Group Activity 7: The Wire

I Essentials

(a) Main ideas

- Calculating (vector) line integrals.
- Use what you know!
(b) Prerequisites
- Familiarity with $d \overrightarrow{\boldsymbol{r}}$.
- Familiarity with "Use what you know" strategy.

(c) Warmup

This activity should be preceded by a short lecture on (vector) line integrals, which emphasizes that $\int \overrightarrow{\boldsymbol{F}} \cdot d \overrightarrow{\boldsymbol{r}}$ represents chopping up the curve into small pieces. Integrals are sums; in this case, one is adding up the component of $\overrightarrow{\boldsymbol{F}}$ parallel to the curve times the length of each piece.

A good warmup problem is $\S 18.2: 6$ in MHG [3].

(d) Props

- whiteboards and pens

(e) Wrapup

- Emphasize that students must express everything in terms of a single variable prior to integration.
- Point out that in polar coordinates (and basis vectors)

$$
\overrightarrow{\boldsymbol{B}}=\frac{\mu_{0} I}{2 \pi} \frac{\hat{\boldsymbol{\phi}}}{r}
$$

so that using $d \overrightarrow{\boldsymbol{r}}=d r \hat{\boldsymbol{r}}+r d \phi \hat{\boldsymbol{\phi}}$ quickly yields $\overrightarrow{\boldsymbol{B}} \cdot d \overrightarrow{\boldsymbol{r}}$ along a circular $\operatorname{arc}\left(\frac{\mu_{0} I}{2 \pi} d \phi\right)$ or a radial line (0), respectively.

II Details

(a) In the Classroom

- Sketching the vector field takes some students a long time. If time is short, have them do this before class.
- Students who have not had physics don't know which way the current goes; they may need to be told about the right-hand rule.
- Some students may confuse the wire with the paths of integration.
- Students working in rectangular coordinates often get lost in the algebra of Question 2b. Make sure that nobody gets stuck here.
- Students who calculate $\overrightarrow{\boldsymbol{B}} \cdot d \overrightarrow{\boldsymbol{r}}=\frac{d y}{x}$ on a circle need to be reminded that at the end of the day a line integral must be expressed in terms of a single variable.
- Some students will be surprised when they calculate $\overrightarrow{\boldsymbol{B}} \cdot d \overrightarrow{\boldsymbol{r}}=0$ for radial lines. They should be encouraged to think about the directions of $\overrightarrow{\boldsymbol{B}}$ and $d \overrightarrow{\boldsymbol{r}}$.
- Most students will either write everything in terms of x or y or switch to polar coordinates. We discuss each of these in turn.
- This problem cries out for polar coordinates. Along a circular arc, $r=a$ yields $x=a \cos \phi, y=a \sin \phi$, so that $d \overrightarrow{\boldsymbol{r}}=-a \sin \phi d \phi \hat{\boldsymbol{\imath}}+$ $a \cos \phi d \phi \hat{\boldsymbol{\jmath}}$, from which one gets $\overrightarrow{\boldsymbol{B}} \cdot d \overrightarrow{\boldsymbol{r}}=\frac{\mu_{0} I}{2 \pi} d \phi$.
- Students who fail to switch to polar coordinates can take the differential of both sides of the equation $x^{2}+y^{2}=a^{2}$, yielding $x d x+y d y=0$, which can be solved for $d x$ (or $d y$) and inserted into the fundamental formula $d \overrightarrow{\boldsymbol{r}}=d x \hat{\boldsymbol{\imath}}+d y \hat{\boldsymbol{\jmath}}$. Taking the dot product then yields, $\overrightarrow{\boldsymbol{B}} \cdot d \overrightarrow{\boldsymbol{r}}=\frac{\mu_{0} I}{2 \pi} \frac{d y}{x}$. Students may get stuck here, not realizing that they need to write x in terms of y. The resulting integral cries out for a trig substitution - which is really just switching to polar coordinates.
- In either case, sketching $\overrightarrow{\boldsymbol{B}}$ should convince students that $\overrightarrow{\boldsymbol{B}}$ is tangent to the circular arcs, hence orthogonal to radial lines. Thus, along such lines, $\overrightarrow{\boldsymbol{B}} \cdot d \overrightarrow{\boldsymbol{r}}=0$; no calculation is necessary. (This calculation is straightforward even in rectangular coordinates.)
- Watch out for folks who go from $r^{2}=x^{2}+y^{2}$ to $d \overrightarrow{\boldsymbol{r}}=2 x d x \hat{\boldsymbol{\imath}}+2 y d y \hat{\boldsymbol{\jmath}}$.
- Working in rectangular coordinates leads to an integral of the form $\int-\frac{d x}{y}$, with $y=\sqrt{r^{2}-x^{2}}$. Maple integrates this to $-\tan ^{-1}\left(\frac{x}{y}\right)$, which many students will not recognize as the polar angle ϕ. If $r=1$, Maple instead integrates this to $-\sin ^{-1} x$; same problem. One calculator (the TI-89?) appears to use arcsin in both cases.

(b) Subsidiary ideas

- Independence of path.

(c) Homework

- Any vector line integral for which the path is given geometrically, that is, without an explicit parameterization.

(d) Essay questions

- Discuss when $\int_{C} \overrightarrow{\boldsymbol{B}} \cdot d \overrightarrow{\boldsymbol{r}}$ around a closed curve will or will not be zero.

(e) Enrichment

- This activity leads naturally into a discussion of path independence.
- Point out that $\overrightarrow{\boldsymbol{B}} \sim \vec{\nabla} \phi$ everywhere (except the origin), but that $\overrightarrow{\boldsymbol{B}}$ is only conservative on domains where ϕ is single-valued.
- Discuss winding number, perhaps pointing out that $\overrightarrow{\boldsymbol{B}} \cdot d \overrightarrow{\boldsymbol{r}}$ is proportional to $d \phi$ along any curve.
- Discuss Ampère's Law, which says that $\int_{C} \overrightarrow{\boldsymbol{B}} \cdot d \overrightarrow{\boldsymbol{r}}$ is (μ_{0} times) the current flowing through C (in the z direction).

