AMPERE'S LAW

A steady current is flowing parallel to the axis through an infinitely long cylindrical shell of inner radius a and outer radius b. Each group is assigned one of the current densities given below: (In each case, α and k are constants with appropriate units.)

1. $|\vec{J}|=\alpha r^{3}$.
2. $|\vec{J}|=\alpha \frac{\sin k r}{r}$.
3. $|\vec{J}|=\alpha e^{k r^{2}}$.
4. $|\vec{J}|=\alpha \frac{e^{k r}}{r}$.

For your group's case, answer each of the following questions:

1. Find the total current flowing through the wire.
2. Use Ampere's Law and symmetry arguments to find the magnetic field at each of the three radii below:
(i) $r_{1}>b$
(ii) $a<r_{2}<b$
(iii) $r_{3}<a$
3. What dimensions do α and k have?
4. For $\alpha=1, k=1$, sketch the magnitude of the magnetic field as a function of r.
