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Presented here is a case study of the problem-solving behaviors of upper-

division undergraduate physics majors.  This study explores the role of visual 

representations in students’ problem solving and provides a foundation for 

investigating how students’ use of visualization changes in the upper-division 

physics major.  Three independent studies were conducted on similar samples of 

students.  At the time of these studies, all of the subjects were junior physics majors 

participating in the Paradigms in Physics curriculum at Oregon State University.  In 

the first study, we found that while the students all scored very high on the Purdue 

Spatial Visualization Test, the correlation between test scores and their grades in 

physics was not statistically significant.  In the second study (N=5) and the third 

study (N=15), we conducted think-aloud interviews in which students solved 

electrostatics problems.  Based on the interviews in the third study, we develop a 

model that describes the process by which students construct knowledge while 

solving the interview problems.  We then use this model as a framework to propose 

hypotheses about students’ problem solving behavior.  In addition, we identify 

several difficulties students have with the concepts of electric field and flux.  In 

particular, we describe student difficulties that arise from confusing the vector and 

field line representations of electric field.    Finally, we describe some student 

difficulties we observed and suggest teaching strategies that may assuage them.
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A Case Study of How Upper-Division Physics Students use 
Visualization While Solving Electrostatic Problems 

Chapter 1 Introduction 

Einstein indicated that his thought processes were dominated by images and 

that “logical construction in words or other kinds of signs” was a secondary thought 

process.  (Einstein in a letter to Jacques Hadamard).  In describing his 

diagrammatic approach to field theory, Richard Feynman emphasized the 

importance of abstract visualization.  In an interview with James Gleick (1992), he 

explained, “What I am really trying to do is bring birth to clarity, which is really a 

half-assedly thought-out-pictorial semi-vision thing. ...  It's all visual.  It's hard to 

explain."  Statements like these suggest that visual thinking is an important and 

possibly essential ingredient in mathematical and scientific creativity.   

1.1 Introduction to the Literature 

While more emphasis is generally placed on the role of symbolic-analytic 

thinking, in science and mathematics education, the importance of visualization in 

problem solving has been recognized in the mathematics education literature.  

There has been significant research on the role of visual methods in mathematical 

problem solving (See for example: Lean and Clements, 1981; Presmeg, 1986, 

1992; Webb, 1979; Zazkis, Dubinsky and Dautermann, 1996).  In particular, 

research by Webb (1979) and Lean and Clements (1981) suggests that visual 

strategies are particularly useful in solving complex and non-routine problems.  

Presmeg (1986, 1992) examined high school students’ use of visual problem 

solving methods in solving mathematics problems.  Her interviews with 54 
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“visualizers” identified visual methods used by these students as well as important 

advantages and difficulties that these students experienced with visual problem-

solving methods.  Zazkis, Dubinsky and Dautermann (1996) introduce a 

provocative model that describes the interplay of visual and analytic thinking in 

problem solving.  Considering the mathematical nature of problem solving in 

physics, this research is relevant to the current study.  

While visual problem solving has received somewhat less attention in the 

Physics Education Research (PER) community, the literature contains several 

studies examining how expert and novice problem solvers approach problems at the 

lower-division level.  (See for example: Larkin & Reif, 1979; Larkin, 1981; Larkin, 

McDermott, Simon & Simon 1980; Van Heuvelen, 1991).  These studies have 

examined and modeled how students solve problems in physics primarily in the 

realm of introductory mechanics.  Some of this research explores how students use 

fundamental physical principles to solve problems (Larkin, 1981) while others 

explore a broader collection of problem-solving phenomena including qualitative 

and visual problem solving methods (Van Heuvelen, 1991).  Both the physics and 

mathematics education literature provide an important foundation for the present 

study.  Each will be discussed in more detail in Chapter 2.    

1.2 PER in the Upper-Division vs. PER in the Lower-Division 

Educational research and curriculum development in upper-division physics 

are still in their infancy.  While considerable effort has been put into physics 

education research at the high school and lower-division level, very little research 

has been done on learning in upper-division physics (McDermott & Redish, 1999).  

Very recently, some work has been done in an effort to test and improve students 

understanding in upper-division quantum mechanics (Cataloglu & Robinett, 2001; 

Redish, Steinberg & Wittmann, 2000).  These efforts are still in their early stages 

and standard instruments like the Force Concepts Inventory (FCI) (Hestenes, Wells 
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& Swackhammer, 1992) and Mechanics Baseline Test (Hestenes & Wells, 1992) 

have not yet been developed for use in the upper-division.  

The educational research that has addressed upper-division problems very 

closely resembles physics education research at the lower division.  Many of these 

studies are based on the assumption that the important questions at the lower-

division translate to the upper division.  While it is possible that this assumption is 

reasonable, it is currently unsupported by research.  Currently, no studies have been 

undertaken to determine which research questions are of most importance in the 

upper-division.   

Clearly, our goals and expectations for lower-division students are 

significantly different from our goals and expectations for physics majors.  In 

particular, the content presented at the upper-division has a different emphasis and 

requires more mathematical sophistication.  We want our physics majors to learn 

the fundamentals well enough to extend their knowledge, but we also want them to 

have enough knowledge to be prepared for graduate school or the work force.  In 

the upper division, we emphasize professional development activities much more 

than in introductory courses.  Specifically, we put more emphasis on professional 

communication and laboratory skills.  Finally, we expect our upper-division 

students to think with a higher level of abstraction and to be able to solve longer 

more complex problems.  All of these differences suggest that the questions of 

interest to educational researchers studying upper-division physics will be 

significantly different from the interesting questions at the lower-division level. 

In addition to these differences, the changes that physics students undergo in 

the upper-division are likely different from those experiences by students taking a 

single physics course.  Much happens in the junior and senior year as students 

transition from novice to professional physicists.  While our understanding of this 

transition is quite limited, it is certainly vastly different from the experience of the 

typical student in introductory calculus.   

One of the major goals of this study is to begin to explore the issues of 

interest in the upper-division.  Expressly, we intend to develop several hypotheses 
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and identify research questions that will be of particular interest to teachers and 

researchers working with upper-division physics students. 

1.3 Statement of the Problem and Significance of the Study 

It is widely acknowledged in the physics community that visual problem 

solving strategies are essential skills for students.  However, the teaching of these 

strategies has often been given short shrift because instructors assume that students 

already know and use the requisite visual problem solving strategies.  These same 

instructors are often baffled when their students do not use simple diagrams to 

solve exam problems.  Alan Van Heuvelen (1991) reports that while essentially all 

physics teachers use diagrams in their problem solutions, only about 20% of the 

students in introductory calculus based physics use diagrams to help them solve 

problems on their final exams.  When these students enter the upper-division, they 

are not well prepared to use visual methods to help them solve problems. 

The Paradigms in Physics program (Manogue, et. al., 2000) has developed a 

new curriculum for the upper-division informed by research done at the lower-

division.  However, for programs like Paradigms in Physics to continue productive 

curriculum development, much more needs to be learned about how physics majors 

think and learn in their junior and senior years.  A significant obstacle exists in the 

continued development of curriculum at the upper-division level.  In order to 

continue to improve the upper-division curriculum, we need to enhance our 

understanding of the differences between upper-division and lower-division 

students.  During development of the Paradigms in Physics curriculum (Manogue, 

et. al., 2001), it was noticed that most physics students undergo a dramatic change 

in how they think about physics between the beginning of the junior year and the 

end of the senior year.  We expect that students’ general level of sophistication 

increases rapidly as they make the transition from beginning physics students to 
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professional physicists.  Still, we have little specific knowledge of the nature of this 

transition.  Examining one piece of this transition is the focus of the current study.    

In training physics majors, our goal is to help them become self-sufficient 

professionals.  A non-trivial component of this preparation entails helping them 

begin the transition from novice to expert problem solvers.  Considering the gap 

between the way students and experts use visual/qualitative methods in lower 

division physics (Van Heuvelen, 1991), a significant part of this transition must 

entail the development of visual problem solving skills.  At the same time, the 

transition from lower-division to upper-division entails a substantial increase in the 

difficulty and complexity of problems students must solve.  Thus, what we have 

learned about problem solving at the lower division may not be applicable to 

problem solving in the upper-division.   

As described in above, research and curriculum development for upper-

division physics is currently underway.  These efforts are based primarily on lower-

division physics education research.  While this research is a good basis, significant 

differences exist between upper and lower-division students.  Problem solving in 

general and particularly the use of visual problem solving methods are important 

aspects of student development at the upper-division level.  The goal of this study 

is to develop a better understanding of how upper-division physics students use 

visualization in problem solving.  Eventually, we would like to extend this research 

to study the changes that occur in students’ problem solving behaviors as they 

transition into professional physicists.  

In Chapters 6 and 7 of this study, physics students were interviewed while 

solving electrostatics problems.  The interview transcripts were then analyzed in an 

effort to characterize the subjects’ use of visual problem solving methods.  The 

intent of this study was to closely examine the subjects’ use of visual problem-

solving methods in a complex problem typical of upper-division physics courses.  

These interviews were performed at the beginning of the junior year in an effort to 

explore how students solve problems as they enter the upper-division transition.   
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Often visualization research in physics involves the development of new 

visualization tools (Van Heuvelen & Zou, 1999; Jolly, Zollman, Rebello & 

Dimitrova, 1998) or the examination of student difficulties with standard visual 

representations (Törnkvist, Pettersson & Tranströmer, 1993).  In contrast, the intent 

of this study is to explore how students use diagrams and pictures during 

independent problem solving.  It is often assumed that students use visualization in 

the same ways that instructors do or that they use the visualizations we teach them 

in class.  However, there is little evidence that suggests this is actually the case.  

The purpose of this study is to explore students’ problem solving with a particular 

emphasis on the role of visual images.  

This research will help inform curricular development efforts in upper-

division physics.  In particular, the results of this study can be used to inform 

teachers of the problem solving methods their students do and do not use.  Teachers 

can then develop materials that utilize prevalent strengths or specifically address 

common deficiencies in students’ problem solving.  This study will also serve as a 

basis for further research into how the problem solving habits of physics students’ 

change over the course of their junior and senior years. 

1.4 Thesis Outline 

In Chapter 2 we provide a brief review the relevant literature.  Since we were 

unable to find any literature studying either the use of visualization or problem 

solving in upper-division physics, the literature reviewed here was drawn from 

several disciplines including:  physics education, science education, math education 

and cognitive psychology.  We describe studies that examine the importance of 

visual/qualitative thinking in physics and in particular electrostatics.  We provide 

some background on the connection between science and spatial ability.  We also 

review several papers exploring connections between visualization and problem 

solving.  We examine in detail a model for exploring the interaction of visual and 
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analytic steps in the problem solving process.  Finally we review some of the 

literature on expert and novice problem solving in physics. 

In Chapter 3 we give a description of the subjects participating in this study.  

We characterize their backgrounds and give a brief description of the Paradigms in 

Physics curriculum they were engaged in during these interviews. 

Chapter 4 contains a description of a study we performed in order to gauge 

the relationship between students spatial ability and their course grades in physics.  

We give a brief description of the sample.  Next, we describe the Purdue Spatial 

Visualization Test (PSVT) and provide some evidence in support of our decision to 

use this instrument to measure students’ spatial ability.  We then describe our 

analysis procedures and present the results of our correlation analysis. 

In Chapter 5 we explain our research, design, describe and justify the data 

collection methods we used for the studies presented in Chapters 6 and 7.  We 

describe the think-aloud interview method and delineate our reasons for choosing 

this method of data collection.  We also describe some of the methods we used to 

limit bias and ensure complete recording of the interview data. 

Chapter 6 describes a pilot study in which seven students were interviewed 

while they solved an electrostatics problem.  We outline the characteristics of the 

sample of student who participated in the study.  We present a description of the 

interview protocol used in the data collection and give a description of the problem 

students were asked to solve during the interviews.  The results of these interviews 

are presented in Section 6.4.  We introduce and apply a new model for exploring 

the interaction between visual and symbolic processing in students problem 

solving.  We also identify two visual problem-solving strategies that were observed 

in these interviews. 

Chapter 7 describes a second set of interviews performed in the fall of 2000.  

These interviews were intended to extend the results of the study described in 

Chapter 6.  We characterize the sample of 15 students interviewed and give a 

description of the protocol and problem used in this set of interviews.  Section 7.4 

contains a description of the results of this final set of interviews.  Students’ general 
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performance on the main problem is presented.  A model of students’ method for 

construction information is presented and used to describe some interesting 

problem solving behaviors.  We also present observations of students’ models of 

flux derived from problem solutions and students’ responses to a direct question 

about flux. 

Chapter 8 contains a discussion of the important results and hypotheses 

generated in these studies.  Section 8.6 contains a summary of the most important 

hypotheses as well as recommendations for teachers.  Suggestions for further work 

inspired by these results and hypotheses are also found in Chapter 8.  
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Chapter 2 Review of the Literature 

A search of the physics and science education research literature revealed 

very few studies examining upper-division physics (Cataloglu & Robinett, 2001; 

Singh, 2001; Redish, Steinberg & Wittmann, 2000; Manogue, et. al., 2001).  The 

Redish, Steinberg & Wittmann study and the Manogue, et. al., study are primarily 

focused on upper-division curriculum development. Cataloglu & Robinett describe 

the development and preliminary testing of an instrument to measure quantum 

mechanics performance in students as they progress through their undergraduate 

careers.  Singh investigated physics majors’ difficulties with quantum mechanics 

and specifically quantum measurement.  No studies were found which explicitly 

addressed student use of visual problem solving methods in upper-division physics. 

Several studies were found that explored student difficulties in electrostatics 

at the lower division level.  In addition, we identified several studies that suggest 

spatial ability and performance in science and mathematics are linked.  An article 

was also reviewed that indicated a connection between spatial ability and practical 

problem solving (Adeyemo, 1994).  Also relevant for this study was a collection of 

articles exploring the relationship between visualization and problem solving in 

mathematics.  Due to the mathematical nature of physics at the upper division, 

these studies were particularly relevant.  Finally, we found several studies 

exploring the differences between expert and novice problem solvers in 

introductory physics.  Since our population lies somewhere between experts and 

novices, these studies provide valuable information about the states between which 

our students are transitioning.  This chapter contains a summary of the relevant 

literature identified in our literature search.   
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2.1 Student Difficulties in Electrostatics 

Two studies illustrate the tendency of students at the lower division level to 

avoid qualitative methods when solving electrostatics problems.  These studies 

highlight the lack of qualitative reasoning in many students’ problem-solving 

repertoire.  McMillan and Swadener (1991) indicated that few of the students 

participating in their study were able to reason qualitatively about the electrostatics 

problems they were presented.  Greca & Moreira (1997) found that very few of 

their students developed mental models for working with concepts in 

electromagnetism.  While this conclusion was based on a largely unexplained 

instrument, the model score, the authors indicated that subjects were probed for 

qualitative/visual understanding.  A third study reviewed (Törnkvist, Pettersson, & 

Tranströmer, 1993) indicates some student difficulties in electrostatics can be 

attributed to students’ application of field lines.  The authors indicate that students 

“attach too much reality” to field lines resulting in confusion about the nature of the 

electric field.   

In electromagnetism, qualitative understanding is often associated with a 

visual understanding of the interaction of vector and scalar fields.  The finding that 

students lack qualitative understanding in electromagnetism may indicate that they 

do not use visual strategies to understand electromagnetic systems.  In addition, the 

Törnkvist, et al. (1993) study suggests that students’ ability to effectively use field 

lines, a qualitative representation, is inhibited because they have failed to clearly 

define the field line concept.  Taking into account that professional physicists 

routinely use visual images when addressing electrostatics problems, these results 

demonstrate one important distinction between novice and expert problem solvers 

in physics. 
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2.2 Spatial Ability and Science Performance 

While little research has been done on visualization in upper-division 

physics, the importance of visual thinking in mathematics and science is reflected 

in the literature.  Much research has focused on improving our understanding of the 

role of visual thinking in math and science at the high school and lower-division 

levels.  Several studies have explored the relationship between spatial ability and 

achievement in mathematics, science and engineering courses (Siemankowski & 

MacKnight, 1971; Burnett & Lane, 1980).  In addition, Burnett, Lane and Dratt 

(1979) found that the well-documented dependence of mathematical ability on 

gender could be explained by differences in spatial ability.   

It has been shown that spatial training can result in improvement in advanced 

mathematics (Mundy, 1987) performance.  Small and Morton (1983) found that 

task specific spatial visualization training significantly enhanced student 

performance in organic chemistry.  Pribyl and Bodner (1985) also found a strong 

correlation between spatial ability and performance in chemistry.  Burnett & Lane 

(1980) found that spatial ability was significantly enhanced in students after two 

years of training in the physical sciences.  These studies strongly suggest that the 

learning in science and mathematics is linked to visual thinking.   

2.3 Visualization and Problem Solving 

A number of studies have explored the role of visualization in problem 

solving.  Researchers have examined the relationship between spatial ability and 

problem solving performance (Adeyemo, 1994; Lean & Clements, 1981).  In both 

of these studies, only a small correlation between spatial ability and performance 

on practical problem solving tasks was measured.  Adeyemo (1994) found that the 

practical problem solving performance of subjects exposed to visualization training 

increased significantly.  Hortin, Ohlsen & Newhouse (1985) obtained similar 
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results.  Unfortunately, these results were marred by unvalidated instrumentation.  

In contrast, Antonietti (1999) found that students' ability to use visualization in 

problem solving is severely limited by their ability to predict which problems will 

yield to visual strategies.   

Lean and Clements suggest that a higher correlation might be measured if 

more complex, less familiar problems were used to measure mathematical problem 

solving ability.  Antonietti (1999) examined subjects’ ability to predict when visual 

strategies would be useful.  This study revealed that subjects most 

Lean and Clements (1981) explored the extent to which subjects’ spatial 

ability and choice of problem solving method (visual or non-visual) were good 

predictors of performance on mathematical problems.  The results of this study 

suggested that those subjects who chose to use visual problem solving methods 

performed at a lower level on mathematical problem solving tasks.  Lean and 

Clements qualified this finding by indicating that the problems used to measure 

mathematical performance were straightforward and routine. 

In contrast to Lean and Clements (1981) study, Webb (1979) found that 

students who preferred to use visual solution methods outperformed those who 

preferred non-visual.  The primary difference between these studies was in the 

nature of the problems used.  In comparison with Webb’s study, the problem 

solving tasks used by Lean and Clements were simpler and more routine.  These 

results suggest that visual problem solving methods are advantageous for complex 

and non-routine problems. 

In contrast to the studies described above, Norma C. Presmeg has engaged in 

studies that explore the particular behavior of high school students as they use 

visualization in solving mathematics problems.  She explored the kinds of visual 

imagery students used while solving mathematical problems in her 1986 qualitative 

study (Presmeg, 1986).  The intent of this study was to "identify the strengths and 

limitations of visual imagery in high school mathematics."  The author conducted 

problem-solving interviews with 54 high school students who preferred to use 

visual methods when solving mathematics problems.  Presmeg described several 
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common difficulties students encountered during these interviews as well as some 

of the advantages these students’ derived from using visual methods.  This study 

was primarily descriptive, outlining the visual methods students used and the 

sources of difficulty they had with visual problem solving methods.  She noted that 

one of the most important reasons students had difficulty using visualization while 

solving mathematics problems was because they did not use rigorous reasoning 

when working with visual representations.  

In another paper (Presmeg, 1992), she emphasized the value of imagery as a 

method of abstraction in problem solving.  She noted that many student difficulties 

with visualization as a problem-solving tool stemmed from the over-concretization 

of images.  She notes that one of the primary values of visual problem solving is 

that it allows the solver to ignore unimportant details and utilize the flexibility 

afforded by visual models.  However, she warns that students often take this 

flexibility too far forgetting to keep track of the limitations of the visual 

representation.  Thus it appears that, when using visual representations, students 

walk a fine line between over-concretizing their images and forgetting the 

limitations of these representations. 

In both of the studies reviewed here, Presmeg (1986; 1992) emphasizes 

abstraction and flexibility as the essential properties of visual representations that 

make them so useful in problem solving.  Many of the visual models we use in 

physics are complete abstractions (field lines, field vectors, free body diagrams, 

Feynman diagrams, etc…)  Even the concept of a graph of any sort is an 

abstraction.  The lines of the graph do not correspond to lines in the physical world.  

Instead, these lines are a convenient way of representing the value of a physically 

measurable quantity.  Although the quantities we discuss are real, the visual 

representations are abstract.  With this in mind it is important to ask the question 

what are our goals for students in using visualization.  Certainly, we want our 

physics majors to learn to use, connect and adapt existing visual representations 

that are common throughout physics.  However, is it realistic to expect these 

students to be able to develop their own original visual representations?  Much of 
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Presmeg’s studies have focused on student’s ability to spontaneously generate their 

own abstract visual representations.  She has found that only a small fraction, one 

to 2 percent, of the high school mathematics students she studied regularly 

generated and used this type of abstract imagery.  Based on this result, it may be 

more productive to study the ways that students recall, reconstruct and use visual 

representations they have been expose to in class. 

2.4 Modeling the Use of Visualization in Problem Solving  

Zazkis, Dubinsky and Dautermann (1996) propose a novel model, the V/A 

model, to describe student problem solving in mathematics.  According to this 

model, problem solving consists of an alternating sequence of visual and analytic 

steps.  Each step involves some modification or manipulation of elements or 

entities from the previous steps, e.g., manipulation of an image to explore possible 

rotations of a square.  Initially, the visual and analytic steps are quite distinct, but as 

the sequence progresses, the visual and analytic steps become more intertwined 

eventually leading to a solution.  

The strength of this model is that it describes a variety of problem-solving 

behaviors involving at least some explicitly visual steps.  The authors use the 

model to explain several scenarios in which subjects use various visual methods to 

solve the problem proposed.  In cases where visualization was explicit, the authors 

identified several obvious analytical steps that were not apparent at first glance.  

However, the authors did not use the V/A model to examine solutions that involved 

primarily non-visual methods.   

The V/A model was based on data from student interviews in which subjects 

were asked to explain their solutions to a mathematics problem.  Data from these 

interviews was used to illustrate how the V/A model can be used to explain 

complex problem solving behavior.  The authors acknowledge that their data is not 

extensive enough to test the correctness of this model, but conjecture that this or a 
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similar model might describe a large class of problem solving behaviors heretofore 

unexplained. 

