## Activity 3: Solution for electric field

## Find the electric field in all space due to a ring with total charge $Q$ and radius $R$

$$
\begin{equation*}
\overrightarrow{\boldsymbol{E}}=\frac{1}{4 \pi \epsilon_{0}} \sum_{i=1}^{N} \frac{q_{i} \overrightarrow{\boldsymbol{r}}-\overrightarrow{\boldsymbol{r}}_{i}}{\left|\overrightarrow{\boldsymbol{r}}-\overrightarrow{\boldsymbol{r}}_{i}\right|^{3}} \tag{1}
\end{equation*}
$$

For a ring of charge this becomes

$$
\begin{equation*}
\overrightarrow{\boldsymbol{E}}=\int_{\text {ring }} \frac{1}{4 \pi \epsilon_{0}} \frac{\lambda\left(\overrightarrow{\boldsymbol{r}}^{\prime}\right)\left|d \overrightarrow{\boldsymbol{r}}^{\prime}\right| \overrightarrow{\boldsymbol{r}}-\overrightarrow{\boldsymbol{r}}^{\prime}}{\left|\overrightarrow{\boldsymbol{r}}-\overrightarrow{\boldsymbol{r}}^{\prime}\right|^{3}} \tag{2}
\end{equation*}
$$

where $\overrightarrow{\boldsymbol{r}}$ denotes the position in space at which the electric field is measured and $\overrightarrow{\boldsymbol{r}}^{\prime}$ denotes the position of the charge.

In cylindrical coordinates, $\left|d \overrightarrow{\boldsymbol{r}}^{\prime}\right|=R d \phi^{\prime}$, where $R$ is the radius of the ring. Thus,

$$
\begin{equation*}
\overrightarrow{\boldsymbol{E}}=\frac{1}{4 \pi \epsilon_{0}} \int_{0}^{2 \pi} \frac{\lambda\left(\overrightarrow{\boldsymbol{r}}^{\prime}\right) R d \phi^{\prime} \overrightarrow{\boldsymbol{r}}-\overrightarrow{\boldsymbol{r}}^{\prime}}{\left|\overrightarrow{\boldsymbol{r}}-\overrightarrow{\boldsymbol{r}}^{\prime}\right|^{3}} \tag{3}
\end{equation*}
$$

Assuming constant linear charge density for a ring with charge Q and radius $\mathrm{R}, \lambda\left(\overrightarrow{\boldsymbol{r}}^{\prime}\right)=\frac{Q}{2 \pi R}$ Thus,

$$
\begin{equation*}
\overrightarrow{\boldsymbol{E}}=\frac{1}{4 \pi \epsilon_{0}} \frac{Q}{2 \pi} \int_{0}^{2 \pi} \frac{d \phi^{\prime} \overrightarrow{\boldsymbol{r}}-\overrightarrow{\boldsymbol{r}}^{\prime}}{\left|\overrightarrow{\boldsymbol{r}}-\overrightarrow{\boldsymbol{r}}^{\prime}\right|^{3}} \tag{4}
\end{equation*}
$$

Since $\overrightarrow{\boldsymbol{r}}$ and $\overrightarrow{\boldsymbol{r}}^{\prime}$ are not necessarily in the same direction, we cannot simply leave $\left|\overrightarrow{\boldsymbol{r}}-\overrightarrow{\boldsymbol{r}}^{\prime}\right|$ in curvilinear coordinates and integrate directly. One solution to this problem is to go back and forth between cylindrical and cartesian coordinates to represent $\overrightarrow{\boldsymbol{r}}-\overrightarrow{\boldsymbol{r}}^{\prime}$

$$
\begin{align*}
\overrightarrow{\boldsymbol{r}}-\overrightarrow{\boldsymbol{r}}^{\prime} & =\left(x-x^{\prime}\right) \hat{\boldsymbol{\imath}}+\left(y-y^{\prime}\right) \hat{\boldsymbol{\jmath}}+\left(z-z^{\prime}\right) \hat{\boldsymbol{k}}  \tag{5}\\
& =\left(r \cos \phi-R \cos \phi^{\prime}\right) \hat{\boldsymbol{\imath}}+\left(r \sin \phi-R \sin \phi^{\prime}\right) \hat{\boldsymbol{\jmath}}+\left(z-z^{\prime}\right) \hat{\boldsymbol{k}} \tag{6}
\end{align*}
$$

