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Abstract

Calculus as commonly taught describes certain properties of smooth functions, but

science relies on experimental data, which is inherently discrete. In the face of this dis-

parity, how can we help students transition from lower-division mathematics courses to

upper-division coursework in other STEM disciplines? We discuss here our efforts to

address this issue for upper-division physics majors by introducing a new representa-

tion for derivatives in terms of experiments to go along with the traditional symbolic,

graphical, verbal, and numerical representations, and by emphasizing infinitesimal rea-

soning through the use of differentials. Our focus in this paper is on both ordinary

and partial derivatives, where these ideas culminate in the concept of thick derivatives.

By providing examples of “physics” reasoning about derivatives, and methods for in-

corporating such reasoning into the classroom, we hope to give instructors of calculus

new insight into the needs of many of their students.
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1 Introduction

We are an interdisciplinary team of mathematics and physics educators, with backgrounds
in mathematics, theoretical and computational physics, and physics education. We have
worked together for many years designing curricula at the “middle-division” level, consisting
of second-year calculus and third-year physics courses [1, 20, 25].

Paraphrasing Winston Churchill, we like to describe mathematics and physics as two
disciplines separated by a common language. Calculus is about functions, but the language
of functions is not always a good match for the description of physical quantities. Physics
describes the real world by finding relationships between these quantities. Theoretical de-
scriptions must always be compatible with observation, that is, with experimental data. The
smooth functions used as the starting point in calculus are instead, for most other scientists
and engineers, the result of an idealization process that started with observation. Idealization
is a powerful tool, but one should not lose sight of where the process began.

For many years, we have attempted to address this disparity in our own teaching by
emphasizing geometric reasoning, in addition to symbolic manipulation [6, 9, 11]. We have
argued [6] that mathematicians emphasize the symbolic manipulation of functions, whereas
physicists care more about the equations relating physical quantities. Temperature may be
expressed by different functions in rectangular and polar coordinates, but these functions
represent the same physical quantity, opening the door to a dispute [4,8,16,21] over whether
both of these functions can be called “T .” Mathematicians and physicists may share a
common vocabulary, but they do not use the same grammar.

Such minor disputes over language reflect a deeper difference in viewpoint which we like
to characterize by saying that Physicists do geometry, but Mathematicians teach algebra.
Geometry is the study of invariant objects, whose algebraic description might involve a
choice of coordinates; both geometers and physicists have a notion of temperature T defined
at a point that is more fundamental than any coordinate description.

Such reasoning led us to emphasize differentials in both our calculus and physics courses,
rather than functions [2, 11]. This approach appears to work very well in multivariable
and vector calculus, with students seeing differentiation and integration for the second time
(although we have not yet had similar success with beginning students). As part of our
geometric approach to multivariable calculus, we also utilize the plastic, writable surfaces
developed by Aaron Wangberg [26,27] and shown in Figure 1, which engage students directly
with both geometric and numerical representations of derivatives.

More recently, as we watched students struggle to apply these geometric ideas to upper-
division physics classes such as thermodynamics, we were struck by the mismatch between
the smooth functions analyzed in calculus and the experimental data collected in physics.
As a result, we have argued [22] that the experimental context is not the same as the
“numerical representation” as most mathematicians understand that term, such as in the
“rule of four” [19].

We present in this paper a view of derivatives, both ordinary and partial, that emphasizes
not only the geometric reasoning skills we have long advocated but also the experimental
understanding used by physicists. We now see infinitesimal reasoning as the final step in
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Figure 1: One of the transparent plastic surface models developed by Aaron Wangberg at
Winona State University as part of the Surfaces project. Each of the six color-coded surfaces
is dry-erasable, as are the matching contour maps, one of which is visible underneath the
surface. For further details, see [26, 27].

a sequence of idealizations. Science begins with experiment, which in turn involves mea-

surement. To understand calculus in terms of measurements, one needs a notion of good
approximation, and in particular a notion of what we call thick derivatives that can encom-
pass “experimental” differentiation. Infinitesimal reasoning is then an idealized process for
manipulating these thick derivatives symbolically. Although our own expertise lies at the
transition from lower-division mathematics to upper-division physics, we believe these skills
are also essential for most scientists and engineers. The discussion below is intended to give
instructors of calculus new insight into the needs of many of their students.

2 Mathematics vs. Physics

As we have pointed out before [7], Physics is about things. Physics always has a context;
the quantities being studied refer to real attributes of real objects. Symbols always mean
something: x is typically a length; t a time. Physicists are, by necessity, bilingual, but
“sin(x)” is an expression only a mathematician could love, since you can’t take sine of
a dimensionful quantity. Units matter; a pendulum will be described by terms such as
A sin(ωt), where ω has the dimensions of inverse time. Such parameters are ubiquitous in
science—and glaring by their omission in the problems in most math texts.

