Eigenvalues and Eigenvectors

Each group will be assigned one of the following matrices.

$$
\begin{gathered}
A_{1} \doteq\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \quad A_{2} \doteq\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad A_{3} \doteq\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right) \\
A_{4} \doteq\left(\begin{array}{ll}
a & 0 \\
0 & d
\end{array}\right) \quad A_{5} \doteq\left(\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right) \quad A_{6} \doteq\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \quad A_{7} \doteq\left(\begin{array}{ll}
1 & 1 \\
2 & 2
\end{array}\right) \\
A_{8} \doteq\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right) \quad A_{9} \doteq\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
S_{x} \doteq \frac{\hbar}{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad S_{y} \doteq \frac{\hbar}{2}\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad S_{z} \doteq \frac{\hbar}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
\end{gathered}
$$

For your matrix:

1. Find the eigenvalues.
2. Find the (unnormalized) eigenvectors.
3. Normalize your eigenstate.
4. Describe what this transformation does.

When you are finished, write your solutions on the board.

If you finish early, try another matrix with a different structure, i.e. real vs. complex entries, diagonal vs. non-diagonal, 2×2 vs. 3×3, with vs. without explicit dimensions.

[^0]
[^0]: by Corinne Manogue, Kerry Browne, Elizabeth Gire, David McIntyre (C) 2010 Corinne A. Manogue

