The Finite Square Well

This graph (solid black line) represents the potential energy of a particle at any position. This is known as the "finite square well" problem, and the potential function is a piecewise function

$$
V(x)= \begin{cases}V_{0} & x<-a \\ 0 & -a<x<a \\ V_{0} & x>a\end{cases}
$$

The dashed line represents the total energy E of the particle. We don't know the value(s) of E yet; we have to find them. We also don't yet know the form of the wave function $\phi(x)$. We have to find the correct form. For this piecewise potential function, the wave function has a different form in each of the regions. Solve the eigenvalue equation $\hat{H} \phi(x)=E \phi(x)$ in the region assigned to your group. Afterwards, we will have a group discussion to decide how to make sure that the total wave function over the entire space is appropriately continuous and otherwise well-behaved.

1. Region 1: $x<-a$
2. Region 2: $-a<x<a$
3. Region 3: $x>a$

Your group will discuss one of the regions: if you finish early, move on to another, swapping roles of taskmaster, cynic, \& recorder. Consider whether or not your answer would be different if $E>V_{0}$.

by Janet Tate
© DATE Janet Tate