We like to ask our students, “What sort of a beast is it?” referring to the nature of
the physical quantities being represented by algebraic symbols. Not only does this question
help students get the units right, a technique known as dimensional analysis, it also catches
obvious but common errors such as setting vectors equal to scalars, or comparing finite
quantities with infinitesimals.

Furthermore, scientists must deal with the world as it is. All scientific knowledge is
obtained or verified using experimental data. Such data usually consists of discrete data
points; there are no smooth functions in the real world. This assertion is literally true even
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Figure 2: The Partial Derivatives Machine, designed by David Roundy at Oregon State
University. In this mechanical analog of a thermodynamic system, the variables are the
two string positions (the flags) and the tensions in the strings (the weights). However, it is
not obvious how many independent variables there are, and which variables are considered
independent depends on the context. For further details, see [23].

in theory: Quantum mechanics tells us that there is no sense in which we can actually take a
limit to zero. Physicists are, however, masters of approximation, knowing in a given context

which assumptions are reasonable, and which are not.
These differences in perspective between mathematicians and other scientists have sig-

nificant implications for the teaching of mathematics at all levels. The most obvious is
to include units—and dimensionful parameters—as a routine part of examples and prob-
lems. Another is to downplay the use of subtle counterexamples. Scientists never encounter
nowhere-differentiable functions, nor do the coordinate singularities at the origin of polar
coordinates cause much harm. Are the functions x+2 and x2

−4
x−2

really different? In a physical
context where such differences matter, something will always signal this fact, such as the
presence of a point charge or an infinite potential; otherwise, they can be safely ignored. The
context of the real world provides an existence proof that eliminates most of the concerns
about counterexamples.

The calculus reform movement of the 1980s emphasized the importance of multiple rep-
resentations, but most mathematicians are still more inclined to emphasize symbolic and,
perhaps, graphical representations than numerical representations. There is also an impor-
tant difference between, say, a numerical analysis of roundoff error, and the measurement
error inherent in experiments. We explore these ideas in the next two sections.

3 What is a Derivative?

Ask calculus students what a derivative is, and a common response will be “slope” [12]. Yes,
the slope of a graph represents a derivative. But what if there’s no graph?

Consider the apparatus shown in Figure 2, the Partial Derivatives Machine developed
as a mechanical analog to problems in thermodynamics and intended to help students learn
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to reason about partial derivatives in a context where the functional dependencies between
variables is not obvious. By pinning down one of the strings, we obtain the Derivatives

Machine, consisting of a weight on a string connected to a nonlinear spring system, thus
determining a relationship between the position x of the string (the location of the flag)
and the tension Fx in the string (the attached weight). Given the task of determining the
derivative of this position with respect to the tension, what can possibly be meant by such
a “derivative?”

In a recent study [23], we asked faculty in mathematics, physics, and engineering to
determine an analogous (partial) derivative using the Partial Derivatives Machine. The
only viable method for determining such derivatives is to measure both quantities while
perturbing one of them—and while holding an appropriate subset of the other variables fixed.
The physicists and engineers were clearly familiar with this methodology, and had robust
techniques for ensuring that their approximations were reasonable. The mathematicians,
however, had difficulty engaging with the idea of a derivative that could not be obtained by
an exact limit process.

So what is a derivative? A ratio of small changes in quantities? A ratio of very small
changes in quantities? The slope of the tangent line is the limit of the slopes of secant lines.
How does one take the limit of discrete, numerical data, such as that measured during an
experiment?

Mathematicians have a “bright line” test when it comes to derivatives. An average rate of
change, no matter how small the domain, is different from an instantaneous rate of change.
This distinction works fine in the case of smooth functions, or graphs, but not very well for
numerical data.

We believe that the bright line is in the wrong place. The most useful distinction is not
whether a rate of change is average or instantaneous, but how good the approximation is. The
quality of the approximation depends on the context; the constraints of the physical problem
being solved usually tell the scientist what accuracy is needed. We don’t want introductory
calculus students to become experts at numerical analysis, but instead to be aware that
such approximations are a fundamental part of doing science. Rather than emphasizing the
difference between instantaneous and average rates of change, we would serve our students
better by emphasizing the need to arrive at answers that are “good enough,” making clear
that this notion depends on the context. For example, the upper left graph in Figure 3 might
be a good approximation to the derivative at the point shown in the graph immediately below,
but a terrible approximation to the derivative at either endpoint of the secant line. Calculus
is not about formal limits, but is rather the art of infinitesimal reasoning, where all that
really matters about infinitesimals is that they are quantities that are “small enough” for
the purpose at hand. To impose a sharp distinction between “average” and “instantaneous”
effectively eliminates both the numerical and physical representations from consideration, as
discussed in the next section.
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Figure 3: An extended framework for the concept of the derivative [22].

