Portfolios Wiki courses:lecture:splec
http://sites.science.oregonstate.edu/portfolioswiki/
2020-01-27T04:03:36-08:00Portfolios Wiki
http://sites.science.oregonstate.edu/portfolioswiki/
http://sites.science.oregonstate.edu/portfolioswiki/lib/images/favicon.icotext/html2011-09-05T12:31:31-08:00courses:lecture:splec:spleccommutation
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:splec:spleccommutation?rev=1315251091
Commutation and Uncertainty (Lecture, 20 minutes)
Pages 34-39text/html2011-08-16T18:04:26-08:00courses:lecture:splec:spleccommutators
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:splec:spleccommutators?rev=1313543066
Commutators & Commuting Operators (10 minutes)
Pages 34-37
$$\left[S_{x},S_{y}\right]=S_{x}S_{y}-S_{y}S_{x} \; \; .$$
“”
$$\left[S_{x},S_{y}\right]=i\hbar S_{z} \; \; , $$
$$\left[S_{y},S_{z}\right]=i\hbar S_{x} \; \; , $$
$$\left[S_{z},S_{x}\right]=i\hbar S_{y} \; \; . $$text/html2017-01-31T13:35:25-08:00courses:lecture:splec:spleccomprel
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:splec:spleccomprel?rev=1485898525
The Completeness Relation (10 minutes)
Page 14
$$\vert +\rangle \langle + \vert \; + \; \vert- \rangle\langle -\vert=1 \; \; . $$
Be sure to note that this can be done in any basis, but you have to pick one and stick to it to satisfy the completeness relation.text/html2011-08-16T18:04:26-08:00courses:lecture:splec:spleccorrespon
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:splec:spleccorrespon?rev=1313543066
The Correspondence Principle (5 minutes)
(Slide 5)text/html2015-08-15T13:46:35-08:00courses:lecture:splec:splecdensop
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:splec:splecdensop?rev=1439671595
Introducing the Density Operator (20 minutes)
“”
$$P_{+} \, = \, \left\vert\langle +\vert\psi \rangle\right\vert^{2}=\langle \psi\vert+ \rangle\langle +\vert\psi \rangle \; \; .$$
So, the rightmost expression is some number its complex conjugate. But, we don't have to think of the expression this way. Notice that in the middle there's a projection operator hidden between the $\psi$ terms.text/html2011-07-20T15:24:31-08:00courses:lecture:splec:splecdensopapp
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:splec:splecdensopapp?rev=1311200671
Applications for the Density Function (10 minutes)
This lecture is best performed following the Describing the Sample Oven in the Stern-Gerlach Experiment Mathematically (FIXME Needs link) activity.
$$\vert+ \rangle_{y}{_{y}\langle +\vert}\psi \rangle\langle \psi\vert \; \; .$$text/html2015-08-15T13:47:00-08:00courses:lecture:splec:splecdfindspinupx
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:splec:splecdfindspinupx?rev=1439671620
Deriving Spin-up with x-direction in the z-basis (25 minutes)
$$\vert+ \rangle_{x}=a \vert+ \rangle + b\vert- \rangle \; \; .$$
Note that the white arrows represent $|+ \rangle$ and $|- \rangle$ while the green arrows represent $\vert+ \rangle_{x}$ and $\vert- \rangle_{x}$. However, we have no more room in our two-dimensional vector space to properly draw $\vert+ \rangle_{y}$ and $\vert- \rangle_{y}$ in a manner that reflects the results of the Stern-Gerlach experiment and the orthogona…text/html2011-07-20T10:57:35-08:00courses:lecture:splec:splecdipolemoment
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:splec:splecdipolemoment?rev=1311184655
The Magnetic Dipole Moment (10 minutes)
Lorentz Force and Work on a Rectangular Loop
$$U=- \vec{\mu} \cdot \vec{B}$$
can be written on the board.
