Portfolios Wiki courses:lecture:cflec
http://sites.science.oregonstate.edu/portfolioswiki/
2020-01-27T00:57:09-08:00Portfolios Wiki
http://sites.science.oregonstate.edu/portfolioswiki/
http://sites.science.oregonstate.edu/portfolioswiki/lib/images/favicon.icotext/html2011-08-16T17:46:42-08:00courses:lecture:cflec:cflecangularmomentum
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:cflec:cflecangularmomentum?rev=1313542002
Introduction to Angular Momentum Lecture ( minutes)
[Central Forces Notes] Section 6text/html2011-08-16T17:46:42-08:00courses:lecture:cflec:cflecassoclegpoly
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:cflec:cflecassoclegpoly?rev=1313542002
Associated Legendre Polynomials Lecture (20 minutes)
[Central Forces Notes] Section 25text/html2013-04-11T17:02:52-08:00courses:lecture:cflec:cfleccenterofmass
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:cflec:cfleccenterofmass?rev=1365724972
Derivation and Explanation of Center of Mass Lecture (15 minutes)
[Central Forces Notes] Section 3
--Survivor Outerspace Activity.text/html2013-04-05T11:31:28-08:00courses:lecture:cflec:cfleccentralforce
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:cflec:cfleccentralforce?rev=1365186688
Definition of a Central Force Lecture
[Central Forces Notes] Section 5
centraltext/html2013-04-05T11:23:47-08:00courses:lecture:cflec:cfleccfmotionassumptions
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:cflec:cfleccfmotionassumptions?rev=1365186227
Interactive Lecture on Assumptions about Central Force Motion ( minutes)
[Central Forces Notes] Section 5
$$m_1\dfrac{d^2}{dt^2}\vec{r}_1=\vec{F}_{1,ext}-\vec{f}_{12}$$ $$m_2\dfrac{d^2}{dt^2}\vec{r}_2=\vec{F}_{2,ext}+\vec{f}_{12}$$text/html2011-08-16T17:49:51-08:00courses:lecture:cflec:cflecclassicallim
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:cflec:cflecclassicallim?rev=1313542191
The Classical Limit Lecture ( minutes)
[Hydrogen orbitals for large and small values of m]text/html2011-08-16T17:46:42-08:00courses:lecture:cflec:cfleceffpotential
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:cflec:cfleceffpotential?rev=1313542002
Energy and Effective Potential Lecture (25 minutes)
[Central Forces Notes] Sections 11 and 12
small whiteboard questiontext/html2011-07-04T15:42:01-08:00courses:lecture:cflec:cflechydrogencalculations
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:cflec:cflechydrogencalculations?rev=1309819321
Quantum Calculations on the Hydrogen Atom Lecture (60 minutes)
$$P(-3 \hbar) = \sum^{\infty}_{n=4} \sum^{n-1}_{l=3} |\langle n, l, m| \Psi \rangle |^2$$text/html2011-08-16T17:46:42-08:00courses:lecture:cflec:cflechydrogenradialeq
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:cflec:cflechydrogenradialeq?rev=1313542002
Solving the Radial Equation Lecture (45 minutes)
[Central Forces Notes] Section 28-30text/html2011-08-16T17:46:42-08:00courses:lecture:cflec:cflechydrogensols
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:cflec:cflechydrogensols?rev=1313542002
Lecture ( minutes)
[Central Forces Notes] Section 31 $${R_n}^\ell (r){Y_\ell }^m\left( \theta ,\phi \right) = \sqrt { { {\left( {\frac{2}{{n{a_0} } } } \right)}^3}\frac{{\left( {n - \ell - 1} \right)!} }{{2n{ {\left( {\left( {n + \ell } \right)!} \right)}^3} } } } {\left( {\frac{{2r} }{{n{a_0} } } } \right)^\ell }{e^{ - \frac{r}{ {n{a_0} } } } }L_{n + \ell }^{2\ell + 1}\left( {\frac{ {2r} }{ {n{a_0} } } } \right){Y_\ell }^m\left( {\theta ,\phi } \right)$$text/html2018-03-16T11:02:08-08:00courses:lecture:cflec:cfleclegprops
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:cflec:cfleclegprops?rev=1521223328