The behavior of individuals who primarily use visual problem solving 

strategies has been explored in some detail (Presmeg, 1986, 1992; Lean & 

Clements 1981; Moses, 1980).  However, the literature (Presmeg, 1986) suggests 

that most students use some combination of visual and non-visual methods to solve 

problems.  The V/A model is an attempt to describe the problem solving methods 

of these students.  In addition, the V/A model is a first attempt at exploring the 

complex interplay of visual and non-visual steps in problem solving.   

2.5 Expert and Novice Problem Solving  

The study of expertise and the differences between expert and novice 

problem solvers is a mature field.  A significant amount of this research has 

focused on development of expertise in learning introductory mechanics.  

Introductory mechanics has been the focus of expertise research primarily because 

it is a real system that is quantitative enough to be modeled easily with computer 

simulations.  Jill Larkin compared students’ behavior to such a computer model in 

a 1981 study.  This study revealed that novice students’ mechanics problem-solving 

behaviors could be modeled reasonably well with a simple computer simulation.  In 

particular she found that the students and the simulation tended to work backwards 

from the desired quantities toward the given quantities.  Interestingly, by giving the 

computer simulation some rudimentary learning capabilities its problem solving 

behaviors changed significantly.  Notably, the computer simulation began to solve 

problems starting with the given quantities and working toward the unknowns. 

In 1980, Larkin, McDermott, Simon and Simon (1980) published a study 

describing the characteristics they observed in expert and novice subjects as they 

solved introductory mechanics problems.  They found that in addition to solving 

simple mechanics problems faster than novices, the experts also solved problems in 
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the opposite order.  That is, novice subjects, tended to “work backwards from the 

unknowns problem solution,” whereas experts worked from forward from the given 

elements of the problem to the solution.  It was also noted in this study that the 

novice subjects verbalized many more of the steps in their problem-solving process 

than did the experts.  The authors suggest that the experts had automated many of 

the common problem solving tasks through years of practice.  Finally the authors 

note that the most significant difference between expert and novice problem solvers 

is the obvious, namely that the experts have far more knowledge.  However, they 

preface this by noting that the expert’s knowledge is not just a huge collection of 

facts.  Instead they suggest that an important characteristic of expert knowledge is 

the fact that such a large body of information is organized in a manner that 

facilitates rapid recall. 

Chi, Glaser and Rees (1982) published a detailed review of the nature of 

problem solving expertise.  Much of this review focuses on problem solving 

expertise in the realm of elementary mechanics.  They outline some of the 

important characteristics of expert problem solving.  Specifically, they note that 

expert’s tend to begin problems with a qualitative analysis.  They describe several 

studies, which suggest that a significant component of this qualitative analysis 

involves the translation of the problem into a “physical representation.”  That is to 

say, experts tend to recast the problem statement into a form containing well-

defined scientific quantities.  Once in this representation, the experts are able to 

solve the problem quickly. 

These studies describe several important differences between novice and 

expert problem solvers.  Notably,  

1. Experts solve problems more quickly than novices do.  

2. Experts tend to solve simple problems starting with givens and working 

toward the unknowns whereas novices tend to work in the opposite order.   

3. Novices tend to verbalize more steps in their solution process than experts 

do. 
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Chapter 3 Description of the Subjects 

The subjects in this study were physics or engineering-physics majors in their 

junior year of study at Oregon State University.  They all participated in the Paradigms in 

Physics program, a recently developed curriculum for upper-division physics.  The 

relevant details of this program are outlined in Section 3.2.   

3.1 Background of the Subjects 

While the physics majors studied are primarily white male, they enter the 

Paradigms in Physics program from diverse academic backgrounds.  Roughly half of the 

students entering the junior year have transferred from a community college or another 4-

year institution.  In addition, approximately 10 percent of the students have studied 

abroad for at least one term. 

Upon entering the junior year, all of the subjects have completed at least one year 

of introductory calculus-based physics.  Most of them have taken a one-term modern 

physics course; however, some take this course during the first term of their junior year.  

In addition, all of the students have taken a standard calculus sequence through vector 

calculus. 

3.2 The Paradigms in Physics Program 

Because the students participated in an experimental physics curriculum, it is 

pertinent to include a brief description of the program since it differs significantly from 

the traditional junior-year physics curriculum.  Details of the Paradigms in Physics 

Program were reported by Manogue, Siemens, Tate, Browne, Niess & Wolfer (2001).  

Students in the Paradigms program participate in nine short intensive courses over the 

course of their junior year.  Each of these courses is built around a paradigmatic example 

in physics.   



 
 

 

18 

At the time of this study, the Paradigms courses included:   

• Symmetries and Idealizations - A tutorial in the use of symmetries and 

idealizations to simplify physical systems and aid in problem solving.  In this 

course, subjects studied topics that would prepare them to solve the problem 

posed in this study.  Several particularly relevant topics were taught in this 

course.  These included curvilinear coordinates, the definition of electric flux 

and the integral forms of Gauss’s and Ampere's laws.  In addition, students 

spent some time learning to visualize fields and field concepts.  This course was 

instituted in the fall of 2000 to address pace and intensity issues brought to light 

by student comments, test performance and interview data acquired during the 

preliminary interviews described here.   

• Static Vector Fields - An introduction to the manipulation of vector fields using 

examples from electrostatics, magnetostatics and gravity.  Students explore the 

behavior of three dimensional vector fields with the aid of computer 

visualization tools and group activities.  In the fall of 1999, this course 

introduced curvilinear coordinates, the definition of electric flux and the 

integral forms of Gauss’s and Ampere's laws.  In the fall of 2000 this material 

was transferred to the Symmetries and Idealizations course.  This allowed more 

thorough coverage of these concepts and the introduction of more advanced 

topics in electricity and magnetism. 

• Oscillations - A treatment of oscillations in time, including an introduction to 

Fourier series and transforms.  This class is based around two integrated labs 

studying the oscillation of a compound pendulum and an RLC circuit. 

• Energy and Entropy - An introduction to the connection between the 

macroscopic and microscopic worlds.  This class explores the connection 

between quantum statistical mechanics and macroscopic measurements with the 

use of computer simulations. 

• One Dimensional Waves - Explores the behavior of classical and quantum 

waves oscillating in one spatial dimension as well as in time.  Students examine 

waves along a coaxial cable in an integrated lab. 
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• Quantum Measurement and Spin - Students examine the postulates of quantum 

mechanics.  As an example, they use a computer simulation of the Stern-

Gerlach experiment to explore the simplest of all quantum systems, the spin ½ 

system. 

• Central Potentials - Students learn about classical and quantum particles in 

three-dimensional central potentials.  Computer visualization tools are used 

extensively as an aid to understanding three dimensional quantum fields. 

• Periodic Systems - Students learn about quantum and classical periodic 

systems.  Computer simulations are used to examine the behavior of a classical 

chain and the properties of a simple quantum lattice. 

• Rigid Bodies - An introduction to the behavior of extended bodies.  Students 

compare measurements and calculations of the inertial tensor for an extended 

body as part of an integrated lab. 

• Reference Frames - An introduction to the concept of reference frames, 

Galilean transformations and Lorentz transformations.  Students use computer 

visualization and simulation tools to examine how the choice of reference frame 

affects the observed properties of a body. 

Each of these classes lasts three weeks and meets seven hours a week.  A typical 

week consists of three hours of lecture and four hours of lab, group activities, computer 

visualization or other non-lecture activities.  Table 3.1 shows the Paradigms schedule 

with the times at which interviews were conducted and the Purdue Spatial Visualization 

Test (PSVT) was administered. 

Most students also attended two terms of an electronics lecture/lab course as well 

as a term-long course in classical mechanics during their junior year.  In the senior year, 

students attended a collection of term long courses in more traditional physics subjects 

(quantum mechanics, math methods, electrodynamics, statistical physics, computational 

physics etc…).  The intensive nature of the junior year courses, the inclusion of non-

lecture teaching strategies and an overall reorganization of the junior year material are the 

most significant differences between Paradigms in Physics and the traditional physics 

curriculum.  While the material covered in the Paradigms is very similar to that covered 
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by the traditional curriculum, the distribution of material between the junior and senior 

years is quite different. 

Course Measurement Course Measurement
PSVT

Preliminary Interviews
Final Interviews

PSVT

2000-2001 (Main Interviews)

Waves Waves

Quantum 
Measurement

Quantum 
Measurement

Symmetries & 
Idealizations

Static Fields

Oscillations
Energy & 
Entropy

Sp
ri

ng
W

in
te

r
Fa

ll

1999-2000 (Preliminary Interviews)

Central Forces

Periodic Systems

Rigid Bodies

Reference 
Frames

Static Fields

Oscillations

Central Forces

Energy & 
Entropy

Periodic Systems

Rigid Bodies

 

Table 3.1 - Schedule of Paradigms courses indicating interviews and 
administration of the PSVT  

At the time of this study, the Paradigms in Physics curriculum was still under 

development and was being evaluated.  Thus, the students included in this study have 

been involved in other studies to measure the effectiveness of the paradigms.  In 

particular, some of the subjects will have agreed to participate in verbal and e-mail 
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interviews about the Paradigms program.  The unusual nature of the Paradigms in Physics 

curriculum places some restrictions on the generalizability of this study. 

3.3 The Junior Year Transition 

All of the subjects involved in the following studies were in the junior (3rd) year of 

their undergraduate physics major.  Over the course of this year, students undergo 

considerable changes in the way they think and learn about physics.  Corrine Manogue 

and her colleagues identified this period of rapid change as the junior year “brick wall”. 

(Manogue, Siemens, Tate, Browne, Niess & Wolfer, 2001).  Throughout this document, 

we will refer to it as the junior year transition. 

The beginning of the junior year marks the official transition between the lower 

division and the upper division.  For most students, the first term of the junior year 

signifies the start of the journey toward a professional career in physics.  But this 

transition has more than formal significance.  Many things change for our students as 

they enter the junior year.  As the number of physics courses in their schedules increases, 

so does the time commitment associated with each course.  Their coursework becomes 

more difficult and requires a higher level of mathematical sophistication.  In general, our 

expectations of students sharply increase as they enter the junior year of the physics. 

In addition to these external changes, students learn to think about physics in a 

variety of new ways.  In the junior year of the physics major, students are confronted with 

the formal, mathematical nature of the subject.  They are expected to build their 

knowledge of physics on a framework of sophisticated formal concepts (i.e. fields, 

conservation principles, eigenvalues, etc…).  In many ways, they rebuild and extend their 

understanding of physics on an entirely new vocabulary of formal concepts.  By the time 

they complete their major, they are expected to be able to work and communicate 

effectively in this new language of physics.  The cognitive changes that students undergo 

during the final two years of their physics major clearly amount to more than mere 

acquisition of new facts.  In a very real sense, they are forced to develop fundamentally 

new ways of learning and understanding.   
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Researchers in the field of developmental psychology have studied how people 

learn to learn for nearly a century.  Even though the bulk of this research has focused on 

cognitive development in children and adolescents, the framework developed by these 

researchers provides a valuable background for understanding how adults learn new ways 

of thinking.  The works of two researchers in particular, Jean Piaget and L. S. Vygotsky, 

will be important for constructing a framework upon which to understand the junior year 

transition.  In the next two subsections we will give a brief description of the relevant 

theoretical contributions of each. 

3.3.1 Piaget’s Model of Cognitive Development  

Piaget recognized that children progress through certain well defined stages as they 

progress from infancy to adulthood.  He identified four important stages of cognitive 

development: sensory motor, preoperational, concrete operational and formal operational.  

One of Piaget's most important discoveries is that children always go through these stages 

sequentially.  He deduced from this that the thinking processes developed in each stage 

are prerequisites for development of thinking processes in later stages. Thus, subjects 

never exhibited the characteristics of formal operational reasoning without first exhibiting 

the characteristics of concrete operational reasoning.  

The sensory-motor stage spans from infancy to about two years of age.  The next 

stage is the preoperational stage in which children begin to piece together their 

experiences to obtain a basic understanding of their world.  Most children undergo the 

transition from preoperational to concrete operational around the age of 7 or 8.  Thus it is 

highly unlikely that any of the students in this study are in the preoperational stage.  

However, one important distinction should be made.  Upon the transition to the concrete 

operational stage, children begin to internalize their actions. Piaget states that a subject in 

the preoperational stage, "acts only with a view toward achieving the goal; he does not 

ask himself why he succeeds." (Inhelder & Piaget, 1958)  In contrast, a subject in the 

concrete operational stage is aware of the elements and operations involved in his task.  

Still, a subject in the concrete operational stage is limited. To a concrete operational 
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thinker, the elements and operations are fundamentally linked to the external world. That 

is, the elements in his "model" are concrete and physical. 

For example, a young child learning to throw a ball may become quite proficient, 

but will not recognize the factors that lead to his success.  On the other hand, a child in 

the concrete operational stage will recognize that the position of his arm when the ball is 

released and the strength with which he throws the ball contribute to determining where 

the ball will go.  Notice that the subject is aware of only the concrete physical factors that 

affect his throw.  A subject in the concrete operational stage would not, for instance, 

incorporate abstract ideas such as the force of gravity or the release velocity of the ball.  

These abstract concepts are only incorporated by subjects who have attained the formal 

operational level of development. 

Since this study deals with college age students, it is reasonable to assume that all 

of the subjects in this study have reached the concrete operational stage. Thus, the real 

distinction we must address is that between concrete operational and formal operational.  

Piaget indicates that concrete operational thinkers do not engage in abstraction. That is, 

they work exclusively with concrete representations and operations. 

The primary limitations experienced by concrete operational thinkers are 

abstraction and transfer. That is, concrete operational thinkers experience difficulty with 

tasks that require abstraction of concrete operations or transfer of operations from one 

context to another. Piaget identified several classifications of reasoning that are possible 

only for a subject who has attained the formal reasoning stage. These include, 

combinatorial reasoning, control of variables, concrete reasoning about abstract 

constructs, functional relationships and probabilistic correlations (Fuller, Karplus & 

Lawson, 1977).  Each of these involves the manipulation of abstract concepts and is thus 

beyond the ability of a concrete reasoner.   

It is important to note, that concrete reasoners may appear to be engaged in abstract 

tasks, when in fact they are dealing with the elements concretely.  For example, in 

solving a physics problem, a student may obtain the correct answer by searching through 

a list of equations for one that contains the variables present in the problem statement.  

This type of solution involves no abstraction and is within the realm of possibilities for a 

concrete thinker.  On the other hand, if a student utilizes their conceptual and 
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mathematical understanding of the physics to solve the same problem, she is utilizing 

abstract general principles that are beyond the ability of a concrete thinker.  Thus, in 

some cases, the ability to solve a particular task may not delineate between a concrete and 

a formal thinker, but in many cases, the method of solution will.  

Piaget's stages of development indicate a particular order in which cognitive skills 

are acquired.  Once a person achieves a particular stage of development, she does not cast 

off the tools of the previous stage.  Obviously, adults still utilize sensory-motor tools to 

learn.  In this sense, the process of cognitive development can be seen as the 

accumulation of ever more sophisticated learning skills rather than a transition from a 

primitive set of learning skills to a more advanced set.  This point is particularly relevant, 

when dealing with subjects in more advanced developmental stages. The fact that a 

subject engages in concrete reasoning behavior (even if formal reasoning would be more 

effective) does not necessarily indicate that the subject is not able to reason formally.  

She may choose to use concrete reasoning skills for the purpose of expediency.  For 

example, few people would think of applying abstract algebraic concepts to balance a 

checkbook.  Instead, most people would resort to the simple algorithmic methods they 

learned in elementary school.  

3.3.2 The Vygotskian Approach to Cognitive Psychology 

At the core of Vygotsky's cognitive theory is the idea that learning is an inherently 

social activity. The use of the term social here is meant to emphasize the importance of 

personal interactions in learning.  That is, a novice acquires knowledge by interacting 

with others (teachers, parents, peers, etc...).  Vygotsky believed that learning occurred 

when the novice, with the aid of a teacher, was pushed to perform beyond his individual 

capability. The idea being that, with the aid of an instructor, a student can perform tasks 

which are beyond the level that he can complete independently.  And by engaging in 

these aided tasks, the student extends his ability to perform independently. (Wertsch, 

1985) 

Clearly there are limits to this type of aided learning.  No matter how much 

assistance is provided, a five year old will not benefit from lessons in quantum field 
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theory.  In addition, reviewing the alphabet with a professor of English literature will 

result in little cognitive gain. Thus, Vygotsky argued that significant learning gains can 

only occur if the tasks to be performed by the student are beyond her independent ability, 

but within her ability when aided by an instructor. According to Litowitz (1993), 

"Vygotsky called the difference between what a child can do on her own and what she 

can do in collaboration with a knowledgeable other, the zone of proximal development."  

The zone of proximal development defines the domain in which learning can occur.  One 

important implication of this idea is that it places boundaries on what can effectively be 

taught.  Clearly, engaging a student in an aided task that the student can perform 

independently provides little gain. Similarly, engaging a student in a task that is beyond 

his ability even when aided by the instructor will also provide little cognitive gain. 

It is important to note that the zone of proximal development is defined by the 

particular social context in which learning is to occur.  Thus, in the case of a student-

instructor interaction, the zone of proximal development is not defined exclusively by the 

student, but by interaction between the student and instructor. In this sense, the 

instructor's responsibility is to generate tasks for the student that lie within the zone of 

proximal development. 

Litowitz (1993) outlines a set of steps in the learning process. She claims that in the 

early stages of the learning process, the student is "carried" by the instructor. That is, the 

instructor performs most of the task while the novice performs only a small piece of the 

task. As learning progresses, the student takes over more and more of the task. Finally, 

the student takes over responsibility for the entire task. 

Vygotsky is often cited as one of the initial theoretical advocates of peer 

collaboration (group work) as a method for learning. In peer collaborative learning, 

students define the zone of proximal development for each other.  More precisely, the 

interaction between the students defines this zone.  Depending on the abilities of the 

students involved, this peer collaboration can take on one of two forms.  If one of the 

students is of higher ability than the other, the peer collaboration can take on a form 

similar to the student-instructor interaction described above.   

If the students are of nearly equal ability, they each serve as student and instructor.  

Even though the students are of similar ability, each brings to the task a particular 
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perspective.  Because of this difference in perspective, each student defines the task 

slightly differently. Since the collaborative process requires that they work together on 

the task, each must adjust his own definition of the task to accommodate the other. The 

result is that, even for student of similar ability, each student is able to work beyond the 

level he could achieve alone.  Thus, the role of a peer in peer collaboration in the 

Vygotskian sense is not to provide correct answers but to help define the zone of 

proximal development and facilitate each student to achieve beyond their independent 

learning ability. 

Two important aspects of the Vygotskian model of peer collaboration should be 

noted. First, Vygotsky believed that in order to understand any learning endeavor, it is 

essential to examine the socio-cultural context.  The example given by Forman and 

McPhail (1993) is that, "two siblings who are asked to wash dishes at home are likely to 

interact in different ways that two classmates in school who are asked to collaborate in 

solving a mathematics problem."  Thus, the interaction between individuals engaged in a 

collaborative task is dependent upon their individual backgrounds, their previous 

personal interactions and the particular context of the prescribed task.   

Second, Vygotsky’s approach is primarily focused on facilitating cognitive 

development.  That is, it addresses the development of understanding more than the mere 

acquisition of facts.  In this light, the Vygotskian approach is particularly useful to 

educators in situations where they want their students to develop a comprehensive 

knowledge structure rather than add bits of information to an existing healthy knowledge 

structure. 

3.3.3 Implications of the theories of Piaget and Vygotsky’s for the Junior Year 

Transition 

Four ideas from the theories reviewed above have important implications for 

understanding the junior year transition. First, Piaget’s distinction between concrete and 

formal reasoning highlights one of the primary changes in our expectations of students as 

they enter the junior year.  As student transition from the lower division to the upper 

division in physics they are expected to shift from a primarily concrete intuitive 
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understanding of physics to a formal mathematical understanding.  Second, Vygotsky’s 

emphasis on the effects of the social and cultural setting on learning points out the 

importance of the particular context in which material is presented in upper-division 

physics.  Third, the progression of the students’ role in the student-teacher relationship 

provides a model for how the transition from novice physicist to senior physics major 

might progress.  Finally, Vygotsky’s concept of the zone of proximal development 

provides a theoretical guide for defining the role of the teacher in facilitating a transition.  

One of the major goals of this research is to provide teachers with information that will 

help them identify the boundaries of the zone of proximal development for physics 

majors as they enter the junior year.   

It is reasonable to believe that many of the junior physics majors studied here have 

entered into the formal operational stage of Piagetian development.  Success in the lower 

division requirements for the physics major is unlikely without some formal reasoning 

skills.  This does not however imply that all of the students have reached the formal 

operational stage or that they all have equal facility with formal thinking.  In the junior 

year students begin to face more and more situations to which they must apply formal 

reasoning.  As they develop expertise in the junior and senior years, they are expected to 

shift the fundamental structure of their understanding of physics from concrete to formal 

reasoning.  In fact, the ability to decide which methods are appropriate for solving a 

particular problem may be one of the fundamental characteristics of the expert. 

Chi (1982) suggests that expertise is not universal but rather field dependent.  This 

conjecture is supported by Vygotsky’s belief that learning is context dependent.  Chi and 

Vygotsky agree that at least some component of cognitive development is dependent on 

context. This is particularly relevant for the development of expertise in a specialized 

scientific field like physics.  It is not difficult to argue that the development of expertise 

requires significant intellectual development beyond the simply the ability to reason 

formally in the Piagetian sense.  As physics majors enter the junior year they begin the 

journey toward developing expertise in physics.  From the Vygotskian point of view, the 

particular development that occurs along this journey is dependent not only on the subject 

matter that is covered, but also on the social and cultural environment in which this 

material is covered.  Thus, the same material covered in a lecture, a lab and a small group 
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activity will result in significantly different development in the student.  Taking into 

account that physics graduates will be expected to utilize their physics knowledge in a 

variety of context, it seams reasonable that they should also learn physics in a variety of 

contexts. 

Vygotsky suggested that the role of the student should change significantly over the 

course of learning a particular subject or task.  He argues that as the novice progresses 

she gradually takes over more responsibility in performing a particular task until she can 

perform the task independently.  A simple extension of this idea frames the transition that 

students experience in the junior and senior years of the physics major.  In the lower 

division, students take little responsibility for their overall learning of physics.  The 

topics are chosen by the instructor and the students perform tasks that constitute only a 

fraction of the physics they are exposed to.  Upon entry into the junior year, students are 

expected to take over more responsibility for developing an understanding of the 

particular topics they cover.  As they progress through the major more and more 

responsibility is transferred to the student.  Eventually, they are expected to be able to 

choose their own topics of interest and seek out the resources they need to understand the 

topic.  Thus, Vygotsky’s model of the student-teacher relationship provides a framework 

for the stages of the physics major.  In this framework, the junior year plays a critical role 

since, traditionally, responsibility of the student increases sharply during this year.  One 

of the ultimate goals of this research is to develop an understanding of and facilitate this 

transition. 