“”text/html2011-08-16T18:04:26-08:00courses:lecture:splec:splecehrenfest
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:splec:splecehrenfest?rev=1313543066
Ehrenfest's Theorem (10 minutes)
(Slides 1-3)text/html2011-08-16T18:04:26-08:00courses:lecture:splec:spleceigenstate
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:splec:spleceigenstate?rev=1313543066
Energy eigenvalues and eigenstates (Lecture, 60 minutes)
Pages 6-11
<http://phet.colorado.edu/en/simulation/bound-states>text/html2012-01-25T10:51:37-08:00courses:lecture:splec:splecexpectationvalue
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:splec:splecexpectationvalue?rev=1327517497
Expectation Value and Standard Deviation(Lecture, 20 minutes)
Pages 26-33text/html2011-08-16T18:04:26-08:00courses:lecture:splec:splecexpecval
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:splec:splecexpecval?rev=1313543066
Expectation Values & Quantum Uncertainty (15 minutes)
Pages 29-33, 38
Completeness Relation
$$\frac{+ \hbar}{2}\langle \psi \vert +\rangle\langle+ \vert\psi \rangle \; \; + \; \; \frac{- \hbar}{2}\langle\psi \vert- \rangle\langle -\vert\psi \rangle \; \; . $$text/html2011-08-16T18:04:26-08:00courses:lecture:splec:splecgeneralizedspin
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:splec:splecgeneralizedspin?rev=1313543066
Spin N systems (Lecture, 10 minutes)
Pages 26-27text/html2011-08-16T18:04:26-08:00courses:lecture:splec:splechistoricsg
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:splec:splechistoricsg?rev=1313543066
Discussion of Historic Stern-Gerlach Experiment (Lecture, 20 minutes)
Pages 5-11text/html2011-08-16T18:04:26-08:00courses:lecture:splec:splecintrinsicspin
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:splec:splecintrinsicspin?rev=1313543066
Discussion of Intrinsic Spin (Lecture, 15 minutes)
Pages 10-11text/html2011-08-16T18:04:26-08:00courses:lecture:splec:splecintro
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:splec:splecintro?rev=1313543066
Introduction to the Spins Course (Lecture, 15 minutes)
Pages 1-4text/html2012-02-13T15:16:43-08:00courses:lecture:splec:splecintroprob
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:splec:splecintroprob?rev=1329175003
Introduction to Probability ( minutes)
Handout: [spspin1guide.pdf] (pages 4-8)text/html2011-08-16T18:04:26-08:00courses:lecture:splec:splecintrospinsprog
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:splec:splecintrospinsprog?rev=1313543066
Introduction to the SPINS Program (Lecture, 10 minutes)
Page 12text/html2011-07-20T16:23:12-08:00courses:lecture:splec:splecketdimension
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:splec:splecketdimension?rev=1311204192
Dimensionality of the Ket Vector Space (10 minutes)
$$\mathcal{P}_{+}=\left\vert\langle+\vert-\rangle\right\vert^{2}$$ and $$\mathcal{P}_{-}=\left\vert\langle-\vert-\rangle\right\vert^{2} \; \; , $$
respectively.text/html2011-08-16T18:04:26-08:00courses:lecture:splec:splecmagres
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:splec:splecmagres?rev=1313543066
Magnetic Resonance (40 minutes)
(Slides 9-16)
Providing the slides in a handout form is often beneficial for students so they can discuss and review the calculations at a later time and at their own pace.text/html2011-07-22T11:40:49-08:00courses:lecture:splec:splecmeasure
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:splec:splecmeasure?rev=1311360049
How Making Measurements Affect Results in Quantum Systems (5 minutes)
Classically:onlyIt appears that the particles running through the sorters “forgot” whether they were long or short.A device that recombines two beams in this way is called an interferometer.The socks now remember if they were long or short after the beam is recombined.“”
Be sure to make the correspondence between the quantum mechanical case with particles and the sorting of socks clear throughout the exercise. No…text/html2011-07-20T14:31:54-08:00courses:lecture:splec:splecnormalize
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:splec:splecnormalize?rev=1311197514
Normalization of Quantum State Vectors (5 minutes)
$$\vert\psi \rangle=ae^{i \alpha}\vert+ \rangle + be^{i \beta}\vert- \rangle \; \; , $$
the quantum state vector is normalized if
$$\left\vert ae^{i \alpha}\right\vert^{2} + \left\vert be^{i \beta}\right\vert^{2}=1 \; \; ,$$text/html2011-09-05T11:47:33-08:00courses:lecture:splec:splecoperators
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:splec:splecoperators?rev=1315248453
Operators (Lecture, 60 minutes)
Pages 2-12text/html2011-08-16T18:04:26-08:00courses:lecture:splec:splecoscillation
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:splec:splecoscillation?rev=1313543066
Neutrino Oscillations (Lecture, XX minutes)
Pages 36-42
a bit beyond what our students were ready to hear, having no exposure to particle physics at this stagetext/html2015-08-15T13:46:52-08:00courses:lecture:splec:splecouterproduct
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:splec:splecouterproduct?rev=1439671612
The Outer Product (10 minutes)
is not
So, this operation allows us to move from the bra-ket notation of the projection operator $P_{\alpha}$ and find our matrix representation.
