Group Activity 7: The Wire

I Essentials

(a) Main ideas

- Calculating (vector) line integrals.
- Use what you know!

(b) Prerequisites

- Familiarity with $d\vec{r}$.
- Familiarity with "Use what you know" strategy.

(c) Warmup

This activity should be preceded by a short lecture on (vector) line integrals, which emphasizes that $\int \vec{F} \cdot d\vec{r}$ represents chopping up the curve into small pieces. Integrals are sums; in this case, one is adding up the component of \vec{F} parallel to the curve times the length of each piece.

A good warmup problem is $\S18.2:6$ in MHG [3].

(d) Props

• whiteboards and pens

(e) Wrapup

- Emphasize that students must express everything in terms of a single variable prior to integration.
- Point out that in polar coordinates (and basis vectors)

$$\vec{B} = \frac{\mu_0 I}{2\pi} \frac{\hat{\phi}}{r}$$

so that using $d\vec{r} = dr \,\hat{r} + r \, d\phi \,\hat{\phi}$ quickly yields $\vec{B} \cdot d\vec{r}$ along a circular arc $\left(\frac{\mu_0 I}{2\pi} \, d\phi\right)$ or a radial line (0), respectively.

II Details

(a) In the Classroom

- Sketching the vector field takes some students a long time. If time is short, have them do this before class.
- Students who have not had physics don't know which way the current goes; they may need to be told about the right-hand rule.
- Some students may confuse the wire with the paths of integration.
- Students working in rectangular coordinates often get lost in the algebra of Question 2b. Make sure that nobody gets stuck here.
- Students who calculate $\vec{B} \cdot d\vec{r} = \frac{dy}{x}$ on a circle need to be reminded that at the end of the day a line integral must be expressed in terms of a single variable.
- Some students will be surprised when they calculate $\vec{B} \cdot d\vec{r} = 0$ for radial lines. They should be encouraged to think about the directions of \vec{B} and $d\vec{r}$.
- Most students will either write everything in terms of x or y or switch to polar coordinates. We discuss each of these in turn.
 - This problem cries out for polar coordinates. Along a circular arc, r = a yields $x = a \cos \phi$, $y = a \sin \phi$, so that $d\vec{r} = -a \sin \phi \, d\phi \, \hat{\imath} + a \cos \phi \, d\phi \, \hat{\jmath}$, from which one gets $\vec{B} \cdot d\vec{r} = \frac{\mu_0 I}{2\pi} \, d\phi$.
 - Students who fail to switch to polar coordinates can take the differential of both sides of the equation $x^2 + y^2 = a^2$, yielding $x \, dx + y \, dy = 0$, which can be solved for dx (or dy) and inserted into the fundamental formula $d\vec{r} = dx \,\hat{\imath} + dy \,\hat{\jmath}$. Taking the dot product then yields, $\vec{B} \cdot d\vec{r} = \frac{\mu_0 I}{2\pi} \frac{dy}{x}$. Students may get stuck here, not realizing that they need to write x in terms of y. The resulting integral cries out for a trig substitution which is really just switching to polar coordinates.
- In either case, sketching \vec{B} should convince students that \vec{B} is tangent to the circular arcs, hence orthogonal to radial lines. Thus, along such lines, $\vec{B} \cdot d\vec{r} = 0$; no calculation is necessary. (This calculation is straightforward even in rectangular coordinates.)

- Watch out for folks who go from $r^2 = x^2 + y^2$ to $d\vec{r} = 2x \, dx \, \hat{\imath} + 2y \, dy \, \hat{\jmath}$.
- Working in rectangular coordinates leads to an integral of the form $\int -\frac{dx}{y}$, with $y = \sqrt{r^2 x^2}$. Maple integrates this to $-\tan^{-1}\left(\frac{x}{y}\right)$, which many students will not recognize as the polar angle ϕ . If r = 1, Maple instead integrates this to $-\sin^{-1} x$; same problem. One calculator (the TI-89?) appears to use arcsin in both cases.

(b) Subsidiary ideas

• Independence of path.

(c) Homework

• Any vector line integral for which the path is given geometrically, that is, without an explicit parameterization.

(d) Essay questions

• Discuss when $\int_C \vec{B} \cdot d\vec{r}$ around a closed curve will or will not be zero.

(e) Enrichment

- This activity leads naturally into a discussion of path independence.
- Point out that $\vec{B} \sim \vec{\nabla} \phi$ everywhere (except the origin), but that \vec{B} is only conservative on domains where ϕ is single-valued.
- Discuss winding number, perhaps pointing out that $\vec{B} \cdot d\vec{r}$ is proportional to $d\phi$ along any curve.
- Discuss Ampère's Law, which says that $\int_{C} \vec{B} \cdot d\vec{r}$ is $(\mu_0 \text{ times})$ the current flowing through C (in the z direction).