The concept of the zone of proximal development is a powerful tool for defining 

the roles of the student and teacher in the learning process.  In the Vygotskian 

framework, the goal of the teacher is to provide a learning environment in which most of 

the students work within the zone of proximal development most of the time.  The idea is 

that, in this zone, students learn at an optimal rate.  Thus, one of the major obstacles 

faced by the teacher is identifying the zone of proximal development for student.  

Remember, that the lower bound of the zone of proximal development is defined by the 

set of tasks that a student can do independently and that the zone of proximal 

development contains the tasks that students can do with the aid of a knowledgeable 

instructor.  One of the primary goals for future extensions to this research is to better 
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define the lower bound of the zone of proximal development for incoming junior physics 

majors.  Two of the studies described in this document yield information about the tasks 

that students can perform independently.  The intent of these studies is to characterize 

students’ independent problem solving ability.  Instructors may find this information 

useful as they attempt to identify the lower boundary of the zone of proximal 

development for their students.       
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Chapter 4 Measurement of Students’ Spatial Abilities 

Spatial ability has been recognized as an important component of human 

intelligence (Guay, 1980).  It has been suggested that spatial ability is an important 

element of mathematical and scientific understanding and creativity.  Even so, the 

importance of spatial ability has been overshadowed by the emphasis placed on verbal 

and analytic ability.  The goal of the study described in this chapter was to assess the 

importance of spatial ability in the upper-division college physics curriculum.  To 

achieve this goal, we measured the correlation between spatial ability and course grades 

in junior year physics for 17 physics and engineering-physics students.  

To begin, we must first develop a working definition of spatial ability.  Two 

components of spatial ability have been identified in the literature: the perception and 

retention of visual images and the mental manipulation of these images.  While both of 

these components are important in their own right, the consensus from the literature is 

that "mental manipulation of objects, not the perception or retention, … enables a task to 

measure spatial ability." (Kovac, 1989, p. 27)  In physics, a large fraction of the spatial 

constructs used are representations of abstract entities molded into spatial form to 

simplify calculations or suggest new directions for problem solving.  In these cases, the 

mental manipulation of these constructs is of primary concern.  Thus, the operating 

definition of spatial ability used here refers to the ability to manipulate mental images.  

Drawing from Zazkis's definition of visualization, mental images are "internal constructs" 

that are strongly connected to "information gained through the senses." (Zazkis, 

Dubinsky & Dautermann, 1996, p. 441)  Therefore, mental images are not restricted to 

visual images, but can include internal constructs related to any of the senses.     

Spatial ability has often been considered less important than verbal and analytic 

ability; however, for certain tasks it has been shown to play a substantial role.  In 

particular, spatial ability has been linked to achievement in mathematics, science and 

engineering courses (Siemankowski & MacKnight, 1971; Burnett & Lane, 1980).  In 

addition, Burnett, Lane and Dratt (1979) found that the well-documented dependence of 

mathematical ability on gender could be explained by differences in spatial ability.  
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Several studies have shown that specific training can improve subjects’ spatial 

abilities (Stericker & LeVesconte, 1981).  Burnett and Lane (1980) studied the 

improvement in spatial ability of 142 students between their first term in college and the 

spring term of their sophomore year.  They showed that subjects in mathematics and 

physical science courses showed significant improvement in their scores on spatial ability 

tests after the first two years of college instruction.  

It has been shown that spatial training can result in improvement in advanced 

mathematics (Mundy, 1987) and chemistry (Small, 1983) performance.  Pribyl and 

Bodner (1985) also found a strong correlation between spatial ability and performance in 

chemistry.   

No similar studies have been done to measure improvement in physics performance 

due to spatial training.  In addition, no studies have specifically addressed the correlation 

of achievement in physics and spatial ability.  It is reasonable, however, to believe that 

such a correlation does exist.  Visualization is an integral part of advanced physics 

knowledge.  Professional physicists often use complex spatial/visual constructs to better 

understand the physical world.  Concepts like fields and constructs like graphs and 

diagrams are essential tools for the professional physicist.  For example, the introduction 

of Feynman diagrams in the 1960s revolutionized the study of field theories by providing 

a simplified language for discussing and calculating complex perturbation integrals.  The 

concepts and ideas of physics are couched in the language of mathematics.  Research has 

shown that mathematical ability is strongly correlated with spatial ability (Burnett, Lane 

& Dratt, 1979).  Based on this research, it is reasonable to suggest that spatial ability 

plays a significant, if possibly indirect, role in understanding of physics. 

The goal of the study described in this chapter is to examine the extent of this role.  

In particular, we measure the correlation between students’ spatial ability and their 

success in the junior-year Paradigms in Physics curriculum.  We also measure how this 

correlation varies among the Paradigms courses. 
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4.1 Sample 

The sample consists of physics and engineering physics majors at Oregon State 

University.  The sample contains 17 students, including all of the junior physics majors 

and about half of the junior engineering physics majors.  Five senior physics and 

engineering physics majors participated in the study, but because of their small numbers, 

this data was not included in the quantitative analysis.  All subjects were volunteers 

participating in a one-week wrap up class at the end of the junior year physics courses.  

The sample consisted primarily of white males, reflecting the standard demographics of 

physics majors at Oregon State University.  Only one female student participated in the 

study.  The average incoming math and physics GPA was 3.00.  Ten of the 17 subjects 

had completed at least 30 credit hours at another institution 

4.2 Choice of Measurement Instrument (PSVT) 

The Purdue Spatial Visualization Test (PSVT) was chosen to measure subjects’ 

spatial ability based on a review of the literature.  Our choice of the PSVT was based on 

the following criteria.  The test had to  

• Be a paper and pencil test 

• Be short enough to be administered in one 50 minute class 

• Have evidence for its reliability and construct validity available in the literature 

• Involve minimal reading and writing on the part of the test taker 

Logistical considerations forced the requirement that the instrument be a paper and 

pencil test that could be administered in a 50-minute class.  Other types of test were 

considered including computer based tests and 3-D manipulative based tests, but were 

rejected because they required unacceptable amounts of time or unavailable resources.     

Evidence for the reliability of the PSVT was presented in Guay (1980).  Three 

studies involving groups of 217 university students, 51 skilled workers, and 101 

university students yielded KR-20 internal consistency coefficients of 0.87, 0.89 and 0.92 
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respectively.  These high reliability coefficients suggest that for university students the 

PSVT is a reliable measurement instrument. 

The validity of the PSVT was explored by both Guay (1980) and Kovac (1989).  

Both studies warn that paper and pencil tests have a limited ability to measure spatial 

ability in isolation.  In particular, they report that test takers often use analytic methods 

(trial and error, guessing, use of a characteristic part, etc...) to solve items on spatial 

abilities tests.  For tests where this is common, a high score does not necessarily indicate 

high spatial ability, but instead may suggest high analytic ability.  Guay’s analysis of 

student self reports revealed that students used primarily spatial thinking while solving 

items on the PSVT.  In contrast, he found that analytic strategies were common methods 

of solution for items on the Revised Minnesota Paper Form Board Test, another common 

test of spatial ability.   

Kovac (1989) investigated the construct validity of three commonly used tests of 

spatial ability:  the spatial relations part of the Differential Aptitude Test (DAT) battery, 

and the Visualization of Rotations (PSVR) and Visualization of Views (PSVV) parts of 

the Purdue Spatial Visualization Test.  As part of this study, Kovac conducted think-

aloud interviews with 28 male and 30 female students as they worked through two items 

on each of these tests.  He found that in the case of the PSVV and PSVR tests the 

majority of subjects used spatial strategies (user-reorientation, object-reorientation, 

rotation of whole object, visual walk around, etc...)  However, he also found that a 

sizeable portion of the subjects used analytical methods (trial and error, guessing, use of a 

characteristic part, etc...) to solve these test items.  Kovac observed the majority of 

subjects used analytic methods to solve the items on the DAT.  

 These results indicate that the items on the PSVT are less susceptible to solution 

by analytic methods than other standard tests of spatial ability.  At the same time, it is 

important to note that the ability of any paper and pencil instrument to measure spatial 

ability is limited.   

Finally, we required that the spatial abilities test involve little reading and writing 

on the part of the test taker and that the test include a variety of types of testing items.  

These criteria are in essence a test of construct validity.  Tests that involve much reading 

and writing inherently rely on the reading/verbal ability of the test taker.  In the type of 
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timed environment used on these exams, variations in subjects’ verbal abilities can 

significantly affect test scores.  The requirement that various types of items be 

represented on the test ensures that some breadth of spatial abilities is tested by the 

instrument. 

The short form of the PSVT meets each of the requirements stated above.  A 36-

question paper and pencil test, the PSVT requires approximately 45 minutes to 

administer.  The PSVT consists of three, 12 question sections, each containing a different 

type of item.  The first section, "Visualization of Developments," involves tasks that 

required subjects to construct three-dimensional solids by mental folding processes.  In 

the second section, "Visualization of Rotations," subjects predict how a solid will appear 

when rotated in a given manner.  In the final section of the test, "Visualization of Views," 

subjects predict what an object will look like from a different point of view.  A copy of 

the PSVT can be found in the ETS test collection (Guay, 1976).  As we outlined above, 

the PSVT has high reliability and sound if not perfect construct validity (Kovac, 1989; 

Guay, 1980; Guay, 1976).  

4.3 Data Collection Procedures  

Data was collected on spatial ability (PSVT score), incoming math and physics 

grade point average (GPA), sex, and course grades in the Paradigms for each subject.  

Subjects were administered the short form of the Purdue Spatial Visualization Test 

(PSVT) (Guay, 1976) during the last week of classes of the third term of their junior year.  

Demographic and grade records were obtained from student transcripts.   

The PSVT was administered according to the instructions accompanying the test.  

Before each section the instructions for completing the items in that section were read, 

two examples were worked through and subjects were given the opportunity to ask 

questions.  Subjects were given 12 minutes to complete each section.  Because of the 

documented difficulties in measuring the different axes of spatial ability (Borich & 

Bauman, 1972) I chose to combine the scores from the three sections to give an overall 

spatial abilities score.  The final page of the PSVT consisted of a set of demographic 
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questions.  Since these questions were not deemed important for this study, students were 

given the option of not completing this page.  The score on the PSVT is just the number 

of items answered correctly. 

Discussions with students after the test indicate that the test may not minimize 

analytic thinking to the extent that was suggested by the author.  Several students were 

overheard discussing the PSVT after class.  When asked about it two students indicated 

that they completed the items in each section by focusing on a single part of the objects 

as opposed to the whole.  While no formal analysis was done, these comments suggest 

that some students may have used analytic methods while working through the items on 

the PSVT.   

The remaining data, grades in each of the Paradigms courses, incoming math and 

physics GPA and sex, were collected from each student's transcript.  Grades were 

converted to numerical format on the standard 4.0 scale.  Incoming math and physics 

GPA was calculated from all math and physics courses, resident or transfer, prior to 

taking Physics 321 (the first course of the junior year).     

4.4 Data Analysis 

Two correlation measurements were made to examine the relationship between 

subjects’ spatial ability and performance in math and physics.  The first measurement was 

a simple regression analysis relating scores on the PSVT with subjects’ incoming math 

and physics GPA.  The second measurement consisted of a multiple regression analysis 

correlating students’ performance in each of the Paradigms courses with PSVT score, 

incoming math and physics GPA and sex.  In each case a 95% confidence (α = 0.05) was 

required for statistical significance of any value.   

In the first measurement a simple regression analysis was performed.  The data 

were fit to a simple linear model. 

 GPA PSVT PSVTY b X a= +  (4.1) 
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In addition to determining best fit values for bPSVT and a, the Pearson's R2 statistic 

was calculated.  The value of Pearson’s R2 statistic indicates the fraction of the variance 

that is accounted for by the model.  Thus, an R2 of 1.0 indicates that the model accounts 

for all of the variation in the data set and an R2 of 0.5 indicates that the model accounts 

for half of the variation in the data set.   

Finally, an analysis of variance was done to determine if the R2 value was 

significantly different from zero.  The analysis of variance yields a p value which 

indicates the probability that the R2 value could be equal to zero by chance.  This chance 

arises since our data is derived from a sample of the population rather than the population 

itself.  In order to determine whether R2 is statistically different from zero, we compare 

the p value obtained from the analysis of variance to α.  Thus if p is less than or equal to 

α (0.05 in this study), we conclude that the value we obtained for R2 is statistically 

different from zero within the tolerances of our predefined confidence interval.  In this 

case we would deem the value of R2 statistically significant and proceed to use this value 

to draw conclusions.  In the event that our p value is greater than α, we would reject the 

value for R2 as not statistically significant, indicating that our data set was not sufficient 

to determine R2 within our predefined confidence interval.  Throughout this analysis, we 

compare the p values for various quantities to our predefined α in order to determine 

whether or not these quantities are statistically significant. 

The second measurement consisted of a multiple regression analysis.  In this 

analysis, students’ PSVT score, incoming math and physics GPA and sex constituted the 

independent variables used to predict their grades in each of the nine Paradigms courses.  

Thus, nine multiple regressions were performed.  The linear model for each regression 

was the form shown in Equation 4.2. 

 Grade PSVT PSVT GPA GPA Sex SexY b X b X b X a= + + +  (4.2) 

As in the first measurement, values for bPSVT, bGPA, bSex, a, R2 and p(R2) were 

calculated.  In addition, the squares of the semipartial correlation coefficients (srPSVT
2, 

srGPA
2 and srSex

2) and their respective p values were calculated were calculated to 

determine how important each of the elements of the model was in predicting students’ 
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grades.  These sri
2 values were calculated by subtracting the R2 value, R2

j+k, obtained 

from a linear regression excluding the element i from the total R2 value, R2
i+j+k obtained 

from the regression containing all three elements.  Thus,  

 2 2 2
PSVT PSVT GPA Sex GPA Sexsr R R+ + += −  (4.3) 

 2 2 2
GPA PSVT GPA Sex PSVT Sexsr R R+ + += −  (4.4) 

 2 2 2
Sex PSVT GPA Sex PSVT GPAsr R R+ + += −  (4.5) 

The sri
2 value indicates the amount by which R2 increases when the variable i is 

added to the model.  In other words, sri
2, is a measure of the fraction of the variance of 

the data set accounted for by the independent variable i beyond that accounted for by j 

and k. (Cohen & Cohen, 1975)    Thus, a value of sri
2 equal to 1.0 would indicate that the 

predictor i accounted for all of the variance in the data.  In this case, it would be silly to 

include j and k as predictors since, a simpler model including only i could accurately 

predict all of the variation in the data set.  The quantity sri
2 then is an indication of the 

importance of the variable i to the model.  Since a low value of sri
2 indicates that the 

inclusion of the variable i in the model only changes the total R2 by a small amount.  

Whereas a large value of sri
2 indicates that the inclusion of the variable i in the model 

causes a large change in the total R2. 

Subjects' score on the PSVT was correlated to their overall GPA and to their grades 

in each of the Paradigms courses.  Since we are using grades as a measure of students' 

performance in each class, we can only relate students' spatial ability and their 

performance on the evaluation mechanisms in each class.  It should be noted that the 

number of subjects was not constant for all of the regression analyses because some 

students did not take all of these courses included in this study. Conclusions drawn from 

this research will be limited by the fact that no effort has been made to validate these 

evaluation mechanisms. 
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4.5 Results 

Average grades for each of the Paradigms courses are tabulated in Table 4.1.  The 

average score on the Purdue Spatial Visualization Test was 31 with a standard deviation 

of 4.   

Course PH321 PH322 PH323 PH424 PH425 PH426 PH427 PH428 PH429

Avg. Grade (0-4) 3.41 2.89 2.88 2.94 2.55 2.39 3.16 3.38 2.96  

Table 4.1 - Average grades in each of the Paradigms courses (0-4). 

Reliability of the PSVT with this sample (N=17) was estimated with the Kuder-

Richardson (KR 20) formula to be 0.818.  In some sense, this value yields an estimation 

of the measurement error associated with this test and this particular sample.  A reliability 

value close to one indicates that the variation associated with responses to individual 

questions is small compared to the variation in the total score.  This suggests that the 

measured scores are close to a hypothetical “true score”.  The reliability value of 0.818 

obtained here is high enough to suggest that the PSVT is a reasonably reliable instrument.  

As indicated in Section 4.2, Guay (1980) measured the reliability of the PSVT for two 

groups of college students (N=217 and N=101) and one group of skilled workers (N=51).  

These measurements resulted in KR-20 coefficients of 0.87, 0.92 and 0.89 respectively.  

The reliability coefficient measured in this study is comparable to these values, further 

suggesting that the measured PSVT scores are a reliable reflection of subjects’ “true 

scores.” 

4.5.1 Correlation between Spatial Ability and GPA 

A simple regression analysis was done to estimate the degree of correlation 

between spatial ability and subjects’ incoming math and physics grade-point average.  
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The regression yielded an R2 of 0.272 (F=1.495, p=0.266).  Comparing this p value to our 

α criterion, it is clear that this result is not statistically significant.  In addition, you can 

see in Figure 4.1 that there is no obvious correlation between PSVT score and incoming 

math and physics GPA. 

Data and Linear Fit for PSVT vs. Incoming GPA 
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Figure 4.1 - Plot of the linear fit obtained from the PSVT vs. incoming math and 
physics GPA regression analysis. 

4.5.2 Multiple Regression Analysis for Predicting Course Grades 

The results of the multiple regression analysis are tabulated in Table 4.2.  Each row 

of the table corresponds to an independent regression analysis for each course.  

Examination of the p values reveals that the R2 values for PH321, PH322, PH428 and 

PH429 are not statistically significant and that the R2 values for PH323, PH424, PH425, 

PH426 and PH427 are statistically significant.  In each of the statistically significant 

cases, the R2 indicates that the model used accounts for roughly half of the variance in 

grades given in the course. 
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Course N R R2 F p

321 16 0.522 0.272 1.495 0.266

322 16 0.429 0.184 0.903 0.468

323 17 0.781 0.610 6.766 0.005

424 16 0.720 0.519 4.312 0.028

425 17 0.667 0.444 3.464 0.048

426 17 0.676 0.458 3.655 0.041

427 17 0.724 0.525 4.787 0.018

428 16 0.463 0.215 1.093 0.390

429 15 0.642 0.412 2.565 0.108  

Table 4.2 - Tabulation of statistics from a multiple regression predicting course 
grades with a linear model including spatial ability (PSVT score), 
incoming math and physics GPA and sex.  

Course srPSVT
2 p srGPA

2 p srSex
2 p

321 0.140 0.581 0.222 0.385 0.023 0.927

322 0.105 0.694 0.136 0.610 0.007 0.980

323 0.004 0.983 0.465 0.019 0.005 0.979

424 0.005 0.982 0.386 0.078 0.004 0.984

425 0.073 0.729 0.423 0.062 0.026 0.900

426 0.028 0.895 0.438 0.052 0.026 0.902

427 0.008 0.968 0.287 0.158 0.042 0.830

428 0.022 0.934 0.208 0.433 0.072 0.784

429 0.009 0.969 0.326 0.187 0.000 0.999  

Table 4.3 – Tabulation of the squares of the semipartial correlation coefficients 
(sri

2) and their p values for a linear model including spatial ability 
(PSVT score), incoming math and physics GPA and sex as predictors 
for class grades. 
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Examination of the p values in Table 4.3 reveals that only one of the sr2’s is 

statistically significant.  The srGPA
2 value of 0.465 for PH323 is statistically significant, 

indicating that almost half of the variation in students’ grades in PH323 is predicted by 

their incoming math and physics GPA.  None of the sr2 values for the PSVT and Sex 

variables are statistically significant.  The small sr2 values for these variables indicate that 

they contribute very little to the overall predictive ability of the model.   The large p(sr2) 

values (that is, the p values associated with the sr2 statistics)  for these variables indicate 

a high probability that the measured sr2 values are different from zero only by random 

chance. 

Even though only one of the sr2’s was statistically significant, there is some 

evidence that a correlation between incoming math and physics GPA and grades exists 

for several of the Paradigms courses.  As indicated before, the overall R2 values for 

PH424, PH425 and PH426 were statistically significant.  While the srGPA
2 values for 

these courses were not statistically significant, their p values indicated that they were 

close to statistical significance.  In addition, the srGPA
2 values themselves indicate that 

GPA was the dominant predictor in the model for these courses.  The dominance of GPA 

as a predictor was corroborated by plots of the measured data vs. fit from the multiple 

regression.  Figure 4.2 and Figure 4.3 illustrate this.  These plots show projections of the 

four dimensional (Incoming Math and Physics GPA, PSVT Score, and Sex vs. Course 

Grade) dataset.  Each data point (•) has a corresponding fit value (+) that indicates the 

predicted value of Course Grade (y-axis value) for each value of the independent variable 

(x-axis) in the measured dataset.  Thus, the plots below contain pairs of data points (• - 

measured and + - fit) for each value of the independent variable contained in the 

measured dataset. 

Figure 4.2 shows the projection of the three dimensional linear fit and the measured 

data onto the incoming GPA vs. course grade axes for PH424.  This plot suggests a 

reasonable correlation between these variables.  Figure 4.3 shows the projection of the fit 

onto the PSVT vs. course grade axes.  This plot clearly indicates that there is little 

correlation between these variables. 
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Data and Multiple Regression Fit for Incoming 
Math and Physics GPA vs. PH 424 Course Grade
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Figure 4.2  - A plot of measured data and the fit values from a multiple linear 
regression. The plot shows the projection of this four dimensional 
data set onto the Incoming Math and Physics GPA and PH424 course 
grade axes.  

Data and Multiple Regression Fit for PSVT 
Score vs. PH 424 Course Grade
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Figure 4.3 – A plot of measured data and the fit values from a multiple linear 
regression. The plot shows the projection of this four dimensional 
data set onto the PSVT score and PH323 course grade axes.
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4.6 Conclusions 

The results of this study indicate that the correlation between spatial ability 

and grades is small in this sample.  At first glance, this seems to indicate that the 

ability to visualize has little impact on success in upper-division physics.  However, 

two factors need to be taken into account before drawing this conclusion. 

