\documentclass[10pt]{article} \usepackage{graphicx} \pagestyle{empty} \parindent=0pt \parskip=.1in \newcommand\hs{\hspace{6pt}} \begin{document} \centerline{\textbf{Spin One Unknowns}} \bigskip Choose \underline{Unknown \# 1} under the \underline{initialize} menu. This will cause atoms to leave the oven in a definite quantum state, which we call $\vert \psi_{1} \rangle$. Now measure the nine probabilities $\left| \langle \phi \vert \psi_{1} \rangle \right| ^{2}$, where $\vert \phi \rangle$ corresponds to spin projections of $\hbar$, $0$, and $-\hbar$ along the three axes. Fill in the table on the worksheet. Figure out what $\vert \psi_{1} \rangle$ is. Repeat for \underline{Unknown \# 4} ($\vert \psi_{4} \rangle$). In solving for the unknown states, use the convention that the coefficient of $\vert 1 \rangle$ is chosen to be real and positive. Design an experiment to verify your results. \bigskip\bigskip \setlength{\tabcolsep}{35pt} \renewcommand{\arraystretch}{2} \centerline{Unknown $\vert \psi_{1} \rangle$} \begin{tabular}{|c|c|c|c|} \hline Probabilities & \multicolumn{3}{c|}{Axis} \\ \hline Result & x & y & z \\ \hline $S_{i}=\hbar$ & & & \\ \hline $S_{i}=0$ & & & \\ \hline $S_{i}= -\hbar$ & & & \\ \hline \end{tabular} \vfill \centerline{Unknown $\vert \psi_{2} \rangle$} \begin{tabular}{|c|c|c|c|} \hline Probabilities & \multicolumn{3}{c|}{Axis} \\ \hline Result & x & y & z \\ \hline $S_{i}=\hbar$ & & & \\ \hline $S_{i}=0$ & & & \\ \hline $S_{i}= -\hbar$ & & & \\ \hline \end{tabular} \vfill \end{document}