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SPINS Lab 1 

1. Measure the spin projection Sz along the z-axis.  This is the experiment that is ready to go 

when you start the program, as shown below.  Each atom is measured to have spin up or spin 

down, denoted by the arrows and by the   and   symbols (we will explain the symbols in 

more detail later) in the figure below.  The measured spin projections for these cases are 

Sz   2 .  Run the experiment by selecting Do 1 (ctrl-1) under the Control menu, which 

sends one atom through the apparatus.  Do this repeatedly so you can see the inherent 

randomness in the measurement process.  Try running the experiment continuously (Go) and 

using the other fixed numbers (10, 100, 1000, 10000). 

 

 

2. From the above experiments, and from what we have said in class, you will have 

surmised that the probability for a spin-up measurement is  P  1 2 , with the probability for spin 

down being   (1  P )  1 2 .  How can we be certain of this?  Let’s do a series of experiments and 

examine the statistics of the data (see appendix for information about statistics).  Reset the 

counters and run the experiment 100 times (ctrl-3).  Record the number of counts in the spin-

up detector in the table below.  Repeat this 10 times to fill up the table (I have already done the 

10 atom case).  Now put the numbers into your calculator and find the mean x  and standard 

deviation s of your data, and the standard deviation of the mean m .  Then calculate the 

experimental estimate of the probability  P , its uncertainty  P , and the relative uncertainty 

  P P .  Do again for 1000 and 10000 atom cases.  

a.  Are you convinced that   P  1 2 ?  How confident are you? 

b. How will your results change if you use a larger number for N? 

c. For any one of your data sets (corresponding to one value for N), perform the 

statistical calculations by hand and explicitly show them in your lab writeup.  
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No. of Atoms (M) 10 100 1000 10000 

 7    

 5    

 5    

 8    

Data 5    

(N = 10) 4    

 8    

 2    

 7    

 8    

x  5.90    

s 2.02    

m  0.64    

  P  0.590    

  P  0.064    

  P P  0.11    

 

3. Now set up an experiment to measure the spin projection Sz along the z-axis twice in 

succession as shown below.  You need an extra analyzer and another counter (see the SPINS 

notes for help).  Run the experiment and note the results.   
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Focus your attention on the second analyzer.  The input state is denoted   and there are two 

possible output states   and  .   

a. What is the probability that an atom entering the second analyzer (state in   ) 

exits the spin up port (state out   ) of the second analyzer?   

 

This probability is denoted in general as  P out   out in
2
, and in this specific case as 

  P   out in
2    2

.  Here we are calculating the inner product (“projection”) of the input 

and output states, and then finding the squared modulus of it. 

b. What is the probability of that atom exiting the spin down port (state  )?   

c. What conclusions can you draw from the measurements performed in this 

experiment? 

d. How can you test your conclusions?  Test it and explain your results, and show how 

they support your conclusion. 

e. What conclusions can you draw about the orthogonality of the   and   states.  Is 

this to be expected?.   

 

4. Using the same apparatus as above (#3), change the orientation directions of the 

analyzers.  You can choose directions X, Y, or Z, which are oriented along the usual xyz-axes of a 

Cartesian coordinate system (ignore the fourth direction ˆ n  for now).  When a direction other 

than Z is chosen, we use a subscript to distinguish the output states (e.g.,  y ).   

 

If we allow ourselves to use either the spin up or the spin down port of the first analyzer as input 

to the second analyzer, then there are six possible input states and six possible output states for 

the second analyzer, which are listed in the table below.  Your task is to measure the 

probabilities   P out   out in
2
 corresponding to these input and output states.  Remember that 

this is the probability that an atom leaving the first analyzer also makes it through the second 

analyzer to the appropriate detector, and not the total probability for getting from the oven to the 

detector.   

 

The experiment performed in #3 above (with both analyzers along the z-axis) gave the result 

  2 1, which is already entered in the table.  Before doing all of the other possible 

combinations, answer the following questions: 
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a. What will you get if the two analyzers have the same orientation? 

b. What will you get if they have different orientations? 

c. Can you infer a pattern you expect to see in your table? 

d. What tests do you need to convince yourself of the pattern? 