First, the average score on the PSVT was 31 (σ = 4) out of 36 with all but 

four students scoring above 30.  Thus, the variance in spatial ability scores was 

quite small.  This data suggests that the spatial ability of the students in this sample 

was quite high.  Since none of the available references for the PSVT reported 

average scores, we were not able to make any comparison between our samples and 

a typical average.  It is possible that performance in upper-division physics is 

dependent on spatial ability, but only up to a certain level.  That is to say, success 

in physics likely requires some level of spatial ability.  However, it may be that 

subjects who have a higher than required spatial ability experience very little 

increase in performance.  Assuming this is true, it is possible that most of the 

subjects in this study have a spatial ability above this proposed threshold. 

Second, the PSVT is designed to only measure student’s spatial ability.  

Thus, the PSVT does not test subjects’ ability to utilize visual information to solve 

problems.  It may be that the two skills are quite separate.  In any case, the PSVT is 

intended only as a measure of pure spatial ability and does not provide any 

information about subjects’ ability to apply spatial skills.   

Thus, our data suggests that students’ spatial ability does not correlate 

significantly with student grades in physics.  However, the limited sample size in 

this study and the small spread in PSVT scores prevent us from making more 

general statements about the importance of visual ability in learning physics. 

The only statistically significant correlations measured in this study indicate 

that for some courses (PH323, PH424, PH425 and PH426), GPA is correlated with 
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subjects’ course grades.  This result is not surprising since incoming GPA is a 

direct measure of past performance in other classes.  Assuming that the 

requirements of PH 323 are similar to those in other math and physics classes, it is 

reasonable to expect a strong correlation between incoming math and physics GPA 

and any course grade in physics.  Why then do we not see statistically significant 

correlations between incoming GPA and other Paradigms courses?  The answer to 

this question lies in the fact that our sample is very small.  Close examination of a 

combination of factors (R2, sr2, and projection plots of the data) suggests that with a 

larger sample, the correlations between incoming GPA and course grades is likely 

to be statistically significant. 
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Chapter 5 Research Design 

The following two chapters include descriptions and analyses of data 

collected from student interviews.  In this chapter, our goal is to describe and 

motivate the particular data collection methods used.  In Section 5.1, we discuss the 

motivation behind our choice of the think-aloud methodology and discuss in some 

detail its strengths and limitations.  In Section 5.2, we discuss the particulars of our 

research design. 

The field of physics education has been well established at the lower-division 

level, however, little research has been done to understand the thinking and 

learning of upper-division physics students.  In our review of the literature in 

several related disciplines, we found no sources that specifically studied problem 

solving in upper-division physics.  Thus, the studies presented here are forays into a 

new field.  In such a young field, the important questions have yet to be clearly 

defined.  It is the goal of this research to begin defining these questions.  In doing 

so, we would like to base our questions as much as possible on observations of 

students’ behavior.  This type of study, in which questions and hypotheses are 

derived from observations, is called emergent research, in the sense that the 

questions emerge from the data.    

While it is common for researchers to base questions on anecdotal classroom 

observations, this type of informal observation is of limited utility as a research 

tool.  Informal observations are often misleading for several reasons.  they often 

rely heavily on memory.  If the observer decides later that she wants a particular 

piece of information, there is no complete record to reference.  In addition, since 

informal observations must be remembered, they are inherently biased.  That is, the 

observer automatically makes choices about what she thinks are the important 

events and details to remember.  Thus, the observer applies her own interpretations 

to the observed events as they are recorded.  This last obstacle is critically 

important in emergent study.  In this type of study, we try to delay interpretation 
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until obvious patterns emerge from the data.  These patterns are then used to define 

the questions and hypotheses.  In the case of informal observation, data collection 

and interpretation become hopelessly blurred.   

In contrast, a methodical qualitative study can be designed to minimize the 

biases and subjectivity inherent in observational research.  This is typically 

achieved by structuring observations so that the information that is gathered is 

reasonably uniform across different observations and different subjects.  In many 

cases, observations are audio or video taped.  These records are then transcribed to 

provide a record of the observation that is largely removed from distracting details 

that can lead to bias.   

There are a variety of qualitative research methods to choose from, each 

having its own advantages and limitations.  In designing a study, we try to choose a 

methodology that will allow us to obtain the information we want while 

minimizing the bias and subjectivity inherent in qualitative research. 

5.1 Think-Aloud Interviews 

In Chapters 6 and 7, we describe two studies designed to characterize 

students’ use of visualization while solving complex physics problems.  Our goal in 

these studies was to learn as much as possible about what students are thinking 

while they are solving complex problems.  In particular, we were interested in 

learning about the role of visualization in students’ thinking while they were 

problem solving.  In order to achieve these goals, it was essential that our 

observations provide access to students’ thinking but not significantly perturb their 

problem solving process.  

We chose the think-aloud method because it is the most straightforward 

method for obtaining information from subjects about their thinking process.  In 

addition, it was possible to structure the think-aloud interviews so that the 
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interviewer’s input was minimized and the subject maintained substantial control 

during the interview. 

Think aloud interviews afforded several advantages over other possible data 

collection methods.  First, since we videotaped the interviews, students’ drawings 

and writings as well as verbal statements were recorded and the sequence of events 

was preserved.  Thus, it was possible to examine the interaction between written 

and verbal information in the interviews.  This would not have been possible by 

examining written responses.   

Two interview types were considered: think-aloud interviews and reflective 

interviews.  In a think-aloud interview, subjects are asked to explain their thoughts 

as they are thinking.  In contrast, subjects in a reflective interview are asked to 

explain a problem they have already solved.  The disadvantage of reflective 

interviews is that, since subjects describe their thinking process after the fact, they 

may not remember everything they were thinking while solving the problem.  This 

problem is minimized in think-aloud interviews since subjects’ explain their 

thoughts as they are thinking.  However, the think-aloud method has the 

disadvantage that verbalizing the thought process can affect it.  That is, subjects 

thinking process may be distorted by the act of verbalizing their thoughts.  This 

difficulty is minimized in reflective interviews since subjects are able to solve the 

problem unfettered and report on their thinking only after having solved the 

problem.  We chose think-aloud interviews over reflective interviews because we 

deemed the issues of interference by the interview method less important than the 

problems resulting from belated self-reports. 

The interview format was particularly suited to our goals since it promised to 

provide some access to students’ thinking processes.  Since our goal was to explore 

the ways that students use visual representations while problem solving, we felt that 

it was important to encourage students to express the thought process behind their 

decision making.  In addition, we hoped that the think-aloud method would more 

clearly expose students’ confusion and internal conflict during the problem 

solution.  Of the methods we examined, the think aloud method was the only 
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method for getting information from students about what they are thinking while 

they were solving problems. 

Still, the think-aloud method has some limitations.  First and foremost, 

subjects’ behavior may be affected by the think-aloud environment.  They may be 

more aware of what they say or they may resist thinking aloud altogether.  Some 

may reveal more in what they say than others, generating an imbalance in the 

response data.  For example, one student may describe a picture he envisions while 

solving the problem.  Another student may have a similar picture, but neglect to 

mention it.  Thus, the information gained from think-aloud interviews is difficult to 

analyze quantitatively.  The information obtained from think aloud interviews is 

not a complete description of what the subject is thinking, but instead is filtered by 

what the subject thinks is important and what the subject thinks the interviewer 

wants to hear as well as unrelated subject behaviors including those initiated by the 

stress of the interview situation.   

In addition to these limitations, some students just do not like to talk while 

they are solving problems.  For some it is a distraction; for others, it significantly 

changes their thinking process.  Some subjects do not talk much during the 

interviews and the insistence on the part of the interviewer that they explain their 

thoughts is an interruption that breaks the train of thought.  In contrast, some 

students interact with the interviewer too much.  These students either try to extract 

information from the interviewer or use the dialogue with the interviewer to reason 

through the problem in a manner that is uncharacteristic of their normal problem 

solving.  The important thing to note about think-aloud interviews is that, while 

they provide unparalleled access to students’ thoughts, the think-aloud environment 

is different from the environment in which the student typically solves problems. 



 
 

 

49 

5.2 Interview and Transcript Procedures 

In the studies presented here, the interviews were videotaped in order to 

obtain an unbiased account of the events that transpired.  In addition, several other 

safeguards were included in the research design to limit bias.  First, interview 

protocols were designed for each set of interviews to maintain a uniform interview 

setting.  The interview protocols were loose enough to allow the interviewer to 

follow up on statements the students made and to allow for individual differences 

in students’ problem solving methods.  The interview protocols for the preliminary 

and final interviews are described in detail in Sections 6.2 & 7.2 respectively. 

In order to ensure that the interviews were recorded completely, each 

interview was video taped and meticulously transcribed.  In addition to a record of 

the dialogue, these transcripts included all of the students’ drawings and indications 

of their hand gestures. 
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Chapter 6 Preliminary Interviews 

In fall term of 1999, we conducted a set of think-aloud interviews to learn 

about students’ use of visualization in problem solving.  In this chapter, we 

describe the administration and results of these interviews.  This set of interviews 

was performed as a pilot study for a more extensive set of interviews described in 

Chapter 7. 

6.1 Sample 

The unusual nature of the Paradigms curriculum places some limits on the 

generalizability of this study.  However, since the subjects were interviewed during 

their first term in the Paradigms, it is unlikely that this curriculum has greatly 

changed their problem solving strategies.   

A sample of seven subjects was selected from a class of 25 physics and 

engineering physics majors at Oregon State University.  The subjects were 

purposefully selected to obtain a range of different problem solving styles from 

visual to non-visual.  The selection process consisted of a brief conversation 

between the author and the instructor for PH 322.  While seven subjects were 

selected for the study, only five were willing to participate.  Each of the remaining 

five volunteers was given a pseudonym (Royal, Dean, John, Tom and Dan).  Each 

of the subjects had taken Physics 322, a course in static vector fields.  Grades for 

the five subjects studied here are listed in Table 6.1.  The average incoming math 

and physics GPA of the sample was 3.09 compared to 2.95 for the entire junior 

class.  Statistics on the individual subjects are tabulated in Table 6.1.  While the 

sample consisted entirely of white males, the sample accurately reflected the 

overall demographics of physics majors at Oregon State University. 
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During the last week of their junior year, four of the subjects participated in 

the study described in Chapter 4.  During the course of that study, the subjects were 

administered the Purdue Spatial Visualization Test (PSVT), a general measure of 

spatial ability.  Subject’s scores on the PSVT are included in Table 6.1.  PSVT 

scores for the sample ranged from 25 to 36 compared to a range of 21 to 36 for the 

entire class.  Thus, the spatial abilities of the subjects chosen for this study reflected 

the spatial abilities of the class as a whole.  

Pseudonym
GPA 
(0-4)

PH322 
Grade

PSVT (0-
36)

Royal 3.85 B- 31

Dean 4.00 A 29

John 2.96 A NA

Tom 2.42 B- 36

Dan 2.21 B- 25

Class Average 2.95 B 31.4  

Table 6.1 - Tabulation of subjects GPA, grade in the Static Vector Fields 
course (PH 322) and score on the Purdue Spatial Visualization 
Test. 

6.2 Data Collection and Interview Protocol 

The author interviewed each of the subjects in the preliminary study once 

during week eight of their first term as an upper-division student in physics.  The 

interviews followed a think-aloud format in which the subjects were asked explain 

their reasoning as they solved a problem in electrostatics.  Subjects were not 

allowed access to reference materials including books and notes except were noted.  

Interviews typically lasted one hour.   
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At the beginning of each interview, the interviewer described the think-aloud 

structure of the interview.  The interviewer explained that questions he would ask 

were intended to elicit more information about the student's thinking process and 

should not be interpreted as guiding the student in any particular direction.  

Subjects were instructed to explain their reasoning as they worked and were 

encouraged to work at the board.  The interviewer also encouraged the students to 

ask him any questions that came to mind, but warned them that he would not 

necessarily answer all questions.  Subjects were then asked to solve the following 

problem. 

Find the electric field everywhere outside an infinitely long charged 
cylinder of radius a  and constant charge density ρ . 

As they worked through the problem, the subjects were regularly asked to 

explain aspects of their thinking process.  If asked, the interviewer would supply 

equations the subjects could not remember.  Since the subjects were generally not 

able to remember the names of the equations, the interviewer often completed 

equations the subjects had begun.   

Subjects were allowed to pursue their own method of solution for the first 25 

minutes of the interview.  During this time, each of the subjects attempted to solve 

the problem using Coulomb's Law.  At the end of 25 minutes, the interviewer 

suggested that the student try to solve the problem using Gauss’s law.  After 25 

more minutes had passed, the interviewer asked a series of follow up questions 

probing the subjects’ previous knowledge of this problem and general problem 

solving methodology.  Finally, as part of the Paradigms evaluation, subjects were 

asked for general input about the Paradigms program. 
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6.3 The Interview Problem 

The problem used in the interviews was chosen for several reasons.  First, 

this problem allowed the use of several different types of visual strategies.  Visual 

strategies were not required for the correct solution of this problem, however, since 

the solution involves fields and vector quantities it is likely that most students will 

use at least some visual elements in their solution.  In addition, solution methods 

that utilized visualization were likely to require less memorization of specific 

formulae.  Coulomb’s Law and Gauss’s Law were taught in PH322 using a 

combination of visual and symbolic constructs.  Second, the solution to this 

problem was sufficiently complex to allow the investigation of students’ use of 

visualization in the context of a difficult problem typical of those students 

encounter on their homework or exams.  Using a collection of several 

shorter/simpler problems was considered but rejected because students might use 

different methods for solving shorter problems.  Since the goal of this study was to 

explore how upper-division students use visualization in their problem solving, we 

chose to use a problem similar in complexity and difficulty to those the subjects 

had seen in class and on homework.  

 The problem used in these interviews can be solved in one of two ways, with 

Coulomb’s Law or with Gauss’s Law.  The final form of the Coulomb’s Law 

solution is an integral that cannot be easily evaluated.  Gauss’s Law yields a closed 

form expression for the electric field after evaluating only relatively simple 

integrals.  All of the subjects interviewed chose to attack the problem with 

Coulomb’s Law and used Gauss’s Law only when it was suggested by the 

interviewer. 

Since our goal was to describe their methods of solution, the correctness of 

subjects’ final solutions was not particularly important in this study.  However, it is 

worthwhile to briefly describe the level of success each subject achieved.  Solutions 

to the problem varied widely.  None of the subjects was able to solve the problem 

correctly and completely.  However, Dean’s solution was nearly correct.  After 
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being prompted to use Gauss’s Law, he produced a solution that was different from 

the correct solution only because of a trivial algebra error.  Dan also generated a 

nearly correct equation for the electric field.  In Dan’s case, however, he was given 

more assistance and made a variety of incorrect assumptions and arguments to get 

to the answer.  In addition, Dan did not trust this equation and eventually discarded 

it as flawed.  The others achieved varying degrees of success on different parts of 

the problem but obtained solutions with significant flaws. 

In several instances, the subjects encountered difficulties that prevented them 

from continuing.  In most cases, encouragement and open-ended questions from the 

interviewer, e.g., “What do you think you should do next?” prompted them to 

proceed.  In some cases, however, the interviewer provided help in the form of 

equations or affirmation of student results.  In most cases, these interventions 

occurred near the end of the interviews.  Each instance was identified in the 

transcripts and the possible effects of each were considered when analyzing data 

following an intervention. 

6.4 Results/Analysis 

The analysis of these interviews revealed that subjects used a combination of 

visual and symbolic methods in solving the problem proposed.  The goal of this 

analysis was to develop a structure for exploring the ways that students use 

visualization in problem solving.  We recognized early on in the analysis that 

students often used visual and symbolic methods together.  Thus, an accurate 

description of the visual problem-solving behaviors of these students must also 

include some discussion of their use of symbolic methods.   

Only one study found in the literature explores a model of the interactions 

between visual and non-visual steps in complex problem solving (Zazkis, Dubinsky 

and Dautermann, 1996).  The V/A model describes problem solving as a series of 

alternating visual and analytic steps leading ultimately to the problem solution.  In 
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describing their V/A model, Zazkis, Dubinsky and Dautermann chose definitions of 

visualization and analysis that explicitly refer to internal thought structures.  They 

define visualization as “an act in which an individual establishes a connection 

between an internal construct and something to which access is gained through the 

senses.”  Similarly, they define analysis as “any mental manipulation of objects or 

processes with or without the aid of symbols.”  In the analysis of our data, we 

found it very difficult to identify “pure” analysis steps as identified by Zazkis, 

Dubinsky and Dautermann.  A review of their definitions for visualization and 

analysis revealed that both were couched in the terms of internal mental structures.  

Our difficulty in identifying “pure” analysis steps stemmed from the inherent 

complexity of observing internal mental constructs.   

In light of these difficulties with the V/A model we have begun to develop a 

similar model based on more easily observable problem-solving steps.  Our goal in 

this study is similar to that of Zazkis, Dubinsky and Dautermann in that we would 

like to describe the interplay of visual and non-visual processes in problem solving.  

However, we concluded that for our purposes, the distinction between visual and 

symbolic methods was more relevant than the distinction between visualization and 

analysis. 

6.4.1 Definitions 

  In an effort to simplify and clarify our analysis, we define a number of 

terms.  These definitions were chosen in an attempt to identify elements of the 

problem-solving process that were both useful and easily observed.   

• Visual Image - For the purposes of this study we will adopt Presmeg's 
(1992) operational definition for a visual image.  "A visual image is 
defined here simply as a mental construct depicting visual or spatial 
information.  This definition is deliberately wide enough to include 
'pictures-in-the-mind'…as well as more abstract forms…." 

• Visualization - is the act of generating, manipulating or utilizing a visual 
image as defined previously. 
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• Visual elements - are pieces of a visual image that depict visual or 
spatial information.   

• Symbolic elements - are letters, numbers or mathematical symbols used 
to identify an element of the problem.   

The definitions of visual and symbolic elements are not intended to be 

mutually exclusive.  For example, if an element of a drawing is labeled with a 

symbol, this label behaves as both a visual and a symbolic element.  While the 

generalizability of these definitions is somewhat restricted, they are well defined in 

the context of this study.   

6.4.2 Visual and Symbolic Steps 

To examine subjects’ problem-solving approaches in more detail, we have 

chosen to break them down into individual steps in the spirit of the Zazkis analysis 

(Zazkis, Dubinsky and Dautermann, 1996).  In contrast to the visual and analytic 

steps in the V/A model, we have chosen to categorize steps as either visual or 

symbolic.  Our definitions for visual and symbolic steps were chosen to facilitate 

straightforward classification of steps in the transcripts.  

Visual steps are defined as steps that explicitly reference visual images.  A 

step was identified as visual if it involved any references to pictures or mental 

images or if it involved kinesthetic visual references (hand motions, etc…).  Visual 

steps often entailed drawing a diagram, modifying a diagram or making a 

symmetry argument with the aid of a diagram.  For the purposes of coding, visual 

steps were marked with a V. 

Symbolic steps are defined as steps that contain explicit references to 

symbolic elements.  A step was identified as symbolic if it involved references to 

equations, formulae or other symbolic constructs.  Symbolic steps include formula 

recall, algebraic manipulation, equation substitution, etc…  For the purposes of 

coding, symbolic steps were marked with an S. 
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In addition to drawing a distinction between visual and symbolic processing, 

we have also delineated between what we call initialization (I) and processing (P) 

steps.  These distinctions are adapted from computer jargon.  Initialization steps are 

those steps where new information is inserted into the problem from the outside, 

e.g., the recall of an equation.  Processing steps involve the manipulation, analysis 

or synthesis of elements in the problem.  

Some examples may help clarify these distinctions.  Most often, initialization 

steps occur at the beginning of a problem.  For example, two of the first three steps 

in Dean’s solution were initialization steps.  (Note the coding symbols on the left) 

The first step was a visual initialization step (VI).  Dean drew a diagram 

depicting the physical situation in the problem based on the problem description.  

In the third step, he recalled the equation for the potential due to a charge 

distribution (SI) and wrote that down.  The second step (?P) was not as 

straightforward, so it will be dealt with later in this section.  

Dean: So I have a cylinder.  This goes out like this. (drawing three horizontal lines
at each end to indicate that the cylinder continues on)  This is going to be
along the z-axis. And I want to use cylindrical coordinates, because it
makes sense.  This is a cylinder.

a

z

Dean: Okay, let's see. It's infinite, so the first thing I want to do is find the
potential. And that is V at some r is equal to … (says equations as he
writes).

∫ ′−
=

rr
dq

rV
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1)(
πε

VI

?P

SI

 

Most of the steps in a problem solution were generally processing steps.  A 

good example of a visual processing (VP) step is taken from the beginning of 

Royal’s interview.  
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Royal: Well, since it is infinitely long I think it is going to be constant outside or
away from the rod.

Int: Why do you think it is going to be constant away from the rod?VP

Royal: Because it is infinitely long, and you are not going to be able to tell how far
you are away from it at any given point.  So, if you just look at the rod you
are only going to see the rod infinitely long.  You're not going to be able to
judge how far you all are away from one end or the other.  

Royal made a symmetry argument based on his mental image of the infinitely 

long cylinder.  His statements included cues that he was processing a mental image.  

In particular, his statement “if you look at the rod you are only going to see the rod 

infinitely long” indicates that he was accessing a mental image.   

Symbolic processing (SP) is also common.  This example from the interview 

with Dan illustrates several instances of symbolic processing.  In this case, the 

symbolic processing steps involve two integral evaluations and a substitution.  

Dan :  Doing that, first we are going to integrate with respect to φ from zero to
π2 .  We are going to get the integral from zero to z of π2 …

Dan: With respect to z that equals

SP

Dan: And if that's my left side of my equation, I want to throw in my right side
and set them equal and solve for E.

∫ ∫
π

φ
2

0 0

z
Erdzd

∫
z

Erdz
0
2π

EzrErdz
z

ππ 22
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π
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In addition to purely visual and purely symbolic steps, subjects also engaged 

in processing steps that involved both visual and symbolic components.  These 

steps were identified as visual-symbolic processing (VSP).  The most obvious 

instances of visual-symbolic processing steps are those that entail translation 

between the visual and symbolic representations.  A good example of this can be 
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seen in the following excerpt from John’s interview.  John realized that he needed 

to find an expression for dV in his equation for Coulomb’s Law.  To do this, he 

drew diagrams of a complete cylinder and a small piece of a cylinder to represent 

the dV, in essence, translating from a symbolic representation (dV) to a visual 

representation (the diagrams).  He then identified the sub-elements of the diagram 

(the sides of the differential volume element) and associated these with their 

symbolic counterparts ( ,  and )dr rd dzφ .  In this instance, John’s objective was to 

find a symbolic expression for dV.  