4 Thick Derivatives

Fifteen years ago, Zandieh [28] proposed a framework for student understanding of deriva-
tives in single-variable calculus. We recently extended this framework [22], partly in an
effort to include partial derivatives, but mostly to introduce a new numerical representation
appropriate for data, in terms of the ratio of small changes. Our extended framework is
shown in Figure 3. Each of the rows in Figure 3 describes a different process-object layer

in the sense of Sfard’s description [24] of the reification of processes into objects. The first
(ratio) layer describes making a “(good) approximation”; the second (limit) layer describes
taking a limit “at a point”; the third (function) layer describes extending the derivative to
“many points”. For further discussion, see [22].

Each of the columns in Figure 3 describes a different representation; we briefly discuss
each representation in turn. The graphical representation of the derivative is slope, starting
with the slope of a secant line, whose limit is the slope of the tangent line, and then extending
this construction to a continuous domain of values of the independent variable. The verbal
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representation for the derivative is “rate of change,” starting with average rate of change,
then instantaneous rate of change, then recognizing that these rates of change exist at every
point in the domain of the function. The symbolic representation of the derivative is its formal
definition as the limit of a difference quotient, with the last step being the reinterpretation of
the parameter as an independent variable. The numerical representation of the derivative is
a ratio of changes, computed from numerical data, with the limit process being reinterpreted
as the changes being sufficiently small, and the final step again involving the reinterpretation
of the parameter as a variable. Finally, we modified Zandieh’s physical category to represent
the mental process of designing and conducting an experiment which would result in the
desired derivative. The limit process now corresponds to measurements made for nearly
identical values of the parameter, and the reinterpretation as a function now requires “tedious
repetition” to perform the necessary measurements. We follow Zandieh in treating separately
the symbolic manipulations used to calculate derivatives, and include them in a separate
category labeled instrumental understanding.

We emphasize that for physicists the distinction in Figure 3 between the Ratio and Limit
process-object layers is not quite the bright line test between average and instantaneous rates
of change, even though those words appear in the table. In order to include numerical and
physical representations in the Limit layer, we must replace this bright line by some notion
of “small enough.” We have therefore expanded the concept of derivative so as to encompass
both the mathematicians’ intent when taking limits and the scientist’s need to work with
discrete data. We refer to this expanded concept as thick derivatives [3, 22].

5 Differentials

A typical problem in thermodynamics is to determine some partial derivative, say
(

∂M
∂B

)

S
,

from given equations of state that, in this case, express the magnetizationM of some material
and the temperature T in terms of the magnetic field B and entropy S.

This notation for the partial derivative will be unfamiliar to many mathematicians and
most students, with the subscript S indicating a partial derivative with S held fixed. Despite
its unfamiliarity, this notation serves a crucial purpose. A partial derivative operator such as
∂
∂x

is meaningless unless one knows what other variables are being held fixed. This essential
feature of partial differentiation is often under-emphasized in multivariable calculus courses,
where students may come away with the mistaken impression that a partial derivative with
respect to x means that one should “hold everything else fixed.” It may not be possible to
do so! There are four related quantities here, M , B, T , and S, and it is not obvious how
many of them are independent, much less which ones. In this example, any two of these four
quantities could be treated as the independent variables, but it is not physically possible to
vary three of them independently. (The Partial Derivatives Machine discussed in Section 3
is similar; we deliberately do not specify which parameters are independent.)

When we gave a similar problem to several experts during interviews [14, 15], no two of
them approached it the same way. We found three basic strategies, or “epistemic games,”
namely the use of substitution to isolate the independent variables, the use of the many
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partial derivative chain rules to express the desired derivative in terms of others, and the use
of differentials to reduce the problem to one in linear algebra.

Given a consistent system of equations, one often attempts to use some of them (the “con-
straints”) to eliminate “extra” dependent variables, resulting in a single remaining equation
expressing some physical quantity in terms of one or more independent variables. In practice,
however, the constraint equations may not be solvable, and, even if they are, the solutions
may be unwieldy. Working with differentials, by contrast, leads to a set of linear equations
which can always be solved—assuming an appropriate number of constraints.

