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20.1 Diatomic gas wrapup

Lecture: (20 min) Yesterday we worked out the internal energy per molecule of a di-
atomic gas associated with translational kinetic energy, rotational kinetic energy, and vibra-
tional energy (which has both a kinetic and potential component). For each case (except
translation), you considered both the low- and high- temperature limits.

In each case you had sums that looked like

�

i

somethinge−βEi (20.1)

and β(E1 − E0) was either large or small.
For the high-temperature limits, you needed to convert summations into integrals, which

was a reasonable approximation because the change of the thing being summed (summand?)
was small as you changed the quantum numbers by one, so treating it as a continuum was
okay.

For the low-temperature limit, you had an easier scenario, as all the Boltzmann factors
were all very small compared with the ground state. So you could just truncate the sum
after a few terms.

Physics 423 86 Friday 5/13/2011



Translation at high T
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At this point we’ve extracted the physics from the integral. It’s clearly not zero, and it also
isn’t infinite, so it’s just some number that we can work out later. But we still need Z...
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Once again, we’ve extracted the physics from the integral, leaving a dry, dimensionless husk.
In this case, I cleaned that husk up a bit, so it’ll be a bit more compact. Putting these
together (with a minimum of simplification, we get:
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Rotation at low T I’ll skip over this, as it isn’t very exciting (and it’s taking a long
time to LATEX this). I’ll just mention that it drops exponentially to zero at low temperature.
This is a universal property of systems with a “gap,” which is to say, with a finite energy
difference between the ground state and the first excited state.

Rotation at high T
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As it turns out, we can relatively easily do this integral. However, the “+1” terms are
insignificant, since l is integrated up to infinity, and the large l contribution dominates. So
we can:
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The integral is easy to do, but there’s no urgent need to do so: we have already taken the
physics out of the integral.
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Here we can see much of the essential physics by recognizing that the energy is proportional
to kBT without performing the integrals. I probably have mistakes somewhere in the above,
but the final answer is correct.

Harmonic oscillator at high T For the harmonic oscillator, I’ll demonstrate a different
approach, since I think showing the same approach for the third time in a row is a bit boring.
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This is just a harmonic series, so we can solve it using the standard trick, where I’ll call the
series s:
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So that’s nice. Of course, we still want to find the energy. To do this, we can employ yet
another trick—although it’s not so hard to do in the high-temperature limit the same way
we solved the previous problem. We can recognize that
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So once we have the partition function, we could just take a derivative to find the internal
energy. So for the simple harmonic oscillator, we have:
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This gives us an exact solution for the internal energy of a simple harmonic oscillator, but
we still haven’t found the high-temperature limit. To find that, we have to take βh̄ω0 � 1.
In this case, we can just use a simple Taylor’s expansion approach:
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This tells us that like the rotational energy, the vibrational energy approaches kBT per
molecule at high temperatures.

There is a general rule which occurs in the classical limit (which is the high-temperature
limit), that any quadratic term in the energy ends up providing 1

2
kBT to the internal energy.

This is called the equipartition theorem. Since there are three translational degrees of freedom
(v2 in each direction), the kinetic energy gives us 3

2
kBT . There are two ways to rotate a

diatomic molecule, which gives us an additional kBT . And finally, the vibration has both
kinetic and potential energy, which each provide half of the final kBT .
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