John: Now, I'm going to use cylindrical coordinates system.  Even though I
assigned xyz I'm going to go ahead and use cylindrical coordianates.  And
my volume element dV in cylindrical coordinates is a…  Draw a cylinder…
A chunk of it's going to be… And that's going to be wedged back in…
This… The height will be z…err dz.  This distance here…This is z.  You've
got r, φ.  This is rdφ and this is dr…this distance here.  So dV in spheric…in
cylindrical coordinates I'm thinking is rdrdφdz.

VSP

z

dz

rdφ

dr

dzrdrddV φ=

( )
∫∫∫ ′−

′−
=

3
04

1

rr

rrdVE ρ
πε

 

 

John achieved this by translating into the visual representation, extracting 

information from a visual image and translating back to the symbolic 

representation. 

Some of the steps that subjects made during the interviews were difficult to 

classify.  This takes us back to the first example.   
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Dean: So I have a cylinder.  This goes out like this. (drawing three horizontal lines
at each end to indicate that the cylinder continues on)  This is going to be
along the z-axis.  And I want to use cylindrical coordinates, because it
makes sense.  This is a cylinder.

VI

?P
 

Dean’s decision to use cylindrical coordinates based on the geometry of the 

situation appears to be a good example of visual processing.  However, it is not 

clear what type of processing Dean was using here.  It may be that he based his 

decision to use cylindrical coordinates on a recognition of the symmetry of the 

charge distribution.  On the other hand, he may have associated the fact that he has 

a cylinder with cylindrical coordinates based on memory or word similarity.  In this 

case, there are no clear cues to indicate that this is either visual or symbolic 

processing.  This ambiguity prompted us to assign a code of ?P to indicate that he 

is doing some sort of processing, but that it is not clear what kind.  The ? code was 

assigned in a variety of cases where coding was ambiguous.  This difficulty in 

coding can arise from a variety of causes including:  

• The student’s statements are confusing and or the student seems 

confused.   

• There is some indication that the student is not thinking aloud or that he is 

not expressing what he is thinking as he works through the problem.  This 

may indicate that he is skipping steps or combining steps. 

• The statement does not fit neatly into our coding scheme.  This may 

indicate that this coding scheme is not complete. 

Table 6.2 contains a tabulation of the coding scheme described above. 
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SYMBOL TYPE OF STEP EXAMPLE 

SI Symbolic 
Initialization A remembered or given equation, a known law (Coulomb's Law) 

VI Visual Initialization A remembered picture or a picture drawn based on the statement of 
the problem. 

SP Symbolic 
Processing 

Algebraic simplification, substitution, or equation.  General 
symbolic manipulation. 

VP Visual 
Processing 

Simplification using symmetry, generation of a diagram/picture or 
elements there of, rotation or translation of a diagram.  General 
visual manipulation. 

VSP Visual - Symbolic 
Processing 

Includes statements that clearly involve visual and symbolic 
processes that are intertwined.  These steps include translations 
between symbolic and visual representations as well as processing 
or manipulation of visual and symbolic elements.   

? Unclear or 
Undecided Coding 

It is not clear what code to apply.  This could result from a variety 
of causes.  

Table 6.2 - Tabulation of coding scheme 

6.4.3 Visual Problem Solving Strategies 

In solving the proposed problem, subjects routinely broke the problem down 

into smaller sub-problems.  These sub-problems were then attacked with a 

combination of visual and symbolic problem solving strategies.  In this section, we 

will describe two prevalent visual strategies and explore the interplay of visual and 

symbolic steps in the context of these strategies.   

6.4.4 Visual Reconstruction 

All of the subjects used visualization as a memory tool.  In each case, 

pictures were used to help recall the important elements of a problem solution.  In 
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many instances, subjects used a combination of memory and reasoning to 

reconstruct images and equations they needed.  

Good examples of this occurred when subjects tried to find expressions for 

the differential volume or area elements ( dV or da ).  In these instances, subjects 

often used simple diagrams to help them find expressions that reflect the geometry 

of the problem.   

In this example, John drew a diagram of a differential volume element to 

help him find the expression for dV in his equation for Coulomb’s Law.  In this 

case, he was clearly reconstructing this image.  First, he drew a cylinder.  Then, 

based on that drawing, he drew a “chunk” of the cylinder (a differential volume 

element corresponding to dV).  He then identified and labeled the sides of this 

“chunk” and multiplied them together to get an expression for dV.   

John: And my volume element dV in cylindrical coordinates is a…  Draw a
cylinder…  A chunk of it's going to be… And that's going to be wedged
back in…  This… The height will be z…err dz.  This distance here…This is
z.  You've got r, φ.  This is rdφ and this is dr…this distance here.  So dV in
spheric…in cylindrical coordinates. I'm thinking is rdrdφdz.

VSP

z

dz

rdφ

dr

dzrdrddV φ=  

In this instance, Royal remembered the equation for da, but used a diagram 

to check his equation.   

Royal: da for this rod is going to be in cylindrical coordinates rdφdx cause it's um...
Where this is φ this is r and this is dx.

VP

r
φ

dx
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Another good example of visual reconstruction was when Royal used a 

diagram to recover parts of Coulomb’s Law.  Here, Royal recalled some of the 

equation, but also used the diagram to identify some of the essential elements. 

Royal: So we're going to have E=1/ (4 pi epsilon0) times some big ugly integral
that's going to have τρd   over... then we will hang out right here and look at
a point right there. This is r and this is r' and we know that the electric field
that you are going to see at this point from this whole thing is going to be
dependent on this distance here which will be r minus r' (drawing the arrow
from the r vector to the r' vector).

SP
VP

VSP

∫ ′−
=

τρ
πε 0
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rr
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This is Royal’s second attempt to construct this equation.  In the first 

instance, he had not defined the  and r r′  vectors.  Instead he had loosely defined 

the denominator in Coulomb’s Law with the statement, “the distance away can 

be…I don’t know… k in the k direction.”  While the details of this equation are still 

not correct, he has used his drawing to define and identify the important 

displacement in the problem. 

Visual reconstruction as described here can involve symbolic as well as 

visual processing.  This strategy was often combined with pure symbolic 

processing to find an expression for one of the pieces in a central equation.  In this 

example, Dean used a combination of visual and symbolic steps effectively to 

develop an expression for dq.  He began by writing a general equation he 

remembered for the potential due to a charge distribution (1 SI).  He then found a 

value for dq using a simple two-dimensional diagram (2 VSP & 3 VSP).  He then 

realized that this equation was not correct and drew a three-dimensional diagram to 
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help him construct the correct equation (4 VP).  He then identified the differential 

lengths in this diagram and multiplied them together (5 VSP & 6 VSP).  Finally, he 

substituted this expression for the differential volume into his equation for dq (7 

SP).  

Dean: Okay, let's see.  It's infinite, so the first thing I want to do is find the
potential.  And that is V at some r is equal to … (says equations as he
writes).

∫ ′−
=

rr
dqrV

04
1)(

πε

1  SI

 
 

a

z

Dean:  Okay, so then dq is going to be a little part of this cylinder, which is going
to be a volume.  The volume of a …  Oh, wait that's right… Well, I'll do that
first anyway.2  VSP

 
 

drdzdq =

Dean: So dq … a little piece of this cylinder so it's going to be dr wide and it's
going to be dz long and…3  VSP

 
 

a

z

1
2

Dean: So how can I write that?  I don't know how…  I'm trying to make a solid…

4  VP

 
Dean: So this is going to correspond to this.  This is 1, this is 2 and the width of it

going in radially will be 35  VSP
 

 

dz
rd
dr

=
=
=

3
2
1

φ

Dean: So 3 is going to be dr.  The outside is going to be, so that's 2 , is going to be
rdφ.  And 1 is going to be the top which is dz because it's just along the axis.

6  VSP
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Dean: So, to find the volume, just multiply all those out.  So it's going to be…

dV…dV times the constant.  You said ρ… a constant charge of ρ.

ρdVdq =

( )ρφ zddrdrdq ′′′′=
7  SP

 

In all of these cases, the resulting information is something that could have 

been remembered or looked up.  The students, however, chose to use a combination 

of memory and reasoning to reconstruct this information.  This is in sharp contrast 

to the “plug and chug” problem-solving behavior typical of introductory courses.  

These students exhibited behavior that is common to more advanced problem 

solvers.  That is, they derived or constructed pieces of their solution as opposed to 

memorizing each of the parts.  In these cases, visual processing seems to be an 

integral part of this process.   

6.4.5 Visual Simplification 

Another common visual strategy was to try to simplify equations or quantities 

with the aid of pictures.  The use of images to identify symmetry was very common 

in these problem solutions.  In this example, Royal made symmetry arguments to 

support his claim that the electric field was constant outside the cylinder.  He used 

a mental image of the rod to explore the consequences of the rod being infinitely 

long.  He made good arguments to suggest that the electric field was independent of 

z, but overgeneralized and claimed that the field was constant.   
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Royal:Well, since it is infinitely long I think it is going to be constant outside or
away from the rod.

VP

Int: Why do you think it is going to be constant away from the rod?

Royal:Because it is infinitely long, and you are not going to be able to tell how far
you are away from it at any given point.  So, if you just look at the rod you
are only going to see the rod infinitely long.  You're not going to be able to
judge how far you all are away from one end or the other.

VP

 

In another example, Dean made careful arguments that the field did not 

depend on  or z φ .  Dean used explicit references to points in a picture he had 

drawn to make his statements of symmetry clear.  Early in his arguments, he 

claimed that the electric field was constant, but by the end of this sequence, he 

began to question this assertion.  

Dean: So we are solving for this and since this is infinite, the electric field outside
of here (indicating in the region below the cylinders) is …is constant. It's
felt the same here as it is here (drawing two dots on the board),
because…because they don't know the relation with respect to z because this
is an infinite in the z direction.

L

VP
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Dean: And like we said r…that represents r away from the z equals zero.  That's
going to be a constant (writes r=constant)  Okay, is that what I'm trying to
say.  (Erases r=constant).  Anyway, you know what I mean. I'm not going to
…

Dean: And this is going to be radially symmetric like this. (moving his arm around
in a circle with an axis parallel to the cylinders on the board.)  So as long as
this is the same distance as here, they are going to feel the same as them so
you can do that all the way around.

L

VP

VP

 

In both of these cases, the subjects began with strong statements about the 

behavior of the electric field.  They then tried to justify these statements with 

symmetry arguments.  This was a common strategy in these interviews.  Subjects 

often used intuition to describe the electric field.  They then used visual symmetry 

arguments to justify these intuition-based assertions.  In many cases, these attempts 

to justify their intuitions were unsuccessful, often because these intuitions were 

incorrect.  Some of the subjects used this information to revise their description of 

the electric field while others retained their intuitions in spite of information that 

suggested they were flawed.   

In some instances, subjects applied the results of visual simplification 

arguments from earlier in the interview to help them with other parts of the 

problem.  A good example of this comes from Dean’s interview.  Here, Dean was 

trying to find the flux through the endcaps of his Gaussian surface.  As this excerpt 

begins, he had just found that the direction for the differential area element of the 

endcaps was along the ẑ direction 
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Dean: So we don't have to worry about the z component…err…the r component
or the φ component.  We just want to worry about the z component
because we are going to be dotting it so the other parts are just going to
be falling out anyway. …The z component of the electric field is going to
be…

SP

Dean: My thought right now is that it's zero on those. But I'm trying to figure
out why.  Oh, because the electric field only points out radially. And
because of that, this (indicating the =E ) is going to be zero, because
there is only a z component of the area. This is not going to be…not
going to have a z component because the electric field only points out
radially, because of the symmetry argument right here (pointing to the
two small arrows at the top of the Gaussian surface diagram).

VSP

 

Dean indicated the drawing associated with a symmetry argument he made 

earlier.  In this argument, he justified his statement that the electric field pointed 

radially outward. 

Int: How do you know that?

Dean: I know this, so E …E's going to be constant.  So rEE ˆ=

Dean: Because the electric field is pointing radially outward from the
cylinder…the field.

VP

Dean:  Because of this…because this is infinite.  So, whatever…oh, because of that
symmetry argument I was using.  When…there's a piece over here and
there's a piece over here.  So if you have a charge here, it's going to feel a
vector pointing this way and a vector pointing that way

VP

Int: How do you know that?

L

1 2 3

Dean: and these two components are going to…the horizontal components…the z
components are going to cancel out (puts bottoms of fists together with
thumbs pointing out) and you are only going to feel a radial force or a radial
field vector.  Okay.

VP
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In other instances, subjects used visual simplification to find the properties of 

the electric field, but then did not use the results of this simplification to help them 

solve the main problem.  This was particularly common with Tom.  Tom obtained 

useful information about the electric field from visual arguments but never utilized 

this information.  Here is an example where Tom explored the behavior of the 

electric field far away from the charged cylinder.  Tom began by acknowledging 

that he wanted to use symmetry to simplify the problem.  He made a variety of true 

statements about the nature of the electric field but then did not use them to 

perform the simplification he suggested. 

Tom : I know that a lot of what I'm trying to remember, I'm not going to need.  I'm
going to be able to throw some of it away.  I'll try to throw a lot of it away
with symmetry arguments.  With the density.  I'm thinking hey, if I back
way off of this thing…this cylinder, it's going to look just like a wire or a
line if I get far enough away.  It's only when I get really close that the fact
that it has a diameter a is going to make a difference.  So I'm expecting it to
look like…ummm…I'm expecting it to look like…like a wire.  It's…So I'm
thinking it's only going to depend on …r…call it r minus a.  If it's infinitely
long, z right, then wherever I am, wherever my z component is doesn't
matter, because wherever I'm at in z doesn’t matter.  (waving hand up and
down along the z axis).  So, that z symmetry drops out.  The θ is the same
story.  Whatever my angle is around…

VP

 

6.4.6 Summary of Analysis 

The most striking result of these interviews is the degree to which student use 

visual and non-visual methods in close conjunction.  Admittedly, the interview 

problem was chosen to provide students with an opportunity to use visual methods.  

Still, nearly every student in the sample utilized a complex combination of visual 

and non-visual steps and strategies.  In many cases, it was difficult to identify steps 

as visual or symbolic, since the subjects were using visual and symbolic 

representations in such close connection.  This result stands out against much of the 
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existing research, which has attempted to study students’ ability to visualize in 

isolation from non-visual processing. 

A second result of this research is the introduction of a new model that 

promises to help us explore the interaction between visual and non-visual modes of 

thinking in physics problem solving.  In the preceding sections, we have illustrated 

a new method for examining student use of visual and symbolic steps in problem 

solving.  Based on the V/A model (Zazkis, Dubinsky and Dautermann, 1996), this 

method has several new features.  First, the definitions and elements used here are 

readily associated with observables from the interviews.  The visual and symbolic 

steps defined in Section 6.4.2 are generally easy to identify in the interview 

transcripts.  We have also accounted for steps involving visual and symbolic 

processing as well as steps that are difficult to categorize. 

Secondly, we explore the relationship between visual and symbolic steps as 

opposed to acts of visualization and analysis.  Analysis takes on a different role in 

the method described here.  Each visual or symbolic step contains within it some 

acts of analysis in the sense described by Zazkis, Dubinsky and Dautermann.  In 

this study, we explicitly avoid trying to identify analysis independently of a visual 

or symbolic representation.  At best identifying purely analytical steps is a 

subjective endeavor; at worst, it is impossible. 

As it stands, this analysis presents a useful model for describing how upper-

division physics students use visualization in problem solving.  We have provided 

examples in which visual and symbolic steps are used in combination as part of a 

complex problem solution.  However, we have yet to synthesize a description of 

how the steps described in Section 6.4.2 are used together in problem solving.  In 

other words, we have defined the elements of our model but still need to explore 

how these elements work together in students’ problem solving.  Our intent upon 

the completion of this analysis was to explore the interaction of the model elements 

described here in the context of another set of interviews.  However, as we describe 

in Section 7.4, our focus shifted after a preliminary analysis of thee final 

interviews. 
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Chapter 7 Final Interviews 

In the fall term of 2000, we conducted a set of think-aloud interviews in 

which students were asked to solve a problem involving the calculation of electric 

flux.  The goal of these interviews was to gain an understanding of student problem 

solving at this level and, in particular, their use of visualization in problem solving.  

This chapter describes the administration of these interviews as well as their 

analysis. 

7.1 Sample 

Fifteen volunteers from a class of 19 physics and engineering physics 

students were interviewed.  This sample consisted of 12 male and 3 female 

students.  The female/male ratio of 20% was typical of undergraduate physics 

classes at Oregon State University, but considerably higher than the national 

average of around 12% (Ivie & Stowe, 2000).   

The class of 20 students was administered the PSVT (Guay, 1976) to 

determine the general spatial ability of each subject.  A tabulation of student scores 

on the PSVT and incoming math and physics grade-point average (GPA) is listed 

for each student in Table 7.1.  The average PSVT scores for the sample (N=15) was 

32.3 compared to a score of 31.9 for the entire class (N=20).  The average 

incoming math and physics GPA for the sample was 3.02 compared to 3.17 for the 

entire class.  The similarity of these statistics indicates that the voluntary sample 

represents the entire class quite well, as well it should since the sample constitutes 

over three quarters of the population.   

A regression analysis measuring the relationship between PSVT score and 

incoming GPA revealed that there was no significant correlation (R2= 0.033, 
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F=0.45, α=0.52) between these variables.  This data agrees very closely with the 

data from Section 4.5.1. 

Pseudonym
PSVT (0-

36)
Incoming 
GPA (0-4)

Enkidu 34 3.27

Tortuga 34 2.17

Sirius 28 1.99

Blue 34 3.61

Yellow 36 3.61

Shedder 28 2.42

Bravo 30 4.00

Jerry 31 2.49

Chameleon 35 3.40

Parsec 35 3.47

Penguin 31 2.53

Turtle 29 3.81

Q 34 2.62

Garfield 35 2.36

Scooby 31 3.58

Class Average 32.3 3.02  

Table 7.1 - Tabulation of students’ PSVT scores and Incoming Math and 
Physics GPA 

7.2 Data Collection and Interview Protocol 

Subjects participated in think-aloud interviews in which they were asked to 

solve an electrostatic flux problem.  Each of the interviews was administered by the 

author and lasted between 45 minutes and one hour. Subjects were not allowed 

access to reference materials including books and notes except were noted.  The 
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interviews were videotaped with the permission of the subjects and later 

transcribed.  Transcriptions were carried out by the author and included all 

drawings, equations, etc… as well as notes on hand gestures and references to 

items written on the board.  A timeline for the interview protocol is shown in 

Figure 7.1.  

An infinitely long line charge generates

an electric field
0

1 ˆ
2

E r
r

λ
πε

=  where λ is

the uniform linear charge density and r is
the distance from the line charge.  The
orange thread along the edge of the
model represents this infinitely long line
charge. Find the flux of electric field
through the entire surface represented by
the model.

Introduction

Follow-up
Questions

Answer Student
Questions

Main
Problem

5 min.

25 min.

40 min.

Start

End  

Figure 7.1 - Interview timeline and problem statement. 

As in the preliminary study, the interviewer began by explaining the think-

aloud format of the interviews.  The interviewer explained that the questions he 

would ask were intended to elicit information about the subjects thinking process 

and should not be taken as guiding questions.  Subjects were asked to talk through 

their thinking process as they worked and were encouraged to use the chalkboard.  

The interviewer encouraged subjects to ask any questions that came to mind, but 
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warned them that he would not answer all questions.  Subjects chose pseudonyms 

that would be used to identify them once the interviews had been transcribed.  

Once the introductions had been completed, the interviewer asked the subject 

to work through the following problem.  (Note: Several solutions to this problem 

can be found in the appendix.) 

An infinitely long line charge generates an electric field 

r
r
1

2
E

0
ˆ

πε
λ

=  where λ is the uniform linear charge density and r is 

the distance from the line charge.  The orange thread along the edge 
represents this infinitely long line charge.  Find the flux of electric 
field through the entire surface represented by the model. 

The interviewer presented the subject with a physical model of the system as shown 

in Figure 7.1.  The model consisted of an 8.5” x 11” sheet of white paper folded 

and taped into the shape of an equilateral triangular tube.  Along one edge of the 

tube was taped an orange thread.  The model was suspended between the ceiling 

and floor by this thread.  The subject was then given 20 minutes to work through 

the problem.  During this time the interviewer encouraged the subjects to talk about 

their thinking process and asked them to clarify any unclear statements they made. 

At the end of 20 minutes, the interviewer began to ask a series of follow-up 

questions designed to elicit more information about the subject’s thinking process 

with respect to this problem.  These questions were as follows. 

1. Explain flux to me  

2. Given a surface in the shape of a hexagonal tube of length l and side a 

centered on an infinitely long line charge like the one you were using 

before, what is the flux of electric field through this surface. 

3. How do you generally approach this type of problem?  

4. Is there anything that you would like to share about the Paradigms? 
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Subjects were allowed to return to their solution of the main problem at any 

time during the administration of the follow-up questions.  In some instances, the 

follow-up questions were asked and answered in an uninterrupted sequence.  In 

others, the subjects returned to the main problem between follow-up questions.  

The final follow-up question was asked to collect data for the evaluation of the 

Paradigms in Physics program.  Anonymous transcripts of student responses to this 

question were submitted to the Paradigms in Physics evaluation team.   

Upon completion of the interview, subjects were encouraged to ask questions 

about the problems.  These questions were answered and subjects were given the 

option of discussing the interview questions with the interviewer off camera.  The 

length of time for each interview varied between 45 minutes and one hour 

depending upon the speed with which subjects answered each question as well as 

the amount of time spent on student questions at the end of the interview.  

Significant deviations from this protocol occurred in two of the interviews.  

Very early on in his interview, Blue became stumped and gave up.  The interviewer 

responded to this by asking the subject the first of the follow-up questions very 

early in the interview.  Following this question, the subject returned to the main 

problem.  Subsequent follow-up questions were asked in accord with the schedule 

outlined above.   

Shedder’s interview was affected by more substantial irregularities.  Due to 

an equipment malfunction, the first 15 minutes of the interview was not videotaped.  