Lecture (10 minutes)text/html2011-08-16T17:46:42-08:00courses:lecture:cflec:cfleclegseries
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:cflec:cfleclegseries?rev=1313542002
Legendre Series Lecture (20 minutes)
[Central Forces Notes] Section 24
$$a_k = (k + \frac{1}{2})\int_{-1}^1 P_k(z)^* f(z) dz $$
Small Whiteboard Questions
Students often struggle with this, but it is helpful to remind them of the way you find coefficients for a vector (by taking the dot product,, and coefficients for a Fourier series (the inner product for functions,
Common Student Questions
“”text/html2012-03-14T14:18:40-08:00courses:lecture:cflec:cflecloperators
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:cflec:cflecloperators?rev=1331759920
Spherical Harmonics and the $H$, $L^2$, and $L_z$ Operators Lecture (60 minutes)
[Central Forces Notes] Section 27text/html2013-04-11T16:59:26-08:00courses:lecture:cflec:cflecorbitshape
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:cflec:cflecorbitshape?rev=1365724766
Finding the Shape of the Orbit (Kepler's 1st Law) Lecture (25 minutes)
[Central Forces Notes] Section 10text/html2016-07-11T13:45:05-08:00courses:lecture:cflec:cflecpolar
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:cflec:cflecpolar?rev=1468269905
Kepler's 2nd Law in Polar Coordinates Lecture (5 minutes)
[Central Forces Notes] Section 8
Velocity and Acceleration in Polar Coordinates
\begin{align*} \vec{L}&=\vec{r}\times\vec{p}\\ &=\vec{r}\times\mu\vec{v}\\ &=r\hat{r}\times\mu\left(\dot{r}\hat{r}+r\dot{\phi}\hat{\phi}\right)\\ &=\mu r^2\dot{\phi}\;\hat{r}\times\hat{\phi}\\ &=\mu r^2\dot{\phi}\hat{z}\text{ (cylindrical)}\\ &=-\mu r^2\dot{\phi}\hat{\theta}\text{ (spherical)} \end{align*}text/html2013-04-11T16:56:07-08:00courses:lecture:cflec:cflecpositionvec
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:cflec:cflecpositionvec?rev=1365724567
Position Vector Lecture/Discussion (15 minutes)
[Central Forces Notes] Section 7text/html2011-07-04T15:41:01-08:00courses:lecture:cflec:cflecpostulatesofqm
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:cflec:cflecpostulatesofqm?rev=1309819261
Postulates of Quantum Mechanics
Note: A common misconception among students first learning quantum mechanics is that a measurement is carried out by operating on a ket with the operator associated with observable one wants to measure.text/html2011-08-16T17:46:42-08:00courses:lecture:cflec:cflecradialeq
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:cflec:cflecradialeq?rev=1313542002
Finding the Radial Equation from Conservation of Energy Lecture (15 minutes)
[Central Forces Notes] Section 11text/html2011-08-16T17:46:42-08:00courses:lecture:cflec:cflecreducedmass
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:cflec:cflecreducedmass?rev=1313542002
Derivation of Reduced Mass Lecture
[Central Forces Notes] Section 4
$${{m_1 m_2}\over {m_1+m_2}} {d{^2}\over{d{t^2}}} (\Vec{r_1}-\Vec{r_2}) = \Vec{f_{12}}$$text/html2011-08-16T17:46:42-08:00courses:lecture:cflec:cflecreducedmasshamiltonian
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:cflec:cflecreducedmasshamiltonian?rev=1313542002
Lecture on the Derivation of the Hamiltonian in terms of Reduced Mass (20 minutes)
[Central Forces Notes] Section 14.text/html2011-08-16T17:46:42-08:00courses:lecture:cflec:cflecreviewhamiltonian
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:cflec:cflecreviewhamiltonian?rev=1313542002
Review of Hamiltonians Lecture (20 minutes)
[Central Forces Notes] Section 13
This lecture reviews what students have learned about Schrödinger's equation and the Hamiltonian from previous classes.