Compute Several Outer Productstext/html2012-07-08T14:50:31-08:00courses:lecture:splec:splecpostulate4
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:splec:splecpostulate4?rev=1341784231
Postulate 4 of Quantum Mechanics (10 minutes)
“The probability of obtaining $+ \frac{\hbar}{2} $ in a measurement of the observable $S_{z}$ on a system in the state $\vert \psi \rangle $ is $\mathcal{P}_{+}=\left\vert \langle +\vert \psi \rangle \right\vert^{2}$.”text/html2017-01-31T13:26:18-08:00courses:lecture:splec:splecpostulate5
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:splec:splecpostulate5?rev=1485897978
The Projection Postulate of Quantum Mechanics (5 minutes)
“After a measurement of some observable $\hat{A}$ that yields the result $a_{n}$, the quantum system is in a new state that is the normalized projection of the original system ket onto the ket (or kets) corresponding to the result of the measurement.”text/html2011-08-16T18:04:26-08:00courses:lecture:splec:splecprecession
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:splec:splecprecession?rev=1313543066
Spin Precession (Lecture, XX minutes)
Pages 12-35text/html2011-07-20T14:43:09-08:00courses:lecture:splec:splecprojcollapse
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:splec:splecprojcollapse?rev=1311198189
The Projection Operator & Wave State Collapse (30 minutes)
$$\vert\psi ' \rangle=\frac {P_{\vert\psi ' \rangle} \vert\psi \rangle}{\sqrt{\langle \psi|P_{\vert\psi ' \rangle}\vert\psi \rangle}} \; \; . $$
Unfortunately, there's no mathematically nice way to do this operation; to find the projection, the only choice is to plug in what we know and grind through computing the bra-kets.text/html2011-08-16T18:04:26-08:00courses:lecture:splec:splecprojoperator
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:splec:splecprojoperator?rev=1313543066
The Projection Operator (10 minutes)
Pages 14-15
...text/html2011-08-16T18:04:26-08:00courses:lecture:splec:splecquanpostulates
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:splec:splecquanpostulates?rev=1313543066
Postulates of Quantum Mechanics (10 minutes)
Pages 3-5
“”text/html2011-08-16T18:04:26-08:00courses:lecture:splec:splecrabiflop
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:splec:splecrabiflop?rev=1313543066
Rabi Flopping (40 minutes)
(Slides 1-8)
$$\vert \langle out\vert in \rangle \vert ^{2} \; = \; ? $$
Providing the slides in a handout form is often beneficial for students so they can discuss and review the calculations at a later time and at their own pace.text/html2011-07-20T14:29:47-08:00courses:lecture:splec:splecrelphases
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:splec:splecrelphases?rev=1311197387
Relative Phases in Quantum States (10 minutes)text/html2011-07-20T13:55:24-08:00courses:lecture:splec:splecrepstates
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:splec:splecrepstates?rev=1311195324
Bra-ket Notation (5 minutes)
Several Common Representations to Write on the Board
$\vert \: + \rangle $
$\vert\: \frac{\hbar}{2} \rangle$
$\vert\: up \rangle$
$\vert\: \uparrow \rangle$text/html2016-01-18T13:49:47-08:00courses:lecture:splec:splecringdipolemoment
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:splec:splecringdipolemoment?rev=1453153787
Lecture ( minutes)text/html2011-08-16T18:04:26-08:00courses:lecture:splec:splecschrodinger
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:splec:splecschrodinger?rev=1313543066
Schrodinger Equation (Lecture, 60 minutes)
Pages 1-5
...text/html2011-08-16T18:04:26-08:00courses:lecture:splec:splecsgsoftware
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:splec:splecsgsoftware?rev=1313543066
Introduction to the Stern Gerlach simulation (Lecture, 10 minutes)
Page 12text/html2011-07-14T15:09:17-08:00courses:lecture:splec:splecsgterm
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:splec:splecsgterm?rev=1310681357