This was recognized during the interview and the malfunction corrected.  At this 

point, the interviewer asked the subject to review what she had done during the first 

15 minutes of the interview.  We considered dropping this interview from the 

study, however, since the subject was one of only three women included in the 

study the data from this interview was retained.  Conclusions drawn from this 

interview should be examined with extra scrutiny since the interview environment 

was more reflective than the other interviews in this study.  
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7.3 Choice of the Interview Problem 

Our goal in selecting the interview problem was to choose a problem that 

would encourage students to demonstrate the use imagery and equations together 

while solving problems.  We chose a problem from electrostatics because it was 

reasonably fresh in students’ minds.  The particular problem used in the interviews 

described here was chosen based on a number of other important criteria.  First, it 

was essential that the problem allow students’ many opportunities to use equations 

and imagery together.  Second, it was important that the problem be based on 

recent course material but not be too closely related.  We wanted students to be able 

to make significant progress on the problem, but we did not want the problem to be 

so similar to ones they had solved recently that they could remember large parts of 

the problem solution.   

In addition, there were several logistical requirements for the problem.  First, 

it was important that the entire interview last less than one hour.  Taking into 

account time for introductions, explanations and follow-up questions, this left 

roughly 30 minutes for the main problem.  The problem used in the preliminary 

interviews was too long and too complicated to analyze easily.  We chose what we 

thought would be a shorter problem for these interviews.  This shorter format also 

allowed more students to be interviewed since the transcription and analysis time 

for a single interview was decreased. 

The problem we chose is described in Section 7.2 and several solutions to 

this problem can be found in the appendix.  In developing this problem we 

considered several problems and conducted brief interviews to determine if each 

problem had the potential to meet the above criteria.  These interviews showed that 

students used a rich variety of imagery together with equations in solving this 

problem.  We tested this problem in two formats.  One that involved a purely verbal 

explanation and one that involved the model described in Section 7.2.  We found 

that the students experienced difficulties understanding the verbal description of the 

model and we were unable to concoct a satisfactory verbal description. 
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We chose electric flux as the topic for this problem because understanding 

flux problems requires a combination of verbal and visual problem solving skills.  

A successful solution to the problem described above can be achieved with the use 

of primarily verbal or visual strategies; however, a complete understanding of the 

problem utilizes a complex intertwining of the two.   

This problem allowed several different avenues of solution.  Students had the 

opportunity to choose either rectangular or cylindrical coordinates, but in either 

case, would have to translate some of the elements of the problem from one 

coordinate system to the other.  In addition, subjects could simplify the problem 

using Gauss’s Law.  Each of these possible solutions is described in the context of 

student solutions below. 

7.4 Results/Analysis 

We began the analysis of this set of interviews by directly following up the 

analysis of the Chapter 6.  We coded the transcripts searching for visual strategies 

and identifying visual and symbolic steps.  Two results emerged from this analysis.  

First, the most common strategies we identified were construction, as defined 

above, and checking, a new strategy described in Section 7.4.2.  In addition, we 

noted that these two strategies were often found in conjunction.  Second, we found 

that most of the strategies we identified contained a mix of visual, symbolic and 

verbal steps.  This supported one of the most significant results of the research in 

Chapter 6, that student’s use of visual representations in problem solving is 

intertwined with their use of non-visual representations.   

Based on these conclusions we adjusted the direction of our analysis.  Section 

7.4.1 describes the subjects’ overall performance in solving the interview problems.  

In Section 7.4.2, we describe the pattern of construction and checking that we 

observed and we outline a simple model for understanding this pattern.  Finally, in 
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Section 7.4.3, we explore the subjects’ models of flux.  In particular, we describe 

the typical model students have and the difficulties that some students experience.   

7.4.1 Overall Performance 

Subjects’ performance on the main flux problem varied from one student who 

solved the problem in a complete and thorough manner to a few students who were 

only able to make small amounts of progress toward a solution.  Table 7.2 shows 

the subject groupings according to overall performance on the main flux problem.  

Subjects in the high performance group produced a solution that was correct to 

within simple algebraic errors.  Both of the subjects in the high performance group 

utilized some form of Gauss’s Law to simplify the problem.   

Each of the subjects in the middle performance group was able to recall or 

construct a correct equation for flux.  In addition, they were able to use this 

equation in a correct and productive manner, but were unable to produce a correct 

solution.  Each of the subjects in this group either did not produce a final solution 

in the allowed time or expressed doubt about the correctness of their solution.  In 

general, individuals in the medium performance group were unable to solve the 

problem due to difficulties translating between cylindrical and rectangular 

coordinates. 

Subjects in the low performance group made only minimal progress toward a 

correct solution of the problem.  Three of the subjects, Scooby, Sirius and Blue 

were unable to recall or reconstruct a correct equation for flux.  Garfield was able 

to write the correct equation for flux, but thought that it was incorrect and promptly 

erased it.  Jerry recalled and used the proper equation for flux, but because his 

model of flux was so flawed, he was unable to make significant progress toward a 

solution.  
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Name Performance

Jerry

Sirius

Scooby

Blue

Garfield

Yellow

Parsec

Turtle

Tortuga

Chameleon

Enkidu

Bravo

Penguin

Shedder

Q

Low:  Did not use the correct flux equation to make 
significant progress

Medium:  Used the correct flux equation to make 
significant progress but were not able to obtain a 
solution.  Most had problems with translation from 
rectangular to cylindrical coordinates.

High:  Solution correct to within algebra errors.  
Used Gauss' Law. 

 

Table 7.2 - Grouping of Subjects by Performance 

In addition to performance groupings, we found that most of the students fell 

into natural groups based on their method of solution and on the particular 

difficulties they encountered.  A tabulation of these groupings is presented in Table 

7.3.  Three of the subjects in the low performance group, Jerry, Sirius and Scooby, 

were deemed the Poor Flux Model group, because they had poor or incomplete 

models of flux.  These were the only three students in the sample that did not 

recognized that the flux through the sides of the surface adjacent to the line charge 

would be zero.  Students models of flux will be discussed more in Section 7.4.3 

The other two students in the low performance group, Blue and Garfield, had 

more complete models of flux but made very few quantitative statements.  They 

were called the Qualitative group because their entire interviews consisted of 

qualitative and visual arguments.  While this qualitative approach helped them to 
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gain some understanding of the problem, they did not make significant progress 

toward a solution. 

Five of the subjects in the middle performance group, Parsec, Turtle, Tortuga, 

Chameleon and Enkidu, were grouped together because each of them experienced 

difficulty defining the differential area element, da , for a flat side in cylindrical 

coordinates.  In general, these subjects had expected to write down some form of 

ˆda rd dzrφ=  in analogy to solutions they had seen before for electrostatics 

problems in cylindrical coordinates.  This group was deemed the Difficulties with 

da  group. 

Name Solution Characteristics

Jerry

Sirius

Scooby

Blue

Garfield

Yellow Chose to use rectangular coordinates. Got stuck on 
integral. 

Parsec

Turtle

Tortuga

Chameleon

Enkidu

Bravo

Penguin

Shedder Used Gauss' Law to argue that the flux through the given 
surface should be one sixth.

Q Used Gauss' Law to justify equating the flat side to an 
arced surface with constant radius.

Qualitative - Few Quantitative statements.  Made lots of 
true statements but drew few conclusions and made few 
useful connections. 

Difficulties with da  - Had difficulty writing down da = 
dxdz.  Expected to write rdφdx and got stumped.  
Confused because the surface and electric field are most 
easily represented in different coordinate systems.

Quantitative - Used few qualitative arguments.  Didn't 
like and had difficulty with using images.

Poor Flux Models -  Didn't recognize that the sides 
adjacent to the charge had no flux though them.  
Achieved very little progress toward solution.

 

Table 7.3 - Grouping of subjects by solution characteristics. 
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Bravo and Penguin, also middle performers, were grouped together because 

they both approached the problem in a very quantitative manner.  Both expressed 

some discomfort or dislike of using pictures and noted that pictures often confused 

them.  While both of these subjects drew many pictures, they tended to draw the 

same picture several times with only minor changes.  In most cases, these pictures 

were geometric representations they used to convert between rectangular and 

cylindrical coordinates.  In addition, Bravo and Penguin each had difficulty 

extracting information from their pictures.  Bravo and Penguin were regarded as the 

Quantitative group. 

The other three subjects did not fall neatly into any group.  Yellow was the 

only subject to try to solve the problem in rectangular coordinates.  In general, his 

solution proceeded along a productive path.  However, his final integral was 

impossible to evaluate because of a mistake he had made translating between 

cylindrical and rectangular coordinates. 

Both Shedder and Q produced a correct result using Gauss’s Law.  However, 

their methods of solution were somewhat different.  Q and Shedder began by 

equating the flat side opposite the line charge with an arced surface of constant 

radius.  Q justified this step using Gauss’s Law and proceeded to solve the simpler 

arc problem in cylindrical coordinates.  Shedder, on the other hand, abandoned this 

idea when she was unable to justify it.  After questioning the interviewer about the 

exact position of the line charge, she argued that the flux through the triangular 

tube would be one sixth of the total flux coming from the line charge over the 

length of the triangular tube.  She then used Gauss Law to calculate the flux. 

7.4.2 A Model of Construction and Checking 

In the pilot study, one of the problem-solving strategies identified was visual 

construction.  During the analysis of the final interviews, we looked closely at 

students’ use of construction as a strategy.  We found that instances where students 
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used construction were often followed by checking events.  In these checking 

events, subjects tested the conclusions drawn in construction against other 

information they had.  A cyclic pattern of construction and checking was observed 

in most students’ problem solving behavior.  This pattern served as the basis for a 

model that has been useful in analyzing the similarities and differences in subjects’ 

problem solving behaviors.  Here, we describe this model and provide several 

examples of its variations throughout these interviews.   

This model describes a process in which subjects draw together several 

pieces of input information to construct a conclusion.  This conclusion is then 

checked.  If the check fails, more information is brought in and the conclusion is 

refined.  In the ideal case, this process continues until the conclusion passes the 

checking process.  Once a conclusion has passed the checking process, it is passed 

on to be used as an input for drawing later conclusions.  The result is a cyclic 

pattern in which early conclusions are used as the basis for later conclusions until a 

final solution is achieved. 

For simplicity in analysis, we relate excerpts from students’ interviews with 

this model in a diagrammatic format.  Figure 7.2 shows a prototypical diagram.  

Here, several pieces of input information are used to draw a conclusion.  This 

conclusion fails a check and a revised conclusion is constructed from the original 

conclusion, results of the check and some new information.  This revised 

conclusion then passes a final check. 
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 Input  Input   Input

 Conclusion

Check
Fail

Revised Conclusion

  Input

Check

Pass
 

Figure 7.2 - Diagrammatic representation of the conclusions/check model 

In order to get a better understanding of how these diagrams are related to 

student problem-solving behavior, we can look at an excerpt from Enkidu’s 

interview.  Enkidu is trying to translate his da to cylindrical coordinates.  In this 

excerpt, he constructs equations relating the Cartesian coordinates x and y with the 

cylindrical coordinates r and φ.  Figure 7.3 shows a diagrammatic representation of 

this excerpt in the context of our model.  Enkidu uses three pieces of explicitly 

mentioned input (Statements [1], [2] and [3]) in addition to some unstated 

(indicated with a dashed line) recall input to construct his equations for x and y in 

cylindrical coordinates (Statements [4] & [5]).  He then checks this conclusion 

against a remembered image of a right triangle used for calculating sinφ  and cosφ  

(Statement [6]).  This check passes and he proceeds to use these equations to 

construct dx and dy. 

Enkidu:   Okay, if this is in cylindrical [1], my da = dxdy [2] in cylindrical 
coordinates is equal to…  There's like a cosφ [3]and a something.   I 
think it's r cosφ that's what x is [4]…maybe.  And y = r sin φ [5] where 
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this is cylindrical and this is φ (drawing and indication of the angle φ  
from the x axis)  I should look at it and make sure that is right.  

b

a
c

z

y

x cosx r φ=

siny r φ=

da dxdy=

aa
c

1
2

a

φ

 

Enkidu:   Is this right (draws a triangle around the φ in the drawing to 
check that he has defined it correctly)  Cosine of the angle is x, sine of 
the angle is y.  And r changes its length…multiplies it… So yeah [6] 

 

 

1 Input 2 Input 3 Input
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 Input

 

Figure 7.3 - Diagrammatic representation of Enkidu's conclusion and 
checking process. 

In the context of this model, inputs are pieces of knowledge students bring to 

the part of the problem they are solving.  Students obtain these pieces of knowledge 

from a variety of sources including: recall, observation, construction, guessing, 

reference sources and the problem statement.  Students recall typically items like 
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facts, equations and images.  However, they also recall more complex structures 

like concepts and solution methods.  In addition, students’ memory is often 

incomplete.  In some cases students may only remember part of an equation or a 

single property of a complex concept.  Students make observations of the physical 

world, but also make more complex observations.  For example, noting the 

behavior of equations or observing the properties of a drawn image.  In some 

instances, students supplement recalled information with guessing.  In some cases, 

they automatically fill in missing pieces without realizing it.  In other instances, 

they are aware that their recall is incomplete and make a conscious guess.  At this 

educational level, many of the subjects rely heavily on reference materials.  While 

no references were provided in this interview, it was common for subjects to ask if 

they could reference notes or a book. 

In this study, we refer to information resulting from the construction process 

described above as conclusions.  For the purposes of this model, conclusions were 

defined as information constructed from two or more pieces of input.  However, 

most of the conclusions we identified synthesized several pieces of information.  

Conclusions served as another form of input information for most of the subjects.  

In the ideal case, in which they have perfect recall and flawless reasoning, 

subjects would build problem solutions by constructing a chain of these 

conclusions each building upon previous conclusions until the final solution is 

reached.  In reality, both recall and reasoning have faults.  To deal with these faults, 

subjects employ a variety of checking procedures to test the validity of conclusions.  

In some cases, it is a simple review to identify obvious errors.  In others, it involves 

comparison to other known information.  In still others, it may involve complex 

reasoning to test the plausibility of the conclusion 

In the example from Enkidu’s interview above, he explicitly states three 

pieces of input he uses to construct the equations for x and y in cylindrical 

coordinates.  He mentions cylindrical coordinates and the differential area element, 

da = dxdy, he is trying to convert.  Each of these is a conclusion resulting from 

previous construction.  He also utilizes a partially recalled equation, “There’s like a 
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cos φ  and something.”  The resulting conclusions are then checked against the 

recalled image of a right triangle from introductory trigonometry. 

7.4.2.1 Complex Structures 

The thought structures students used to draw conclusions in these interviews 

were not all as simple as the example given above.  Some of the structures are quite 

complex, involving several conclusions or repeated checking.  The following 

example from the interview with Q illustrates a more complex structure with 

multiple checking and several conclusions.  In this excerpt, Q constructed and 

refined an equation for flux.  In statement 2, he postulated a simple equation for 

flux from memory.  He then realized for himself that it is incomplete (Statement 

[3]) and refined the equation utilizing several other recalled properties of flux 

(Statements [4], [5], [6] and [7]).  Next, Q refined the equation again, adding 

information about the direction of the differential area element (Statements [8], [9] 

and [10]).  A diagrammatic representation of this excerpt is given in Figure 7.4 

Q:  And then I’m going to integrate the E-field. [1]  Flux equals (φ = Ea) 
[2] and so.  Is that the right equation for flux? [3]  You can’t answer 
that. 

Interviewer:  I can’t really answer that.  There are a lot of equations for 
flux.   

Q:  For the flux in the electric charge…err using the electric field is just 
the electric field going through an area…or the total electric field 
through an area.  [4] 

Q:  Oh, e dot and then the normal is what it is. [5]  Oh, yeah and you 
would integrate it. [6] ( E daφ = ⋅∫ ) [7]  Where da equals…da [8] and 

then the normal which is oops r. [9] (replacing the n̂  with r̂  to get 
ˆda dar= ). [10] 
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 Q:  What I just did was take the area and say that the flux was the field 
going through it in the perpendicular direction.  (drawing an arrow on 
the side of the triangle opposite the charge) [11] 

φ

r

r
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Figure 7.4 - Diagrammatic representation of Q's construction of the flux 
equation. 

Most of the conclusions-checking structures identified in these interviews 

were similar to those described above in that several pieces of information were 

synthesized to draw a conclusion that was then checked for validity.  In these cases, 

most of the input information is used to draw or refine a conclusion.   
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Interestingly, we found that in some instances, the bulk of the input 

information was applied at the checking stage.  In such cases, the student would 

draw a conclusion based on only a small amount of input information.  Then upon 

checking this conclusion the student would bring in several more pieces of 

information supporting and enriching the conclusion.  The following excerpt from 

Parsec’s interview illustrates this behavior. 

In this example, Parsec constructed an equation for flux.  Comparing this 

excerpt to Q’s construction of the flux equation above, it is clear that Parsec 

generated the correct flux equation very quickly.  Whereas Q refined his 

construction from a simpler equation, Parsec produced the correct equation with no 

explicit refining.  In fact, Parsec noted that he was recalling the equation in 

Statement [3].  In this case, the bulk of information about the flux equation was 

brought in during the checking procedure (Statements [5], [6], [7] and [8]).  The 

checking process served as a constructive justification, both confirming and 

expanding the original conclusion.  In the checking step, Parsec established 

connections between the equation and his qualitative/geometric understanding of 

the problem. 

Parsec:   The flux being the amount of the vector going through a surface 
[1] … 

Parsec:   So, I’m thinking about this thing (mumbling)… (drawing a 3-D 
picture of the triangular tube and writing the equation for flux) [2] 

Flux E da= ⋅∫  

Interviewer:  What are you writing? 

Parsec:   The flux integral. 
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Interviewer:  Where did the equation come from?  Are you just 
remembering it? 

Parsec:   Yeah, I’m trying to remember it. [3]  I think that is correct, 
because it is the electric field. [4]  And we are finding the flux of the 
electric field which is the amount of electric field through the surface. 
[5]  It’s only the field that travels through the surface [6]…so the 
perpendicular field, [7] so the dot product (pointing to the dot product 
in the flux equation) would give that to you [8].  

  

5 Input

1 Input
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   Input
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Figure 7.5 - Diagrammatic representation of Parsec's construction of the 
flux equation. 

The excerpt from Q’s interview clearly shows an example of the student 

constructing a quantitative representation from a qualitative representation.  In 

contrast, Parsec clearly used his equation as a basis for recalling/constructing his 

qualitative understanding of the system.  Observing these contrasting methods for 

construction/recall brings to mind several interesting questions.  Which of these 

methods is most common?  Are there any patterns in expert/novice use of these 

methods?  Do particular subjects prefer one method or another?  If so, does this 
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preference change as the subject’s problem-solving abilities improve?  While these 

questions are beyond the scope of the present study, we intend to address them in 

the future. 

7.4.2.2 Difficult or Trivial? 

Using this model as a framework, an interesting pattern was observed.  We 

noticed that students’ often engaged in elaborate thinking processes in order to 

arrive at conclusions that seem trivial to the experienced problem solver.  The 

following excerpt from Turtle’s interview illustrates this point. 

Turtle:    I’m thinking if I had a line charge and then at some point that’s 
the e-field. [1]  I’m concerned about the shape of what the flux is going 
through. [2]  I am trying to decide what’s the best way to go about this.  

Interviewer:  Why are you concerned?  What is your concern? 

Turtle:  It is an unusual shape.  Because well the direction. [3] Do you 
want me to talk as I go through this or just solve… 

Interviewer:  Yes, talk to me and tell me what you are thinking.  And I 
will remind you to do that. 

Turtle:  Well, if the e-field is directly…is radially outward from the line 
charge, [4] then… I would expect…at all points, the e-field would be 
radiating outward from the line charge (drawing arrows from the line 
charge). [5]  

  

Turtle:  So, if I were to use cylindrical coordinates, that would be best. [6] 



 
 

 

91 

1 Input 2 Input 3 Input

5  Conclusions

6  Conclusions

 Given
E-Field

4  Conclusions

 

Figure 7.6 - Diagrammatic representation of Turtle's conclusion to use 
cylindrical coordinates. 

 

In this excerpt, Turtle makes the decision to use cylindrical coordinates in her 

problem solution.  In Statements [1], [2] and [3], Turtle articulates several of the 

important features of the problem that will affect her decision of what coordinates 

to use.  Turtle then realizes in Statement [4] from the problem statement that the 

electric field is “radially outward from the line charge.”  At first glance, Statement 

[5] seems to be a reiteration of Statement [4].  However, noting the drawing 

associated with Statement [5] indicates that a translation from the verbal 

representation into a pictorial representation has occurred.  Finally in Statement [6], 

she concludes that cylindrical coordinates “would be best.” 

An experienced problem solver would likely come to the conclusion to use 

cylindrical coordinates very quickly, arguing that since the electric field is 

cylindrically symmetric, cylindrical coordinates will be simplest.  This student, 

however, arrived at this conclusion only after a 30-40 second thinking process.  

Clearly, making this decision is a much lengthier process for Turtle than for a more 

experienced problem solver.   
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This phenomenon was not isolated, but was common throughout the 

interviews among all students, strong and weak.  One of the strongest students in 

the sample and the student who presented the most complete solution to this 

problem, Q, also exhibited this behavior. 

Q:  So my da is rdrdφdz. [1]  No, that is volume. [2]  So the dr part is 
constant, [3] so dz… where dz is your length [4]  (writing da = 
rdφdz).[5]   

1 Input
2 Input3 Input

5 Conclusion2 Check
Fail

 

Figure 7.7 - Diagrammatic representation of Q's construction of da. 

A number of possible explanations for this behavior exist.  It is possible that 

expert and novice problem solvers alike, utilize these complex thinking structures, 

but that experts are so practiced that this type of thinking has become essentially 

automatic.  Another possibility is that experts are more willing to make tentative 

decisions and move on knowing that they can reconsider the decision if the path 

they have chosen is not fruitful. 

In any case, these students clearly labor through problem solving tasks that  

instructors tend to trivialize.  This has serious implications for instructors.  In 

lectures, we tend to move very quickly through material they think will be easy for 

students.  This example shows that it is not always easy to know what material will 

be difficult for students.  Thus, it is very easy for students to fall behind in a 

lecture.  Even for those students who can keep up, the time constraints present in a 

lecture make it unlikely that they are engaged in the decision-making processes that 
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characterize their problem solving.  When discussing one of the more lecture-

oriented courses in the Paradigms, Turtle, herself noted, 

Turtle:  It made sense watching him draw the conclusions, but it’s things I 
probably would have run across on my own and stopped and thought 
about, but because of the… when you are just sitting there in lecture it 
just keeps going. 

