%% -*- latex -*- %/* \input ../macros/Header \if\Book0 \usepackage{exscale} \begin{document} \setcounter{section}{8} \setcounter{page}{105} \fi %*/ %*{{page>wiki:headers:hheader}} %* Navigate [[..:..:activities:link|back to the activity]]. %/* \Lab{The Grid} \SecMark \label{grid} %*/ %*==== THE GRID ==== %/* \subsection{Essentials} %*/ %*=== Essentials === %/* \subsubsection{Main ideas} %*/ %*== Main ideas == %/* \Goal{ %*/ %/* \begin{itemize} \item %*/ %*<html><ul><li></html> Understanding different ways of expressing area using integration. %*<html></li></html> %/* \item %*/ %*<html><li></html> Concrete example of Area Corollary to Green's/Stokes' Theorem. %*<html></li></ul></html> %/* \end{itemize} %*/ %/* } %*/ %/* \noindent %*/ We originally used this activity after covering Green's Theorem; we now skip Green's Theorem and do this activity shortly before Stokes' Theorem. %/* \subsubsection{Prerequisites} %*/ %*== Prerequisites == %/* \Req{ %*/ %/* \begin{itemize} \item %*/ %*<html><ul><li></html> Familiarity with line integrals. %*<html></li></html> %/* \item %*/ %*<html><li></html> %/* \textit{Green's Theorem is not a prerequisite!} %*/ %*//Green's Theorem is not a prerequisite!// %*<html></li></ul></html> %/* \end{itemize} %*/ %/* } %*/ %/* \subsubsection{Warmup} %*/ %*== Warmup == %/* \begin{itemize} \item %*/ %*<html><ul><li></html> The first problem is a good warmup. %*<html></li></ul></html> %/* \end{itemize} %*/ %/* \subsubsection{Props} %*/ %*== Props == %/* \begin{itemize} \item %*/ %*<html><ul><li></html> whiteboards and pens %*<html></li></html> %/* \item %*/ %*<html><li></html> a planimeter if available %*<html></li></ul></html> %/* \end{itemize} %*/ %/* \subsubsection{Wrapup} %*/ %*== Wrapup == %/* \begin{itemize} \item %*/ %*<html><ul><li></html> Emphasize the magic -- finding area by walking around the boundary! %*<html></li></html> %/* \item %*/ %*<html><li></html> Point out that this works for any closed curve, not just the rectangular regions considered here. %*<html></li></html> %/* \item %*/ %*<html><li></html> Demonstrate or describe a planimeter, used for instance to measure the area of a region on a map by tracing the boundary. %*<html></li></ul></html> %/* \end{itemize} %*/ %/* \newpage %*/ %/* \subsection{Details} %*/ %*=== Details === %/* \subsubsection{In the Classroom} %*/ %*== In the Classroom == %/* \begin{itemize} \item %*/ %*<html><ul><li></html> Make sure students use a consistent orientation on their path. %*<html></li></html> %/* \item %*/ %*<html><li></html> Make sure students explicitly include all segments of their path, including those which obviously yield zero. %*<html></li></html> %/* \item %*/ %*<html><li></html> Students in a given group should all use the same curve. %*<html></li></html> %/* \item %*/ %*<html><li></html> Students should be discouraged from drawing a curve whose longest side is along a coordinate axis. %*<html></li></html> %/* \item %*/ %*<html><li></html> Students may need to be reminded that $\OINT$ implies the counterclockwise orientation. But it doesn't matter what orientation students use so long as they are consistent! %*<html></li></html> %/* \item %*/ %*<html><li></html> A geometric argument that the orientation should be reversed when interchanging $x$ and $y$ is to rotate the $xy$-plane about the line $y=x$. (This explains the minus sign in Green's Theorem.) %*<html></li></html> %/* \item %*/ %*<html><li></html> Students may not have seen line integrals of this form (see below). %*<html></li></ul></html> %/* \end{itemize} %*/ %/* \subsubsection{Subsidiary ideas} %*/ %*== Subsidiary ideas == %/* \Sub{ %*/ %/* \begin{itemize} \item %*/ %*<html><ul><li></html> Orientation of closed paths. %*<html></li></html> %/* \item %*/ %*<html><li></html> Line integrals of the form $\INT P\,dx+Q\,dy$. %/* \hfill\break \textit{ %*/ %*// We do not discuss such integrals in class! Integrals of this form almost always arise in applications as $\INT\FF\cdot d\rr$. %*// %/* } %*/ %*<html></li></ul></html> %/* \end{itemize} %*/ %/* } %*/ %/* \subsubsection{Homework \None} %*/ %*== Homework == %* (none yet) %/* \HW{ %*/ %/* } %*/ %/* \subsubsection{Essay questions \None} %*/ %*== Essay questions == %* (none yet) %/* \Essay{ %*/ %/* } %*/ %/* \subsubsection{Enrichment} %*/ %*== Enrichment == %/* \Rich{ %*/ %/* \begin{itemize} \item %*/ %*<html><ul><li></html> Write down Green's Theorem. %*<html></li></html> %/* \item %*/ %*<html><li></html> Go to 3 dimensions --- bend the curve out of the plane and stretch the region like a butterfly net or rubber sheet. This is the setting for Stokes' Theorem! %*<html></li></ul></html> %/* \end{itemize} %*/ %/* } %*/ %/* \input ../macros/footer %*/