
Activity 3: Solution for electric field

Find the electric field in all space due to a ring with total charge Q and radius R
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For a ring of charge this becomes
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where ~r denotes the position in space at which the electric field is measured and ~r ′ denotes the position of
the charge.

In cylindrical coordinates, |d~r ′| = Rdφ′, where R is the radius of the ring. Thus,
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Assuming constant linear charge density for a ring with charge Q and radius R, λ(~r ′) = Q
2πR Thus,
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Since ~r and ~r ′ are not necessarily in the same direction, we cannot simply leave |~r − ~r ′| in curvilinear
coordinates and integrate directly. One solution to this problem is to go back and forth between cylindrical
and cartesian coordinates to represent ~r − ~r ′

~r − ~r ′ = (x− x′)ı̂ + (y − y ′)̂ + (z − z ′)k̂ (5)

= (r cosφ−R cosφ′)ı̂ + (r sinφ−R sinφ′)̂ + (z − z ′)k̂ (6)

And
|~r − ~r ′| =

√
r2 − 2rR cos(φ− φ′) +R2 + z2 (7)

The electric field can now be represented by the elliptic integral
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(8)

1 The z axis

For points on the z axis, r = 0 and the integral simplifies to
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Doing the integral results in
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2 The x axis

For points on the x axis, z = 0 and φ = 0, so the integral simplifies to
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let u = r2 − 2rR cosφ′ +R2, then du = 2rR sinφ′dφ′, and for the ̂ component the integral becomes
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Doing the integral results in
~Ej = 0 (13)

Thus the ̂ component disappears and results in the elliptic integral with only an ı̂ component
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(14)