And

$$
\begin{equation*}
\left|\overrightarrow{\boldsymbol{r}}-\overrightarrow{\boldsymbol{r}}^{\prime}\right|=\sqrt{r^{2}-2 r R \cos \left(\phi-\phi^{\prime}\right)+R^{2}+z^{2}} \tag{7}
\end{equation*}
$$

The electric field can now be represented by the elliptic integral

$$
\begin{equation*}
\overrightarrow{\boldsymbol{E}}=\frac{1}{4 \pi \epsilon_{0}} \frac{Q}{2 \pi} \int_{0}^{2 \pi} \frac{\left[\left(r \cos \phi-R \cos \phi^{\prime}\right) \hat{\boldsymbol{\imath}}+\left(r \sin \phi-R \sin \phi^{\prime}\right) \hat{\boldsymbol{\jmath}}+z \hat{\boldsymbol{k}}\right] d \phi^{\prime}}{\left(r^{2}-2 r R \cos \left(\phi-\phi^{\prime}\right)+R^{2}+z^{2}\right)^{3 / 2}} \tag{8}
\end{equation*}
$$

## 1 The $z$ axis

For points on the $z$ axis, $r=0$ and the integral simplifies to

$$
\begin{equation*}
\overrightarrow{\boldsymbol{E}}=\frac{1}{4 \pi \epsilon_{0}} \frac{Q}{2 \pi} \int_{0}^{2 \pi} \frac{\left[-R \cos \phi^{\prime} \hat{\boldsymbol{\imath}}+-R \sin \phi^{\prime} \hat{\boldsymbol{\jmath}}+z \hat{\boldsymbol{k}}\right] d \phi^{\prime}}{\left(R^{2}+z^{2}\right)^{3 / 2}} \tag{9}
\end{equation*}
$$

Doing the integral results in

$$
\begin{equation*}
\overrightarrow{\boldsymbol{E}}=\frac{Q}{4 \pi \epsilon_{0}} \frac{z \hat{\boldsymbol{k}}}{\left(R^{2}+z^{2}\right)^{3 / 2}} \tag{10}
\end{equation*}
$$

## 2 The $x$ axis

For points on the $x$ axis, $z=0$ and $\phi=0$, so the integral simplifies to

$$
\begin{equation*}
\overrightarrow{\boldsymbol{E}}=\frac{1}{4 \pi \epsilon_{0}} \frac{Q}{2 \pi} \int_{0}^{2 \pi} \frac{\left[\left(r-R \cos \phi^{\prime}\right) \hat{\boldsymbol{\imath}}+-R \sin \phi^{\prime} \hat{\boldsymbol{\jmath}}\right] d \phi^{\prime}}{\left(r^{2}-2 r R \cos \phi^{\prime}+R^{2}\right)^{3 / 2}} \tag{11}
\end{equation*}
$$

let $u=r^{2}-2 r R \cos \phi^{\prime}+R^{2}$, then $d u=2 r R \sin \phi^{\prime} d \phi^{\prime}$, and for the $\hat{\boldsymbol{\jmath}}$ component the integral becomes

$$
\begin{equation*}
\overrightarrow{\boldsymbol{E}}_{j}=\frac{1}{4 \pi \epsilon_{0}} \frac{Q}{2 \pi} \frac{1}{2 r} \int_{0}^{2 \pi} \frac{d u \hat{\boldsymbol{\jmath}}}{u^{3 / 2}} \tag{12}
\end{equation*}
$$

Doing the integral results in

$$
\begin{equation*}
\overrightarrow{\boldsymbol{E}}_{j}=0 \tag{13}
\end{equation*}
$$

Thus the $\hat{\boldsymbol{\jmath}}$ component disappears and results in the elliptic integral with only an $\hat{\boldsymbol{\imath}}$ component

$$
\begin{equation*}
\overrightarrow{\boldsymbol{E}}=\frac{1}{4 \pi \epsilon_{0}} \frac{Q}{2 \pi} \int_{0}^{2 \pi} \frac{\left(r-R \cos \phi^{\prime}\right) \hat{\boldsymbol{\imath}} d \phi^{\prime}}{\left(r^{2}-2 r R \cos \phi^{\prime}+R^{2}\right)^{3 / 2}} \tag{14}
\end{equation*}
$$

