AMPERE'S LAW

A steady current is flowing parallel to the axis through an infinitely long cylindrical shell of inner radius a and outer radius b. Each group is assigned one of the current densities given below: (In each case, α and k are constants with appropriate units.)

- 1. $|\vec{J}| = \alpha r^3$.
- 2. $|\vec{J}| = \alpha \frac{\sin kr}{r}$.
- 3. $|\vec{J}| = \alpha e^{kr^2}$.
- 4. $|\vec{J}| = \alpha \frac{e^{kr}}{r}$.

For your group's case, answer each of the following questions:

- 1. Find the total current flowing through the wire.
- 2. Use Ampere's Law and symmetry arguments to find the magnetic field at each of the three radii below:
 - (i) $r_1 > b$
 - (ii) $a < r_2 < b$
 - (iii) $r_3 < a$
- 3. What dimensions do α and k have?
- 4. For $\alpha = 1$, k = 1, sketch the magnitude of the magnetic field as a function of r.

by David McIntyre