GAUSS'S LAW

Each group will be given one of the charge distributions given below: (α and k are constants with appropriate dimensions.)

1. A positively charged (dielectric) spherical shell of inner radius a and outer radius b with a spherically symmetric internal charge density $\rho(\vec{r})=\alpha r^{3}$.
2. A positively charged (dielectric) spherical shell of inner radius a and outer radius b with a spherically symmetric internal charge density $\rho(\vec{r})=\alpha e^{(k r)^{3}}$.
3. A positively charged (dielectric) spherical shell of inner radius a and outer radius b with a spherically symmetric internal charge density $\rho(\vec{r})=\alpha \frac{1}{r^{2}} e^{k r}$.
4. An infinite positively charged (dielectric) cylindrical shell of inner radius a and outer radius b with a cylindrically symmetric internal charge density $\rho(\vec{r})=\alpha r^{3}$.
5. An infinite positively charged (dielectric) cylindrical shell of inner radius a and outer radius b with a cylindrically symmetric internal charge density $\rho(\vec{r})=\alpha e^{(k r)^{2}}$.
6. An infinite positively charged (dielectric) cylindrical shell of inner radius a and outer radius b with a cylindrically symmetric internal charge density $\rho(\vec{r})=\alpha \frac{1}{r} e^{k r}$.

For your group's case, answer each of the following questions:

1. Use Gauss's Law and symmetry arguments to find the electric field at each of the three radii below:
(i) $r_{1}>b$
(ii) $a<r_{2}<b$
(iii) $r_{3}<a$
2. What dimensions do α and k have?
3. For $\alpha=1, k=1$, sketch the magnitude of the electric field as a function of r.