small whiteboard question
$$\hat{H}= \frac{\hbar^2}{2 m_p} \nabla^2_p + \frac{\hbar^2}{2 m_e} \nabla^2_e -\frac{1}{4 \pi \epsilon_0} \frac{e^2}{|r_p-r_e|}$$ where $$\nabla^2_p = \frac{1}{r_p^2} \frac{\partial}{\partial r_p} \left(r_p^2 \frac{\partial}{\partial r_p} \right)+ \frac{1}{r_p^2 \sin(\t…text/html2011-08-16T17:46:42-08:00courses:lecture:cflec:cflecringangmomentum
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:cflec:cflecringangmomentum?rev=1313542002
Angular Momentum on the Ring Lecture (20 minutes)
[Central Forces Notes] Section 18text/html2011-08-16T17:46:42-08:00courses:lecture:cflec:cflecringeigenstates
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:cflec:cflecringeigenstates?rev=1313542002
Finding the Eigenstates for the Ring Lecture (30 minutes)
[Central Forces Notes] Section 17
small whiteboard questiontext/html2011-08-16T17:46:42-08:00courses:lecture:cflec:cflecsepofvariables
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:cflec:cflecsepofvariables?rev=1313542002
Separation of Variables in Spherical Coordinates Lecture (30 minutes)
[Central Forces Notes] Section 33 (Appendix B) and 16text/html2012-08-09T15:48:24-08:00courses:lecture:cflec:cflecseriessoltheta
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:cflec:cflecseriessoltheta?rev=1344552504
Solving the $\Theta$ Equation using the Series Solution Method (90 minutes)
FIXME See 2012 video for series solution lecture with sequence of SWBQs.
[Central Forces Notes] Section 20-23
Small White Board Questions
Students sometimes have difficulty with this the first time they do it because they are not used to using the recurrence relation in this way. In addition, they do not realize that they need to set the values of $a_0$ and $a_1$.
Common Student Confusions/Questionstext/html2013-04-11T15:39:52-08:00courses:lecture:cflec:cflecsolveeqofmotion
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:cflec:cflecsolveeqofmotion?rev=1365719992
Solution to the Central Force Equation of Motion in Polar Coordinates Lecture (30 minutes)
[Central Forces Notes] Section 9
$$\mathbf{\hat{r}}:\; f(r)=\mu(\ddot{r}-r\dot{\phi}^2)$$ $$\mathbf{\hat{\phi}}:\;0=\mu(r\ddot{\phi}+2\dot{r}\dot{\phi})$$text/html2013-05-14T13:34:08-08:00courses:lecture:cflec:cflecsphereharmonics
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:cflec:cflecsphereharmonics?rev=1368563648
Spherical Harmonics, the Solutions to the Rigid Rotor Lecture (30 minutes)
[Central Forces Notes] Section 26
One analogy that seems to resonate with students, especially the musicians is that spherical harmonics are essentially the harmonics for a spherical drum.text/html2011-08-16T17:45:29-08:00courses:lecture:cflec:cflecylmcombo
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:cflec:cflecylmcombo?rev=1313541929
Combinations of $Y_{l,m}(\theta,\phi)$ and the Spherical Harmonic Series ( minutes)
[Central Forces Notes] Section 26text/html2018-03-16T10:55:10-08:00courses:lecture:cflec:cfmblec2d
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:cflec:cfmblec2d?rev=1521222910
Lecture (25 minutes)
--