 

She also hinted that more student-controlled alternatives to the lecture mode 

may yield some relief. 

Turtle:  …it is nice to be able to work in a group…you come across more 
problems when you are actually doing it yourself than just watching 
board work. 

 

7.4.2.3 Moving on with the Aid of Terminating Statements 

Throughout the interviews, some of the subjects were observed to end a train 

of thought abruptly when it appeared to be unfruitful.  In many of these instances, 

the subject had engaged in a prolonged checking process that was not yielding 

productive results.  These abrupt terminations were often signaled by a frustrated 

statement that indicated the subjects were willing to accept an answer in which they 

had little confidence so that they could move on.  These statements were denoted 

terminating statements.  In order to assess the importance of terminating 

statements, we searched each of the interviews.  Six of the 15 subjects used at least 

one terminating statement.   

Only two of the subjects, Chameleon and Enkidu, used a large number of 

terminating statements (5 each).  Both of these students were in the middle 

performance group.  In these two cases, most of the terminating statements came 

after the subjects had tried and checked various avenues in an attempt to make 

progress toward a problem solution.  These terminating statements indicate some 

level of frustration on the part of the subject.  In essence, the subjects are saying, 
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“That is my best guess.  I’m spending too much time on this and not getting 

anywhere.  Let’s move on.”  

 In many of these instances, the subjects had engaged in one or more 

conclusion-check cycles without making significant progress.  Thus for Chameleon 

and Enkidu, these statements served as a mechanism to escape an unproductive 

thought cycle.  The following excerpt from Enkidu’s interview demonstrates this.  

Prior to this excerpt, he has developed and checked several other expressions for 

dx.  The terminating statement is underlined. 

Enkidu:  I'm going off memory now. 

 cos  dx r dφ φ=  

Enkidu:  Well, that wouldn't be the x term cause that's just dφ .  That 
doesn't make any sense really 

Interviewer:  Why doesn't it make sense? 

Enkidu:  Because… the only thing that's changing here is φ .  I guess…the 
only thing that's changing here (indicating the dx equation) is φ  in the 
dx.  And if x is equal to the…there's two variables and they are 
throwing me off.  Where dx…there's only one variable....one of the two 
is changed in that small element.  But then again, I'm starting to think 
about, it helps to say it, the r term is just a scalar in here, determining 
how far away from the origin you are.  So, I think I'm going to go with 
that. 

 
After this terminating statement, he proceeds to use the value of dx proposed 

above.   

It becomes apparent later in the interview that Enkidu has noted his 

assumption here as suspect.  In the following excerpt, he identifies this as one of 

the possible sources of difficulties he encountered later. 

Enkidu:  The two things that are bothering me.  The first one is that I 
wrote dx...  I agree with the dz.  That is the same in cylindrical and 
Cartesian.  The cosdx r dφ φ= .  That, I totally don't like. 
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In Chameleon’s case, his terminating statements were mostly near the end of 

his problem solution.  They tended to indicate frustration and an unwillingness to 

further justify his reasoning.  In a sense, Chameleon’s terminating statements 

signaled that he was giving up. 

Chameleon: I’m probably way off, but that’s why partial credit is there.   

… 

Chameleon:  Which is some number, so now there is no dependence on r.  
It’s just in the z direction now.  Which completely baffles me.  And that 
is the flux.  I guess it would be a number because I said it wouldn’t 
have a direction, but who knows.  So it equals some number, we know 
that.  So that is as far as I can do here. 

 

Initially we thought that subjects in the low performance group would use a 

larger number of terminating statements.  That is, they would make progress with 

the aid of many unchecked statements.  Upon examination of the data, we found 

exactly the opposite result.  Jerry was the only subject in the low performance 

group to use even a single terminating statement.   

This is not to say that subjects in the low performance group did not make 

erroneous statements, only that they did not tend to use information that they 

thought might be incorrect.  Typically when these subjects encountered suspect 

information they became stumped. 

In general, the subjects in the low performance group experienced difficulty 

deciding how to proceed.  Where as some students in the middle and high 

performance groups made terminating statements to allow them to proceed in what 

they perceived as a fruitful direction, the subjects in the low performance group 

were typically unable to choose a direction to proceed.   
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7.4.3 Student Understanding of Flux   

The combination of the main interview problem and the follow-up question 

asking students to explain flux has proved to be a powerful tool for exploring 

students’ understanding of electric flux.  Subjects understanding of electric flux 

varied greatly throughout the sample.  The interviews revealed that most of the 

students had a reasonably complete model of flux.  However, only two of the 

subjects made the connection between flux and Gauss’s Law.  In this section, we 

will describe the models of electric flux used by students in this interview.  First, 

we will describe the features we feel constitute a reasonably complete model of 

flux. 

A simple but useful definition offered by many of the students interviewed is 

that flux is “the total amount of field through a given area.”  This basic definition 

indicates several important properties of the concept of flux.  First, it indicates that 

flux is the summation of the field over a given area.  Second, it suggests that the 

only part of the field that is important is the component that passes through the 

area.  While this simple definition is useful, it is worded loosely enough that 

students can easily misinterpret it.  Thus, a complete model of flux needs to be 

connected with a quantitative definition.  The equation for electric flux, 

E daΦ = ⋅∫ , provides this definition.   

However, having the verbal and quantitative definitions described above is 

not enough.  In order to use the idea of flux, students need to be able to connect the 

quantitative and qualitative representations of flux.  In particular, students need to 

understand that taking the dot product between the electric field and the normal 

vector to the surface of interest gives them the component of the electric field 

perpendicular to the surface.  In addition, students must understand that the 

component of the electric field perpendicular to the surface is what is meant by the 

part of the electric field that goes through the area.  It is also essential that students 

understand that the integral in the flux equation corresponds to the summation of 
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the correct component of the field over the area of interest.  Figure 7.8 contains a 

pictorial representation of the connections between the verbal, symbolic and visual 

representations of flux. 

Flux is the total amount of electric field through a given area.

E daΦ = ⋅∫

Perpendicular
Component

Normal
Vector

da

E

 over all rectangles∑

E da⋅

 

Figure 7.8 - Pictorial representation of connections between the verbal, 
symbolic and visual representations of flux. 

7.4.3.1 Students’ Explanations of Electric Flux 

We obtained information about students’ concepts of flux from three sources 

in the interviews.  First, as one of the follow-up questions, we asked each student to 

explain flux.  In addition, many of the students explained flux while they were 

solving the main problem.  Finally, we were able to learn something about 
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students’ understanding of flux based on their solution methods for the main 

problem and the extension involving a hexagonal tube (see number 2 on page 74).  

We examined each interview transcript to identify which elements of the above 

model were present in each student’s explanation of flux.  In addition to examining 

students’ responses to the follow-up question about flux, we searched the entire 

transcripts for statements about flux. 

A tabulation of the results of this analysis is contained in Table 7.4.  For each 

subject we identified the number of pictorial and symbolic/verbal representations 

used to explain flux.  Any picture drawn or referenced in a subject’s explanation of 

flux was counted as a pictorial representation.  Symbolic/verbal representations 

consisted of equations or verbal definitions the subjects used to describe flux.  It 

was also noted whether the subjects mentioned a concrete representation, e.g., 

water flow, in their explanation of flux.  Whether the student produced all, part or 

none of the equation for flux during the interview was recorded in the equation 

column.  In the three columns to the right of the equation column is recorded 

whether the subject mentioned the dot product, the perpendicular component or 

integration/summation.  In each of these columns, yes indicates that the item was 

mentioned in the subjects response to the follow-up question, cntxt indicates that 

the item was mentioned in the context of the problem solution and no indicates that 

the item was not mentioned during the interview.  The final column lists a 

categorization of each student’s definition of flux and a paraphrased definition from 

each interview. 

All of the subjects in the medium and high performance groups used a 

reasonable model for flux.  All but one of them explained flux as the Total Field 

Through the Surface.  Subjects who defined flux in this way were categorized 

TFTS in the definition column.  There was some variation in the definitions 

provided by subjects in the TFTS category.  Some described flux more generally, 

referring to the “amount of stuff” or the “amount of quantity” that passes through a 

given area.  Penguin defined flux as, “the amount of charge that goes through a 

surface.”  Since Penguin used the concept of electric flux correctly in his problem 
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solution, it is likely that his mention of charge in the definition of electric flux 

reflects carelessness in his choice of words rather than a fundamental 

misconception.   

Unlike the other subjects in the high and middle performance groups, Bravo 

explained flux using the flux equation (Eqn) as a basis.  Bravo noted most of the 

important elements in his explanation of flux, but used the equation for flux as a 

foundation for his explanation. 

The definitions of flux proffered by each of the subjects in the low 

performance group revealed that the subject’s model of flux was incomplete or 

significantly flawed.  Blue provided the most correct definition in the low 

performance group, however his definition of flux was given in terms of field 

Lines.  He defined flux as, “the amount of field lines that pass through the area.”  

Throughout Blue’s interview, he referred only to field, never mentioning field 

vectors.  Scooby’s and Garfield’s definitions of electric flux were connected to 

models of rain and fluid flow.  Both of these subjects presented a definition with a 

Time component, e.g., “the amount of flow that passes over a given area in a 

certain amount of time.”  While this definition is correct in the case of fluid flow, it 

is incorrect for electric flux.  The definition given by Sirius refers to the flux 

through a volume.  In addition, his problem solution indicates that he thinks of flux 

in terms of the amount of field passing through a three dimensional volume as 

opposed to a two dimensional area.  Sirius’s definition was labeled 3D.  Finally, 

Jerry provided a very loose definition of flux referring to “the varying of the field 

on…or through a surface.”  His solution to the main problem indicated that he had 

no clear model for flux.  Because his definition was so loosely constructed, it was 

labeled ???.  
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Name

Pictorial 
R

epresentations

Sym
bolic/Verbal 

R
epresentations

C
oncrete 

R
epresentation

Equation

D
ot Product

Perpendicular

Integral/Sum

Definition 

Jerry 0 1 no part no no yes ??? - Flux would be the varying of the field on a surface or through a 
surface.

Sirius 0 1 no none no no no 3D -  It measures how many electric field vectors enter a region vs. how 
many are pointing out

Scooby 0 1 yes all cntxt no cntxt
Time:  If I'm driving my car and it's raining.  If I'm stopped…  If I'm moving 
more rain hits the windshield.
TFTS (cntxt) - It's just the amount of field that passes through this surface  

Blue 3 1 yes part Yes Yes Yes Lines  - The flux  would be the amount fo field lines that pass through the 
area.

Garfield 1 2 yes all cntxt cntxt cntxt Time - Flux is the amount of flow that passes over a given area in a certain 
amount of time.

Yellow 2 1 no all no no no TFTS - Flux is the amount of vector field that goes through the  surface.  
Mentions what is going in and what is going out.

Parsec 0 1 yes all cntxt cntxt cntxt TFTS - It's the amount of quantity in question that passes through a 
surface.

Turtle 0 1 no all yes cntxt no TFTS - The amount of electric field through a given area.

Tortuga 1 2 yes all yes yes yes
TFTS - The amount of field that passes through a surface.  You can 
integrate (the dot product of the vector and the da)…add them up and get 
the amount passing through the surface.

Chameleon 1 1 no all cntxt no no TFTS - The e-field that goes through the surface is the flux.  

Enkidu 1 1 no all yes no yes TFTS - The total field passing through the given surface.

Bravo 3 1 no all yes yes yes Eqn - You write it like this (pointing to flux eq)  You use this relation then 
you perform the dot product and then you integrate over the surface.

Penguin 3 1 no all no yes no
TFTS - Flux is the amount of charge that goes through a surface normal to 
the surface.  (Confuses charge and field in his definition.  Also talks about 
the amount of "stuff")

Shedder 1 1 no all cntxt cntxt cntxt TFTS  - Number of field lines coming out of this suface.  Tries to resolve 
confusion between # of field lines and field line density models of flux.

Q 1 2 yes all cntxt cntxt cntxt TFTS - It's the amount of something going through an area…a surface 
area  

Table 7.4  - Characterization of students' explanation and use of flux 

The following two sections will describe in more detail the subjects’ 

particular models of flux.  Students’ failure to correctly use Gauss’s Law and Field 

lines will be discussed in Section 7.4.3.2. Then, in Section 7.4.3.3 we will describe 

some of the incomplete and/or incorrect flux models that students used in these 

interviews. 
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7.4.3.2 Gauss’s Law and Field Lines 

Most of the students in the middle and high performance groups used an 

essentially correct model of electric flux.  In particular, all of these subjects used 

the Total Field Through the Surface (TFTS) definition and all of them recalled the 

correct equation for flux.  Most of the subjects also mentioned the dot product 

and/or the component of the electric field perpendicular to the surface.   

The one point that was missed by all of the students in the middle 

performance group, was the connection between the electric flux and Gauss’s Law.  

That is, none of the middle performance students was able to simplify the problem 

using Gauss’s Law.  In contrast, both Q and Shedder were able to solve the 

problem using Gauss’s Law.  Interestingly, three of the subjects in the middle and 

low performance groups considered equating the flat side opposite the charge with 

an arced side in order to simplify the problem.  Blue, Turtle and Chameleon each 

realized that the problem would be simpler if the flat side were instead a side of 

constant radius, however, none of them was able to justify this simplification. 

It is clear in the following excerpt from Blue’s interview, that Blue has a 

rudimentary understanding of the behavior of field lines.   

Blue:  If I remember right from class he said that … if we have a cylinder 
here. (drawing a cylinder)  And this would be our triangle thing. 
(drawing a triangular tube inside the circle with one edge along the axis 
of the cylinder) 

 

Blue:  The flux through that surface would be the same as… this little 
cylinder on the outside (indicating the piece of the cylinder bounded by 
the edges of the triangular tube)… because it would have the same 
amount of field lines going through this outer surface as it does on this 
inside surface (indicating the side of the triangular tube opposite the 
charge). 
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Blue realizes that under some circumstances he can equate the flux through 

one surface with the flux through another.  He mentions that this is possible 

because the same number of field lines pass through both surfaces.  However, the 

following excerpt illustrates the limitations in his understanding.  Blue clearly 

remembers pieces of something that was mentioned in lecture, but has not yet 

assimilated this information into his understanding of electric flux. 

Blue:  All I remember is the diagram he was drawing.  Something to the 
effect if you had some weird surface up here above the x-y plane. 
(draws axes and irregular surface).  Like if this was all curved and odd 
(indicating the irregular surface)  Then, it projected down onto the x-y 
plane, even though it was an odd shape out here, the same… (drawing a 
projection down onto a square in the x-y plane) 

  

Blue:  I guess that doesn’t really make sense, does it.  Even though this 
was oddly shaped and curved up here, it would have the same amount 
of flux as the square… down here.  So, what I got out of that was that 
the flux could be projected into a nice area even if it was an oddly 
shaped surface on the outside. So I was kind of trying to use that here.  
… because, this flat surface would be hard to describe in cylindrical 
coordinates … I was trying to apply what Professor Plum said in class 
and what I kind of remember to this problem. 

 

Blue’s understanding of flux is in large part intuitive.  While this allows him 

to make many true statements about the nature of flux and helps him to identify 

simplifications in the problem, it does not provide him with a means for making 

quantitative statements.  His explanation in this case is based on a picture he 

remembers from class.  Strangely, the picture he remembers lacks any reference to 

field lines or vectors.   

Before she solved the problem using Gauss’s Law, Shedder had similar 

difficulties trying to justify equating the flat side to an arced side.  
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Shedder:  I didn’t think, in the beginning… I thought that the field lines 
would depend upon the radius…because, I didn’t think that they would 
be as dense.  But then, the number of field lines coming through would 
be the same for the angle that was cause, either having this flat surface 
or the curved surface.  It’s just.  No, I guess that wouldn’t.    But then 
you would have more surface area.  So, I guess I can’t do that.   

Interviewer:  Explain that again please. 

Shedder:  The flux is equal to the amount of field coming through the 
surface.  I’m looking… the number of field lines coming out of this 
surface (indicating the surface opposite the charge in her 3-D drawing) 
would be equal to the number of field lines coming out of this surface 
(indicating the cylindrical arch surface bounded by the surface opposite 
the charge in her 3-D drawing) if I didn’t take the radius into account.  
Being different from here (indicating a radial line along one edge of the 
triangular tube) than it would be to here (indicating a radial line 
bisecting the triangular tube)  I’d have more surface, but the same 
amount of field lines. 

 

These two excerpts illustrate the difficulties students had with field lines.  

These excerpts illustrate attempts to justify their proposal that the flux through an 

arced surface subtending the same angle was equal to the flux through the flat 

surface they were given.  In each of these instances, the subjects relied heavily on 

the concept of field lines to draw these conclusions.  In the end however, these field 

line models failed since they did not yield to quantitative analysis and were not 

well connected to the students’ other models of flux. 

While the utility of field lines is certainly limited (Wolf, Van Hook & Weeks, 

1996), these interviews indicate that field lines are not entirely useless.  In 

particular, field lines are a simple way to illustrate the basic principles of Gauss’s 

Law and provide a framework for explaining charges as sources and sinks for the 

electric field.  Unfortunately, any extension of the field line model beyond these 

limited applications is fraught with obstacles.  According to Wolf, Van Hook and 

Weeks, there is no self-consistent, quantitative model of field lines.  Moreover, 

field lines cannot be simply connected to a symbolic representation.  That is, the 

process of drawing an individual field line from the equation for the electric field is 

quite complex.  In contrast, any electric field vector can be drawn simply by 
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determining the field magnitude and direction from the equation for electric field 

and drawing the corresponding arrow.  

Still, the concept of field lines is presented in most introductory courses and 

is already in the minds of many of our students.  Six of the 15 students in this study 

mentioned field lines explicitly in either their definition of flux or their problem 

solution.  Another four of the subjects used field lines in one or more of the 

drawings in their interview.  Prior to this study, each of the subjects was engaged in 

a three-week course on static vector fields.  Even though this course utilized the 

field vector model almost exclusively, two-thirds of the subjects used field lines as 

part of their solution. 

7.4.3.3 Incomplete and Incorrect Models of Flux 

Subjects in the low performance group utilized a variety of incomplete and 

incorrect models of flux.  Garfield and Scooby both had models of flux based on 

fluid flow.  In each of these interviews, the subjects mention the amount of 

substance that passes through an area per unit time.  The following two excerpts 

from Garfield’s and Scooby’s explanations of flux illustrate this. 

Garfield:  Flux is the amount of flow that passes through a given area over 
a specific amount of time.  Can I use a picture? 

Interviewer:  Do whatever you need. 

Garfield:  It’s… Say this is like a ring in a pipe. (drawing a ring with 
arrows through it.   It’s the amount of water that flows through this in a 
given amount of time.  That’s what my understanding of flux is. 
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Here Scooby tries to use her model of flux to calculate the flux through the surfaces 

of the triangular tube.  When she is faced with a difficulty, she refers to a 

description of flux presented to her by a graduate teaching assistant, Shaggy. 

Scooby:  To get the flux through, you need to know how much of the 
electric field is going through here (motioning upward)… going 
through…  

Scooby:  If it’s going in the r̂  direction, out this way (indicating away 
from the string in the model)  It’s moving in this direction.  It’s not 
going up at all.  There is no flux…no electric field going up, so I can’t 
integrate…  That’s not what I’m concerned about.  I need the flux this 
way, because that’s the way it’s moving.  Because the flux… the best 
analogy I got was from Shaggy (a GTA) when he said that flux is like 
when you are driving your car and it is raining.  When you speed up, 
more rain hits your car window.  When you are stopped it is not going 
through there as much.  So if I’m going this … if it’s going in the r̂  
direction, this is the way, I want to go for the flux.  Right? 

 

This example demonstrates the lack of coherence in Scooby’s model of flux.  As 

she solves the problem, Scooby utilizes a model of flux that is by all accounts 

similar to the TFTS (Total Flux Through the Surface) model used by most of the 

students in the middle and high performance categories.  However, when she is 

stumped she reverts to this rain model and its associated flow analogy. 

Scooby:  Flux is the amount of stuff that passes through a surface per unit 
of time.  Right? 

 

Interestingly, near the end of her interview, Scooby is able to reason her way out of 

this time-flow representation of flux. 

Scooby:  But I don’t have a unit of time.   I don’t have a unit of time 
obviously.  It’s just the amount of the electric field that passes through 
this surface.    

 

Sirius’s explanation of flux also showed serious inconsistencies in his model 

of flux.  In his explanation, he uses field lines and field vectors interchangeably. 

Sirius:  (Flux) is the measure of how much… how many electric field 
vectors enter a region compared  to how many are pointing out of it… 
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Interviewer:  You said how many vectors.  You said how many electric 
field vectors.  What determines…How do you find out how many 
electric field vectors? 

 Sirius:  You draw consistent umm… You draw field lines in a way that is 
consistent so that … Since the electric field is stronger down on the 
line, the electric field vectors would be larger down there (drawing a 
large arrow from the charge upward) than up here (drawing a smaller 
arrow farther from the charge) 

 

 

This confusion between field lines and field vectors is prevalent throughout Sirius’s 

problem solution as well as in his explanation of flux.  In addition to these 

difficulties, Sirius also does not carefully define the region over which flux is 

calculated.  Throughout the interview, he discusses flux through both a surface and 

a volume.  His difficulties may result from confusing the flux through a closed 

surface (Gauss’s Law) and the flux through a single surface.   

Finally, Jerry presented the most pathological description of flux seen in 

any of the interviews. 

Jerry:  Without contemplating it for a half an hour I would say that flux 
would be described as the varying of a… In this case it would be the 
varying of the field within a certain place like a surface…within a 
certain area.  The flux would be the difference between them, the 
variance. 

Interviewer:  Explain that again? 

Jerry:  As you can tell I don’t explain this very often.  Say you have a 
surface and you have a field going through it.  Flux would be the 
varying of that field through that surface or on that surface.  The 
different varyings of it. 

 

Strangely, Jerry was able to make elaborate calculations of the flux through the 

triangular tube.  Jerry was the only student in the sample to present a solution that 

involved flux through all three sides of the triangular tube.  The randomness of his 
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solution in conjunction with this definition of flux suggests that Jerry did not think 

much about flux before this interview. 