As we argued in [11], there are (at least) two quite different ways of interpreting differ-
entials. The most common approach is to decide first which variables are independent, and
which are dependent. This use of differentials of functions is equivalent to implicit differ-

entiation, in which, for example, the slope of a circle is found by differentiating both sides
of

x2 + y2 = r2 (1)

with respect to the independent variable, usually x, yielding

2x+ 2y
dy

dx
= 0. (2)

We can, of course, rewrite (2) in terms of differentials, leading to

2x dx+ 2y dy = 0, (3)

which is completely symmetric in x and y. So why did we need to specify the independent
variable(s)? We didn’t!

Start again, and “zap” both sides of (1) with d. Don’t assume anything. The result is

2x dx+ 2y dy = 2r dr, (4)

since we haven’t (yet) assumed that the radius r is constant. Equation (4) therefore tells
us how changes in radius are related to changes in x and/or y. We can recover the slope of
the circle by further assuming r is constant, so that dr = 0, then solving for dy

dx
. The use of

differentials of equations postpones the discussion of dependent and independent variables
until it is needed. This approach allows us to consider both the case where r is a function
of x and y and the case where y is a function of x.

One great advantage of this technique is that the resulting equations, such as (4), al-
ways express linear relationships between differentials. Given a system of equations, their
“zapped” versions can always be reduced using substitution.

One danger of this “use what you know” approach is that it is easy to lose track of what
you know. Systematic substitution of differentials is always possible, but it is nonetheless
easy (and common) to go in circles. A standard approach to help students through this maze
is the use of chain rule diagrams, as shown in Figure 4, which serves as a shorthand reminder
of the needed partial derivatives. The information encoded in such diagrams underlies the
second “game” we observed in experts, namely the use of (often memorized) chain rule
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Figure 4: Shown on the left is the standard chain rule diagram for converting the temper-
ature T in rectangular coordinates (x, y) to polar coordinates (r, φ). The diagram on the
right shows the same situation, expressed in terms of differentials.

identities. In the example described by Figure 4, we consider the temperature T on a plate
in both rectangular and polar coordinates. A standard textbook calculation (see e.g. [19])
shows how to recover the chain rule expression

∂T

∂r
=

∂T

∂x

∂x

∂r
+

∂T

∂y

∂y

∂r
(5)

using the left-hand diagram by thinking of the arrows as representing partial derivatives
and following all possible paths from T to r, multiplying together the partial derivatives
represented by each segment of a given path.

We prefer, however, to rewrite such diagrams in terms of differentials, in which case the
diagram directly represents the linear relationships between the differentials of a given set
of physical quantities. Thus, we replace the first diagram in Figure 4 by the second, which
contains the same information. Using the right-hand diagram, we obtain (5) by comparing
the coefficients in the linear relations

dT =
∂T

∂x
dx+

∂T

∂y
dy =

∂T

∂r
dr +

∂T

∂φ
dφ (6)

together with similar expressions for dx and dy in terms of dr and dφ. These latter expressions
can be evaluated using the known relationship

x = r cosφ =⇒ dx = cosφ dr − r sinφ dφ, (7)

y = r sinφ =⇒ dy = sinφ dr + r cosφ dφ (8)

between rectangular and polar coordinates.
A more complicated situation involving the adiabatic magnetic susceptibility

(

∂M
∂B

)

S
is

shown in Figure 5, in which the functional dependencies are more subtle. In this example,
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Figure 5: The chain rule diagram when changing only one of two variables, in this case ex-
pressing the magnetization M in terms of the magnetic field B and either the temperature T
or the entropy S.

which is worked out in more detail in the Appendix, M is given as a function of B and T ,
but the adiabatic susceptibility is the partial derivative of M with respect to B at constant

entropy. Since the magnetic field B is in both sets of independent variables, it is necessary
to specify explicitly which variables are being held constant; the corresponding chain rule is

(

∂M

∂B

)

S

=

(

∂M

∂B

)

T

+

(

∂M

∂T

)

B

(

∂T

∂B

)

S

, (9)

obtained as before either by associating arrows with partial derivatives (using the left-hand
diagram), or by expanding the differentials dM and dT in terms of dB and dS (using the
right-hand diagram). In practice, the unwieldy partial derivative expressions occurring in (9)
can often be avoided when working with differentials, using instead the explicit result of
zapping the given equations of state with d.

We have argued previously [2, 6, 11] that the use of differentials provides students with
a more robust understanding of calculus than traditional symbolic techniques. Differentials
allow one to worry about the linear relationships between small changes in related quan-
tities, rather than the usually much more complicated relationships between the quantities
themselves. Infinitesimal reasoning is thus the art of linear approximation. Thermodynamics
is perhaps unique in its frequent use of overlapping sets of independent variables, but it is
precisely this sort of problem for which infinitesimal reasoning skills, as typified by the use
of differentials, are most useful.

