*/
%*== Props ==
%/*
\begin{itemize}
\item
%*/
%*-
whiteboards and pens
%*
%/*
\item
%*/
%*-
%/*
``linear''
%*/
%*"linear"
chocolate covered candy (e.g. Pocky)
%*
%/*
\end{itemize}
%*/
%/*
\subsubsection{Wrapup}
%*/
%*== Wrapup ==
%/*
\begin{itemize}
\item
%*/
%*-
Emphasize that students must express each integrand in terms of a single
variable prior to integration.
%*
%/*
\item
%*/
%*-
Emphasize that each integral must be positive!
%*
%/*
\item
%*/
%*-
Discuss several different ways of doing this problem (see below).
%*
%/*
\end{itemize}
%*/
%/*
\newpage
%*/
%/*
\subsection{Details}
%*/
%*=== Details ===
%/*
\subsubsection{In the Classroom}
%*/
%*== In the Classroom ==
%/*
\begin{itemize}
\item
%*/
%*-
Make sure the shape of the pretzel is clear! It might be worth drawing it on
the board.
%*
%/*
\item
%*/
%*-
Some students will work geometrically, determining $ds$ on each piece by
inspection. This is fine, but encourage such students to try using $d\rr$
afterwards.
%*
%/*
\item
%*/
%*-
Polar coordinates are natural for all three parts of this problem, not just
the circular arc.
%*
%/*
\item
%*/
%*-
Many students will think that the integral
%/*
``down''
%*/
%*"down"
the $y$-axis should be negative. They will argue that $ds=dy$, but the limits
are from $2$ to $0$. The resolution is that $ds=|dy\,\ii|=|dy|=-dy$ when
integrating in this direction.
%*
%/*
\item
%*/
%*-
Unlike work or circulation, the amount of chocolate does not depend on which
way one integrates, so there is in fact no need to integrate
%/*
``down''
%*/
%*"down"
the $y$-axis at all.
%*
%/*
\item
%*/
%*-
Some students may argue that $d\rr=\TT\,ds\Longrightarrow ds=d\rr\cdot\TT$,
and use this to get the signs right. This is fine if it comes up, but the
unit tangent vector $\TT$ is not a fundamental part of our approach.
%*
%/*
\item
%*/
%*-
There is of course a symmetry argument which says that the two
%/*
``legs''
%*/
%*"legs"
along the axes must have the same amount of chocolate --- although some
students will put a minus sign into this argument!
%*
%/*
\item
%*/
%*
%/*
\end{itemize}
%*/
%/*
\subsubsection{Subsidiary ideas}
%*/
%*== Subsidiary ideas ==
%/*
\Sub{
%*/
%/*
\begin{itemize}
\item
%*/
%*
%/*
\end{itemize}
%*/
%/*
}
%*/
%/*
\subsubsection{Homework \None}
%*/
%*== Homework ==
%* (none yet)
%/*
\HW{
%*/
%/*
}
%*/
%/*
\subsubsection{Essay questions \None}
%*/
%*== Essay questions ==
%* (none yet)
%/*
\Essay{
%*/
%/*
}
%*/
%/*
\subsubsection{Enrichment \None}
%*/
%*== Enrichment ==
%* (none yet)
%/*
\Rich{
%*/
%/*
}
%*/
%/*
\input ../macros/footer
%*/