Portfolios Wiki swbq:lasw
http://sites.science.oregonstate.edu/portfolioswiki/
2020-01-27T00:44:51-08:00Portfolios Wiki
http://sites.science.oregonstate.edu/portfolioswiki/
http://sites.science.oregonstate.edu/portfolioswiki/lib/images/favicon.icotext/html2012-08-23T22:24:06-08:00swbq:lasw:index
http://sites.science.oregonstate.edu/portfolioswiki/swbq:lasw:index?rev=1345785846
text/html2013-07-26T10:49:39-08:00swbq:lasw:prswadjoint
http://sites.science.oregonstate.edu/portfolioswiki/swbq:lasw:prswadjoint?rev=1374860979
The Prompt
Take the Hermitian adjoint of the following statement:
$$ A\vert v\rangle=\lambda\vert v\rangle $$
Context
This SWBQ
Wrap Up
[Powerpoint slide]
[PDF slide]text/html2016-07-07T13:57:41-08:00swbq:lasw:prswdot
http://sites.science.oregonstate.edu/portfolioswiki/swbq:lasw:prswdot?rev=1467925061
The Prompt
“Write down something you know about the dot product.”
Context
This SWBQ is intended to be a quick review of the properties of the dot product.
Wrap Up
Collect a selection of responses from the students. Order them to make a coherent review and then hold them up and discuss the properties. Make sure to include an example of the geometric definition: $$\vec v \cdot \vec w = \vert \vec v \vert\; \vert \vec w\vert \cos\theta$$ and the algebraic definition: $$\vec v \cdot \…text/html2013-07-26T10:53:48-08:00swbq:lasw:prsweigval
http://sites.science.oregonstate.edu/portfolioswiki/swbq:lasw:prsweigval?rev=1374861228
The Prompt
Find the eigenvalues of the following matrix: $$ A=\left(\begin{array}{c} 1&2\\ 9&4\\ \end{array}\right) $$
Context
This SWBQ
Wrap Up
[Powerpoint slide]
[PDF slide]text/html2013-07-26T11:06:47-08:00swbq:lasw:prswfunclength
http://sites.science.oregonstate.edu/portfolioswiki/swbq:lasw:prswfunclength?rev=1374862007
The Prompt
“Write down the length of a function in Dirac notation.”
Context
This SWBQ
Wrap Up
[Powerpoint slide]
[PDF slide]text/html2013-07-26T10:57:23-08:00swbq:lasw:prswhermitian
http://sites.science.oregonstate.edu/portfolioswiki/swbq:lasw:prswhermitian?rev=1374861443
The Prompt
“Write down the conditions for a generic form of a matrix that is a Hermitian Matrix. Give an example of a Hermitian matrix.”
Context
This SWBQ
Wrap Up
[Powerpoint slide]
[PDF slide]text/html2013-07-26T10:59:37-08:00swbq:lasw:prswinnnerproducts
http://sites.science.oregonstate.edu/portfolioswiki/swbq:lasw:prswinnnerproducts?rev=1374861577
The Prompt
For the generic bra vector $<v|$ and ket vector $|w>$ we can compute the inner product. Write it down.
[Powerpoint slide]
[PDF slide]
With vectors
$$ \vert 1\rangle =\left(\begin{array}{c} 1\\ 0\\ 0\\ \end{array}\right) $$ $$ \vert r\rangle =\left(\begin{array}{c} 0\\ 1\\ 1\\ \end{array}\right) $$text/html2013-07-26T11:07:32-08:00swbq:lasw:prswmatrix
http://sites.science.oregonstate.edu/portfolioswiki/swbq:lasw:prswmatrix?rev=1374862052
The Prompt
With the following matrices,
$$ A=\left(\begin{array}{cc} 3&-1\\ 7&1-2i\\ \end{array}\right) $$
$$ B=\left(\begin{array}{cc} i&1\\ 0&2\\ \end{array}\right) $$
Add A to B.
Multiply A by 2.
Compute AB.
Find the transpose and Hermitian adjoint of A.text/html2013-07-26T11:08:06-08:00swbq:lasw:prswrotationmatrices
http://sites.science.oregonstate.edu/portfolioswiki/swbq:lasw:prswrotationmatrices?rev=1374862086
The Prompt
How does one identify what a rotation is?
[Powerpoint slide]
[PDF slide]
Write down conditions for rotation matrices.
[Powerpoint slide]
[PDF slide]
Context
This SWBQ
Wrap Uptext/html2013-07-26T11:04:31-08:00swbq:lasw:prswvecmanip
http://sites.science.oregonstate.edu/portfolioswiki/swbq:lasw:prswvecmanip?rev=1374861871
The Prompt
Write down a particular manipulation one can do with vectors.
[Powerpoint slide]
[PDF slide]
Context
This SWBQ
Wrap Uptext/html2016-08-03T16:09:13-08:00swbq:lasw:prswvectordef
http://sites.science.oregonstate.edu/portfolioswiki/swbq:lasw:prswvectordef?rev=1470265753
The Prompt
“Write down something you know about vectors.”
Context
This SWBQ is intended to prepare students for the more abstract treatment of vectors in linear algebra contexts.
Wrap Up
Student responses typically include the dot and cross products, but more advanced students may bring up more advanced language (such as inner products) or more advanced concepts entirely (such as orthogonality relations or vector spaces).
[Powerpoint slide]
[PDF slide]text/html2016-08-03T16:05:28-08:00swbq:lasw:prswvectorreps
http://sites.science.oregonstate.edu/portfolioswiki/swbq:lasw:prswvectorreps?rev=1470265528
Prompt
“Write down a representation of a 2D vector.”
Context
This SWBQ is intended to refresh students' memories of the varying representations of vectors seen throughout undergraduate math and physics courses. Further, this SWBQ segues well into an introductory discussion of Bra-Ket notation.text/html2012-08-22T22:14:50-08:00swbq:lasw:title
http://sites.science.oregonstate.edu/portfolioswiki/swbq:lasw:title?rev=1345698890
Linear Algebra SWBQstext/html2013-07-26T11:48:49-08:00swbq:lasw:wvsweigvalq
http://sites.science.oregonstate.edu/portfolioswiki/swbq:lasw:wvsweigvalq?rev=1374864529
The Prompt
Write down an example of an eigenvalue equation.
Context
This SWBQ
Wrap Up
[Powerpoint slide]
[PDF slide]