Terminology for the Stern-Gerlach Experiment (5 minutes)
“”“”text/html2011-09-05T12:20:50-08:00courses:lecture:splec:splecspin1
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:splec:splecspin1?rev=1315250450
Spin 1 Systems (Lecture, 10 minutes)
Pages 22,23text/html2011-08-16T18:04:26-08:00courses:lecture:splec:splecspinprec
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:splec:splecspinprec?rev=1313543066
Spin Precession (5 minutes)
(Slide 4)
Ehrenfest's Theorem“”“”
Providing the slides in a handout form is often beneficial for students so they can discuss and review the calculations at a later time and at their own pace.text/html2011-09-05T13:17:51-08:00courses:lecture:splec:splecspinprojection
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:splec:splecspinprojection?rev=1315253871
, pages 13-21, 24, 40-41
Lecture (60 minutes)
->->text/html2011-09-05T12:13:45-08:00courses:lecture:splec:splecspinvectors
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:splec:splecspinvectors?rev=1315250025
The $S$ and $S^2$ vectors (Lecture, 15 minutes)
Pages 42-45text/html2015-08-15T13:46:49-08:00courses:lecture:splec:splecssquared
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:splec:splecssquared?rev=1439671609
The $S^{2}$ Operator (15 minutes)
Computing the $S^{2}$ Operator for the Spin-$\frac{1}{2}$ Systemtext/html2011-08-16T18:04:26-08:00courses:lecture:splec:splecstateformalism
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:splec:splecstateformalism?rev=1313543066
Building Quantum State Formalism (Lecture, 50 minutes)
Page 18-25, 28text/html2012-07-09T15:10:13-08:00courses:lecture:splec:splecstatisticchoice
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:splec:splecstatisticchoice?rev=1341871813
How Choosing the # Trials vs. # Experiments Changes Results (15 minutes)
probabilities of a spin-$\frac{1}{2}$ system
----------
Sample Data
$x_{1}$$x_{2}$$x_{3}$$x_{4}$$x_{5}$$x_{6}$$x_{7}$$x_{8}$$x_{9}$$x_{10}$# Spin-up particles7558578278
M=Number of events in a single experimenttext/html2014-12-31T16:23:23-08:00courses:lecture:splec:splecstatisticchoice2
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:splec:splecstatisticchoice2?rev=1420071803
Lecture ( minutes)
FIXMEtext/html2011-08-16T18:04:26-08:00courses:lecture:splec:splecstresults
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:splec:splecstresults?rev=1313543066
Expected vs. Observed Results of the Stern Gerlach Experiment (10 minutes)
Pages 5-8
$$U=\, -\vec{\mu} \cdot \vec{B} \; \; ,$$text/html2011-08-16T18:04:26-08:00courses:lecture:splec:splecsuccessivesg
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:splec:splecsuccessivesg?rev=1313543066
Outcomes using successive Stern Gerlach devices (Lecture, 40 minutes)
Page 12-19text/html2012-08-09T09:06:08-08:00courses:lecture:splec:spschrodinger
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:splec:spschrodinger?rev=1344528368
The Schrodinger Equation (25 minutes)
$$i\, \hbar \, \frac{d}{dt}\, \vert \psi (t)\rangle =\hat{H} \, \vert\psi (t)\rangle \; \; . $$
$$\hat{H}\vert E_{i} \rangle=E_{i}\vert E_{i} \rangle \; \; .$$
$$\vert\psi (t)\rangle \: = \: \sum_{n}c_{n}\vert E_{n} \rangle \; \; .$$text/html2011-07-20T14:48:02-08:00courses:lecture:splec:the_hamiltonian
http://sites.science.oregonstate.edu/portfolioswiki/courses:lecture:splec:the_hamiltonian?rev=1311198482
The Hamiltonian (10 minutes)
“”
$$H=- \: \vec{\mu} \cdot \vec{B}=- \: \gamma \, \vec{S} \cdot \vec{B} \; \; .$$
$$\hat{H}=- \: \gamma S_{z} B_{z} \; \; .$$
Although this Hamiltonian isn't very interesting because it is proportional to an operator we already know ( $\;S_{z}\;$ ) and because it depends on the magnitude of the external magnetic field, it is a very useful operator. The eigenvalues of the matrix for the Hamiltonian will be the energy values that you can measure. Note that …