While each of these incomplete models was only utilized by one or two 

student in the sample, they illustrate some of the misconceptions and confusions 

that students encounter with the concept of flux.   
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Chapter 8 Discussion 

In this chapter, we tie together the results from the three studies presented in 

this thesis.  We discuss the results and conclusions dealing with visualization and 

construction in problem solving.  Then, we summarize our findings with regard to 

junior physics majors models of flux and concepts of electric field.  We also 

address the relevant findings regarding the transition defined in Section 3.3.  

Finally, we provide a summary of the hypotheses and recommendations that have 

resulted from the studies presented in this document. 

8.1 The Role of Visualization in Problem Solving 

In Chapters 6 and 7 we saw that visualization played a part in every student’s 

problem solving.  At first glance, this seems to contrast the results of Chapter 4, 

which suggest that performance in physics classes is independent of spatial ability 

as measured by the Purdue Spatial Visualization Test.  However, a more careful 

examination of these results tells a different story.  First, the average PSVT scores 

of the subjects interviewed was very high, greater than 31 out of 36 for both the 

preliminary and final interview samples.  In addition, the spread in these scores was 

very low.  This suggests that the spatial abilities of the students in this study are 

quite high, and that the spread in their spatial abilities is quite low.  In this light, the 

results of Chapter 4 really tell us that the spread in spatial ability among the 

students in that study did not account for very much of the spread in their grades.  

This is not surprising considering that the spread in spatial ability was so small. 

Hypothesis 1:  The three dimensional spatial ability of junior physics majors is 

very high and the variation in spatial ability is small. 
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Data from the interviews in Chapters 6 and 7 clearly show that visualization 

is an integral part of students problem solving.  It is also clear that students’ use of 

visualization in problem solving is deeply connected to the non-visual aspects of 

their problem solving.  It appears that images are often a central part of students 

understanding.  Two-thirds of the students in the final interview sample used one or 

more pictures in their explanation of flux.  All of the subjects interviewed used 

images in their problem solutions, but many of them experienced difficulty doing 

so. 

Teachers often assume students know how to use the visual representations 

presented in lecture and in the text.  The data presented here suggest that this 

assumptions is invalid.  In particular, we have seen that students often have 

difficulty constructing/recalling information that we consider trivial.  We have also 

seen that students have difficulty incorporating visual representations associated 

with Gauss’s Law and field lines into their model of flux.  Several of the students 

exhibited difficulty understanding the limitations of the field line representation, 

while others were unable to muster the simplest Gauss’s Law arguments to simplify 

their problem solution.  Clearly, more research needs to be done in order to 

improve our understanding of how students incorporate visual representations into 

their models of physical systems.   

In Section 7.4.2.1 we saw two excerpts in which students used extended 

thinking processes to achieve what experienced physicists might consider trivial 

conclusions.  In each case the student experienced difficulty translating between 

visual and symbolic representations.  While based on only two instances, it is 

reasonable to conjecture that student difficulty in translating between visual and 

symbolic representations is responsible for a significant part of the problems 

students encountered during the interviews described in Chapter 7. 

Hypothesis 2:  Many junior physics majors have difficulty translating between 

visual and mathematical representations associated with complex 

physical phenomena.  In particular, they struggle to draw explicit 
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connections between standard visual representations and equations 

in electrostatics. 

It would be interesting to test this hypothesis in a future study.  It would also 

be worthwhile to explore how this varies with subjects’ problem solving 

experience.  This could be achieved by comparing junior physics majors’ ability to 

translate between visual and symbolic representations with that of professional 

physicists.  However, we could obtain more relevant data by conducting a 

longitudinal study in which we track students as they progress from novice to 

expert problem solvers. 

In addition to these translation studies, we would like to explore the particular 

representations that students use in more detail.  The present study is limited 

because we did not ask students specific questions about their visualization, but 

instead gave them the freedom to tell us what they chose with minimal direct 

questioning.  Consequently, we only have access to the information that students 

thought was valuable or that they thought the interviewer would be interested in.  

More directed questions about what visual representations the subjects were using 

would likely provide more information about the particular visual representations 

they have in their minds.  We envision conducting interviews similar to those 

described in Chapters 6 and 7, but directly probing students about the visual 

representations they use; asking them if they have any pictures in their minds as 

they are working through the problem and asking them to describe these mental 

pictures.  Conducting study with the interview question used in Chapter 7 would 

allow us to use the current study as a check to see if the more direct questioning 

had a significant impact on students’ problem solving behaviors. 

One method for combating the difficulties students experience translating 

between representation is to engage them in activities in which they explicitly draw 

connections between various respresentations.  For example, a simple activity 

might involve presenting the three representations of flux shown in Figure 8.1.  

One could then break the students into small groups and ask each group to identify 
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the connections between a pair of these representations.  The groups would then 

draw an arrow representing each connection.  Finally, students would present and 

explain the connections they identified in a class discussion. 

1.  Flux is the total amount of electric field through a given area.

E daΦ = ⋅∫2.

da

E
E da⋅

3.

 

Figure 8.1 - Three representations of electric flux. 

8.2 Construction in Problem Solving 

In Section 7.4.2 we describe our observations of the construction-checking 

behavior exhibited in these interviews.  We found that a common method for 

acquiring needed information while problem solving was to use several pieces of 

known information to construct another piece.  This process took many forms from 

building an equation out of known properties to construction of differential area 

elements from a recalled picture.  Students in the high and middle performance 

groups used this technique with some effectiveness.  Subjects in the low 
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performance group tended to make more incorrect statements.  In addition, these 

subjects made fewer checking and construction statements.   

Hypothesis 3:  When dealing with complex physical concepts, junior physics 

majors often employ a process of construction to recall/reconstruct 

important details of the relevant physical models.  

The observations made in this study were, however, only formative.  A more 

complete study exploring students’ ability and tendency to draw conclusions and 

check these conclusions would provide a clearer picture of how these abilities 

varied over our population.  It would be particularly interesting to examine the 

differences between expert and novice problem solvers in this respect. 

The checking-construction process was also seen to have several variations.  

In Section 7.4.2.1 we saw that in some instances, students constructed quantitative 

conclusions from qualitative properties, while in others they recalled equations 

from which they then extracted qualitative properties.  Studying the extent to which 

each of these strategies is used by experts and novices may provide some useful 

insight into the differences between them.  

We saw in Section 7.4.2.2 that some tasks we might view as simple recall 

require more labored thinking for our students.  In particular, the examples 

presented there illustrate that in some instances students go through a laborious 

process to construct seemingly trivial pieces of information from even simpler 

elements.  This behavior is reminiscent of the behavior of novice problem solvers 

observed by Larkin (1979).  In that study, it was found that the novice problem 

solver verbalized her thinking process almost continuously while the expert 

mentioned only the results of calculations.  The authors argued that the novice had 

to reason through every step of the problem solution while the expert could perform 

certain procedures automatically.  Still, the fact that subjects in this study 

sometimes used construction to rebuild nontrivial images and equations indicates 



 
 

 

113 

that these students have developed knowledge structures that are more advanced 

and connected than the simple fact lists common to novice physics students. 

Hypothesis 4:  Explicit construction activities, like those described above, are and 

essential part of students’ development from novice to expert 

problem solvers. 

This strikingly common construction process is undoubtedly more time 

consuming and more mentally taxing.  This result has significant implications with 

respect to the lecture format of most upper-division classes.  In particular, since 

most lecture based classes move quickly through material, it is often difficult for 

students to process lecture information in a productive way.  Turtle summed it up in 

her interview when she noted of a lecture class that, “It made sense watching him 

draw the conclusions, but it’s things I probably would have run across on my own 

and stopped and thought about,” however, “in lecture it just keeps going.”  Turtle’s 

comment suggests that students recognize the advantages of being able to think 

through the material rather than struggling to keep up.  One possible solution to this 

problem is to increase the degree of student control in the classroom.  A common 

method for achieving this is with student-centered activities like small group 

activities or integrated labs. 

Unfortunately, time constraints make it impractical to cover all course 

materials in student-centered activities.  However, it may be worthwhile to use this 

type of activity to improve students’ understanding of key concepts.  The results 

described above suggest that students may have particular difficulty constructing 

conclusions and drawing connections in the fast paced environment of the lecture.  

Therefore, it may be particularly effective to use these activities when students are 

supposed to draw connections or learn the reasoning behind conclusions.   

One could study the effectiveness of such an activity by observing students as 

they participated in the activity and conducting brief interviews to determine the 

extent to which subjects incorporated these connections into their model for flux.   
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8.3 Students’ Models of Electric Flux 

In Section 7.4.3, we described our observations of students understanding of 

flux in the final interviews.  We found that all of the students in the high and 

middle performance groups had an essentially complete model of flux.  Still, only 

two students were able to successfully simplify the problem using Gauss’s Law.  

This suggests that the ideas associated with Gauss’s Law are not thoroughly 

incorporated into students’ models of flux.   

Hypothesis 5:  Many junior physics majors do not spontaneously connect the ideas 

of flux and Gauss’s Law when solving problems. 

Since the primary use of electric flux in an electrostatics course is in the 

application of Gauss’s Law, it is essential that students make this connection.  It 

may be useful to explicitly emphasize the connection between Gauss’s Law and 

flux.  Focusing on the role of Gauss’s Law as a simplification technique in problem 

solving may encourage students to utilize Gauss’s Law beyond the solutions to 

standard problems (i.e., finding the electric field outside of highly symmetric 

shapes).  A particularly effective strategy might be to give students the opportunity 

to work through a problem similar to the one used in the Chapter 7 interviews with 

the aid of an instructor.  By directing students to make explicit simplification 

arguments, like those outlined in Solution 1 of the Appendix, an instructor can 

force students to reason through simplification arguments based on Gauss’s Law. 

We found, in Section 7.4.3.3, that all students in the low performance group 

had either incorrect models of flux or serious deficiencies in their models.  A full 

one-third of the subjects interviewed fell in to this category.  Therefore, teachers 

should not be surprised to find that some of their students have erroneous models of 

flux.  Among the five people who had erroneous flux models, we identified four 

distinct misconceptions.  It would not be feasible for an instructor to try to address 

each of these misconceptions in class.  However, by being aware that these are still 
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common at the upper-division, instructors may be able to identify these pathologies 

and address them one-on-one in office hours.   

8.4 What to do About Field Lines 

In Section 7.4.3.2 we draw a connection between students’ use of field lines 

and their difficulties applying Gauss’s Law to flux problem.  In particular, we 

found that while the students were recently engaged in a course that used the 

electric field vector representation almost exclusively, most of them persisted in 

using electric field lines to some extent in their solutions.  We found that several of 

the students used electric field vectors and electric field lines interchangeably and 

that others clearly confused the two concepts.  Data from our interviews suggest 

that students do not clearly delineate between the electric field vector and the 

electric field line models.   

Hypothesis 6:  Many junior physics majors do not properly distinguish between the 

field vector and field line representations of electric field. 

The difficulties associated with electric field lines have been addressed in the 

literature (Herrmann, Hauptmann, & Suleder, 2000; Törnkvist, Pettersson, & 

Tranströmer, 1993; Wolf, Van Hook, & Weeks, 1996); however, teachers continue 

to use this formalism.  We argue in Section 7.4.3.2 that field lines have no simple 

quantitative representation.  We do not argue, however, that they have no value.  

On the contrary, field lines can be a particularly useful part of our model since they 

emphasize the role of sources in the concept of electric field.  Field lines are 

particularly useful when making qualitative arguments about the flux through a 

region.  The common pictures (See Figure 8.2) used in the formulation of the 

integral formulation of Gauss’ Law are very powerful.  Several students included 

these pictures in their explanation of flux. 



 
 

 

116 

 

Figure 8.2 - Field line diagrams commonly used in the introduction of the 
integral formulation of Gauss's Law. 

Whether or not we think they are useful, field lines are part of students’ 

understanding of electric field.  These electric field line diagrams seem to be very 

robust.  That is, some students remember these images long after they have 

forgotten the equations for flux and Gauss’s Law.  Thus, the question is not how to 

eradicate field line diagrams from our students’ minds, but how to incorporate the 

concept of field lines appropriately into students’ models of electric field. 

We propose that this might be achieved by having students observe the 

properties of field vectors and field lines simultaneously.  We feel that it is 

important to include both field vectors and field lines in an upper-division 

introduction to electrostatics, since students have already seen the field line model 

in the lower division.  If we introduce field vectors as if they are the only 

representation then it is easy for students to confuse the new model of field vectors 

with their previous model of field lines.  We believe that it will also be important to 

directly contrast the differences between the two models and to emphasize the fact 

that these are only models of electric field and that each have certain advantages 

and disadvantages.   

A simple activity that would allow students to identify some of these 

advantages and disadvantages would be to divide the class into groups.  Give each 

group a simple charge distribution, for example three pairs of charges, one with two 
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equal positive charges, one with two equal negative charges and one with equal but 

opposite charges.  Each group would be given a piece of graph paper on which they 

would draw their charge distribution and the resulting electric field.  Half of the 

class would be assigned to draw representative field vectors, while the other half of 

the class would draw representative field lines.  Prior to the activity, subjects would 

be given procedures for constructing both field vectors and field lines.  After the 

students have completed their representations of the electric field, they would be 

asked to use their diagrams to estimate the magnitude and direction of the electric 

field at several points chosen by the instructor.  Finally, students would calculate 

the magnitude and direction of the field at these points and compare to their 

estimates.  Students would then present their results to the class.  Several important 

issues are addressed by this type of activity.  First, students learn that the methods 

for constructing field lines and field vectors are very different.  Second, when they 

make their estimates of the field based on their diagrams, students using field line 

diagrams will find that it is very difficult to make a quantitative estimate of the 

magnitude of the electric field with field line diagrams.  Finally, in the class 

discussion students will participate in a direct comparison of the field line and field 

vector models.   

It would be very interesting to test this or a similar exercise in class to see if it 

significantly affected students understanding of the relationship between field lines 

and field vectors.  In particular, it would be valuable to identify exercises that 

would help students recognize the superiority of the field vector model while still 

indicating the value of field line diagrams. 

8.5 The Transition from Novice to Professional   

We mentioned in Chapter 1 that visual/qualitative problem solving strategies 

are an important ingredient in students’ transition from novice to professional 

physicist.  The models we developed in Chapters 6 and 7 will serve as a framework 
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for examining problem solving in this transition.  However, before we can begin to 

examine this transition, we, first, need to develop a clear description of the problem 

solving characteristics of incoming junior physics majors.  

In Section 2.5 we outline several characteristics identified in the literature 

that differentiate between the problem-solving behaviors of experts and novices.  

An important step in describing the problem solving of incoming juniors will be to 

compare their problem solving characteristics to the characteristics of novices and 

experts described in the literature.  A rough characterization of student problem 

solving behaviors from the interviews described in Chapters 6 and 7 suggests that 

the subjects use a variety of problem solving techniques, some of which correspond 

to novice problem solving behaviors and some of which correspond to expert 

problem solving behaviors. 

Hypothesis 7:  Junior physics majors’ use some combination of novice and expert 

problem solving techniques as opposed to a unique set of 

transitional problem solving techniques. 

In order to realize a good characterization, however, we would need to 

conduct another study involving both junior physics majors and expert physicists.  

Each group would be interviewed as they solved several problems.  Ideally, the 

problems used would be similar in complexity to those used in this study.  In 

addition, the ideal study would involve a sample at least the size of the one used 

here.  However, realizing this study would require a huge time commitment on the 

parts of both the researchers and the subjects.  A more realistic study would involve 

fewer subjects and shorter problems.  The transcripts obtained from the juniors 

would be compared to those of the experts as well as to the existing literature, to 

characterize the extent to which they resemble experts and novices.   

This type of study will allow us to answer a variety of questions about our 

students’ problem-solving characteristics.  We will be able to draw comparisons 

between the problem solving behaviors of our students and those of professional 
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physicists.  In addition, we will be able to address questions about their use of 

visualization in problem solving.  

The answers to these questions will help us to better understand the ways that 

incoming students make the transition from novice to expert physicists.  Ultimately, 

however, the most effective strategy for understanding this transition will require a 

longitudinal study investigating how individual students change over the course of 

their junior and senior year.   

8.6 Closing 

Looking back on my experience as an undergraduate physics student, I 

realize that the way I thought about physics and indeed the world, changed 

fundamentally between my introductory courses and graduation.  Initially, I only 

thought about physics in class and while I worked on homework.  Like many 

students, I tried to finish my homework in the quickest way possible.  By the time I 

graduated with my physics degree, I saw physics everywhere.  To this day, I still 

wonder how my perspective changed so dramatically.  In many ways, the study 

contained here was motivated by my own desire to understand how one could 

develop such a drastically different view of the world in only a few short years 

As a teaching assistant in the Paradigms in Physics program I saw other 

students go through a similar metamorphosis.  Corrine Manogue, my thesis advisor, 

gave this period of rapid change a name, the junior year transition.  The longer I 

worked with students in the Paradigms, the more I became interested in exploring 

how students make this transition.  Developing a complete understanding of this 

transition was clearly too big a task for a single Ph.D. thesis, so I focused my 

efforts on understanding how students used visualization in problem solving.  Over 

the course of the three studies that make up this thesis, it became clear that 

students’ use of visualization was not isolated, but instead was interwoven with 

other aspects of their problem solving behavior. 
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Two key features of this mixing between visual and non-visual in students’ 

problem solving have emerged from the studies presented here. First, the fact that 

students engaged in construction/checking procedures to recall information 

suggests that they are building sophisticated knowledge structures rather than 

relying simply on fact recall.  What is really interesting is that these construction 

procedures involve a mixture of visual, symbolic, and verbal representations.  The 

second instance in which students’ mixed visual and non-visual elements occurred 

when they translate between representations. Translation between images and 

equations was already an integral part of the problem solving method for many of 

the students interviewed.  While they did not always translate successfully, they did 

attempt to make connections between visual and symbolic representation of the 

problem.  These two observations illustrate the natural tendency of students to draw 

connections between various representations while learning. 

Even though many of the students interviewed were not able to solve the 

problem presented to them, they drew together a variety of models and 

representations in their attempt.  It is, in fact, these failed attempts that indicate a 

transition is occurring.  Casual observation of professional physicists reveals that 

their understanding of a physical system stems from their facility with and ability to 

connect multiple representations of the system.  This is not necessarily the case 

with introductory physics students.  I can remember a time when I wanted to know 

the one right way of thinking about things.  It was only later that I recognized the 

power of exploring a single physical system in a variety of representations.  It is not 

uncommon for introductory students to want to learn only a single method for 

solving problems in physics.  In contrast to this, students in nearly every interview 

in this study made an attempt to solve their problem utilizing a combination of 

representations for the electric field.  This clearly suggests that their problem 

solving strategies have evolved beyond that of the average introductory student.   

When do students begin to see the importance of multiple representations in 

understanding?  How does this change in perception affect other aspects of the 

transition from novice to professional physicist?  What can teachers do to 
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encourage students to utilize and connect multiple representations in physics?  

These questions will lead my research as I go on to explore the ways that students 

change over the course of the upper division physics major. 
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Appendix Problem Solutions 

The Problem 

An infinitely long line charge generates an electric 

field
0

1 ˆ
2

E r
r

λ
πε

=  where λ is the uniform linear charge density and r is 

the distance from the line charge.  The orange thread along the edge 

of the model represents this infinitely long line charge. Find the flux 

of electric field through the entire surface represented by the model. 

 

 

Solution 1 

The electric flux can be written 

 
S

E daΦ = ⋅∫  (A.1) 

 

Where the integral is taken over the surface of interest, E  is the electric field 

and da  is the differential area element associated with the surface over which the 

integral is taken. 

In this case, the surface we are integrating over is the triangular surface 

defined by the paper model. We can break this surface up into three sides as shown, 

find the flux through each side independently and add the individual fluxes together 

to find the total flux. 
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Since the electric field E  and the differential area element da  are 

perpendicular, the quantity E da⋅  is zero and the flux through the sides of the 

surface adjacent to the line of electric charge (sides 1 and 2) is zero. 

Thus, the problem reduces to finding the flux through the side opposite the 

charge (Surface 3). Using Gauss’s Law, we can show that the flux through Surface 

3 is equivalent to the flux through an arced surface sharing two edges with surface 

3. This surface is shown below. 

 

1 2 

3 

1 

2 

3 
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To show that the flux through the arced surface and surface 3 are equal, we 

will define a Gaussian surface by these two surfaces and flat end caps.  As shown 

below.   

 

Thus the total flux through this Gaussian (closed) surface is  

 3total arc endcapsΦ = Φ + Φ + Φ  (A.2) 

But the total flux is zero from Gauss’s Law since no charge is enclosed in the 

Gaussian surface.  Since the field points only in the radial direction, the field is 

parallel to the end caps and the flux through the end caps ( )endcapsΦ  is zero.  Thus, 

the magnitude of the flux through surface 3 and the flux through the arced surface 

are equal  

 

3

3

3

0total arc

arc

arc

Φ = = Φ + Φ
Φ = −Φ

Φ = Φ

 (A.3) 
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Note: The flux of surface 3 and the arced surface differ by a minus sign 

because the flux of electric field is into the Gaussian surface for surface 3 and out 

of the Gaussian surface for the arced surface. 

 

The flux through the arced surface can be found by simple integration in 

spherical coordinates. 

 
3

0 0

ˆ
L

arc

E da E rd dzr

π

φΦ = ⋅ = ⋅∫ ∫ ∫  (A.4) 

Where L is the length of the triangular tube (and thus the length of the arced 

surface) and the φ  variable is integrated from zero to 
3
π  because the arc subtends 

an angle of 60 .  In this case, we have substituted the differential area element for 

the arced surface ( ˆda rd dzrφ= ) into the integral.  Next, we substitute the given 

value of the electric field, simplify and evaluate the integral. 
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3
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rd dz
r
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π

π
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λ φ
πε

λ φ
πε

λ φ
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λ π
πε

λ
ε

Φ = ⋅

=

=

=

Φ =

∫ ∫

∫ ∫

∫ ∫

∫

 (A.5) 
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Solution 2 

A simpler alternative to Solution 1 is to simply argue that the surface defined 

in the problem subtends one sixth of a cylinder as shown below. 

 

The flux through the surface defined in the problem is then one sixth of the 

total flux through the cylinder. It is then possible to calculate the flux through the 

cylinder with Gauss Law.  

 
0

enc
S S

QE da
ε

Φ = ⋅ =∫  (A.6) 

The charge enclosed in the cylinder is just λ  times the length of the cylinder 

(L). Since the electric field is parallel to the end caps, no flux passes through them 

and the total flux through the triangular surface defined in the problem statement is  
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∆

Φ
Φ = =
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 (A.7) 