6 What Next?

So what do we recommend to mathematics faculty teaching introductory courses? First
of all, skip the fine print. In other words, emphasize examples, not counterexamples. Use
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numerical data in class, and discuss the implications. Ask students to determine derivatives
experimentally. A good start is to have students actually measure rise over run from a graph.
But be sure to also include some examples that are not based on graphical data.

As indicated in [3], we encourage the use of infinitesimal reasoning, the art of working
with quantities that are “small enough” for the purpose at hand. As we argued in a series of
papers [2,6,11] and an online multivariable calculus text [10], differentials provide a robust,
geometric, conceptual framework for working with such quantities; there are also others,
such as power series. Differentials are often downplayed in single-variable calculus, despite
their ubiquitous presence in “u-substitution”. However, their importance in multivariable
calculus (and in exact differential equations) justifies in our minds their inclusion right from
the beginning. For instance, the standard symbolic differentiation and integration rules
are all but identical when written in terms of differentials, and doing so leads to dramatic
simplifications in the presentation of both chain rule and related rates [11].

All of these suggestions align well with the recommendations of the Curriculum Founda-
tion Project of the MAA [13], which sought detailed input from partner disciplines: Empha-
size conceptual understanding, problem solving skills, communication skills, and a balance
between perspectives.

We have developed a variety of resources in order to implement these ideas in the class-
room. First and foremost, the Portfolios Wiki [20] documents more than 300 small group
activities for use across the physics major, indexed by topic, including both multivariable and
vector calculus. We have written an accompanying online textbook [10], covering multivari-
able and vector calculus as well as applications to electromagnetism. All of these materials
have been developed and used in the classroom over a period of 20 years. We have consid-
erable qualitative data supporting the usefulness of this approach; see for example [14, 15].
Anecdotally, second-year calculus students and upper-division physics students and graduate
TAs often ask “Why didn’t we learn this before?” when introduced to differentials and in-
finitesimal reasoning, whereas first-year students, especially those who have had high-school
calculus, often react with confusion when this language is used from the beginning.

Finally, we do not, of course, expect multivariable calculus courses to teach students
how to solve problems in thermodynamics. Nonetheless, we do hope such courses prepare
students to do so. Understanding derivatives, both ordinary and partial, as ratios of suitably
small quantities, both in terms of infinitesimals and in terms of experimental data, provides a
robust conceptual framework that we believe will allow students to apply calculus to science
more easily.
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Appendix: Magnetic Susceptibility

We return to the example shown in Figure 5, and work out the details summarized in
Section 5. We are given the magnetization M in terms of the magnetic field B and temper-
ature T , and the temperature in terms of the magnetic field and the entropy S, so that

dM =

(

∂M

∂B

)

T

dB +

(

∂M

∂T

)

B

dT, (10)

dT =

(

∂T

∂B

)

S

dB +

(

∂T

∂S

)

B

dS. (11)

Substituting the second expression into the first yields

dM =

(

∂M

∂B

)

T

dB +

(

∂M

∂T

)

B

((

∂T

∂B

)

S

dB +

(

∂T

∂S

)

B

dS

)

(12)

and comparison with

dM =

(

∂M

∂B

)

S

dB +

(

∂M

∂S

)

B

dS (13)

(or simply setting dS = 0) leads immediately to (9). As noted in Section 5, this procedure
is neatly summarized by either diagram in Figure 5, from which (9) can be read off without
actually doing any computation.

In practice, these computations are often done with equations of state which give the re-
lationships between the variables explicitly. An example used in the Paradigms program [20]
has

M = Nµ
e

µB

kBT − e
−

µB

kBT

e
µB

kBT + e
−

µB

kBT

, (14)

S = NkB

[

ln 2 + ln
(

e
µB

kBT + e
−

µB

kBT

)

+
µB

kBT

e
µB

kBT − e
−

µB

kBT

e
µB

kBT + e
−

µB

kBT

]

. (15)

These expressions are not quite of the form shown in Figure 5, since S is given in terms of T
(and B) rather than vice versa. However, since expressions involving differentials are linear,
it is straightforward to perform the necessary rearrangements.

In this example, working directly with differentials reveals that both dM and dS are
proportional to (T dB −B dT ), which should be obvious in retrospect, since both M and S
are functions of the single variable B/T . Thus, setting dS = 0 results also in dM = 0, and the
adiabatic magnetic susceptibility vanishes. (Not so the isothermal magnetic susceptibility,
obtained by holding T constant rather than S.)
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