 

Now fill out the table and perform the necessary tests to verify your values. 
 

out in
2

 

     x   x   y   y  

  1      

        

x         

x         

y         

y         
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Appendix A: Statistics information 

 As you see in the experiments, the arrival of an atom at a measurement counter is a 

random process.  We would like to use the results of the experiments to determine the probability 

  P  that governs that random process.  In the cases where all the atoms exit one port, then it is 

clear that the probability is 1 for that output state and zero for the other.  However, if we measure 

3 spin up atoms and 7 spin down atoms, then we must apply statistical analysis to help us solve 

the problem.  Of course, those results would lead you to conclude that the probability of spin up 

is   P   0.3 and the probability of spin down is  P   0.7.  However, if you performed the 

experiment a second time and counted 4 spin-up atoms and 6 spin-down atoms, then you would 

want to revise your estimates. 

 The questions we thus wish to address are: What is the best estimate of the probability, 

given the experimental data, and how confident are we of that estimate? 

 To answer these questions, let's first discuss what results we expect to obtain if we know 

the probability.  Assume that a random process is governed by a probability   P , and that each 

event is independent of all other events.  Now assume that we have M of these events and we 

count the number of successes (e.g., spin-up atoms), which we call n.  The probability that we 

count n spin–up atoms out of M total atoms is determined by the binomial probability 

distribution, and is given by 

 
  
fM n   M!

M  n !n!
P n 1  P Mn . 

This probability distribution is shown in Fig. A1 for the case M = 10 and  P  0.5.  Thus, for 
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Figure A1.  Binomial distribution for 10 events. 
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example, you expect to count 3 spin-up atoms about 12% of the time ( f10 3  0.12 ) and 5 spin–

up atoms 25% of the time ( f10 5  0.25) in this case.  The most obvious conclusion is that one 

single measurement of 10 atoms is not too reliable a predictor of the probability   P  that an atom 

is measured to have spin up. 

 To reliably predict the probability we must perform repeated experiments and produce an 

experimental histogram of the data akin to the plot in Fig. A1.  From the statistical properties of 

the histogram we can then estimate the probability and determine an error or uncertainty in that 

probability. 

Theoretical values: 

 We generally characterize a probability distribution by 2 quantities: (1) the average or 

mean or expectation value, which is denoted by n  or n , and (2) the standard deviation , 

which is the square root of the variance 2.  The mean tells you where the distribution is centered 

and the standard deviation tells you about the width of the distribution.  The mean is obtained as 

a weighted average of the possible results: 

 n  n
n
 f n  , 

where f(n) is the probability of recording n counts.  The variance is defined as 

 2  n  n  2
n
 f n . 

For the binomial distribution, the mean is 

  n  MP , 

and the standard deviation is 

    MP 1 P  . 

Experimental values: 

 Experimental data is also commonly characterized by these two quantities.  Consider an 

experiment where a variable x is measured N times to yield a data set xi.  The mean x  (or 

average value) of this data is 
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x 
1

N
xi

i1

N

 . 

The standard deviation s of the data is  

s 
1

N 1
(xi  x )2

i1

N

 
1

N  1
xi

2 
N

N 1
x 2

i 1

N

 . 

To connect this firmly to our experiments, assume that the variable x represents the number of 

times a certain result was obtained in M tries (e.g., M atoms leave the oven and we measure how 

many end up as spin up).  You would thus expect (and it is true) that the best experimental 

estimates of the parameters n and   of the theoretical distribution are the experimental 

parameters x and s .  Thus the experimental estimate of the probability of obtaining the desired 

result (e.g., the spin-up result) is 

 
P 

x 

M
. 

What then is our uncertainty in this estimate?  The first guess is to use the standard deviation of 

the data (divided by M to get a probability) since it is an estimate of the standard deviation of the 

theoretical probability distribution.  However, this is not correct.  The standard deviation of the 

data (and the theoretical probability distribution) tells us how the data are distributed about the 

mean.  The best estimate of the uncertainty of the mean, often called the standard deviation of 

the mean, is 

m 
s

N
, 

which, as you might expect, tells us that we get a better estimate of the mean if we repeat the 

experiment more times. 

 A simple example may help to make this all more concrete.  Consider an experiment 

where 10 (M) coins are flipped and the number of heads (x) are counted, and the experiment is 

repeated 100 times (N).  Figure A2 represents data from the experiment.  The bars of the 

histogram tell us how many times a given number of heads occurred.  The solid circles 
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(connected by a solid line only as a guide to the eye) are the expected values given that the 

probability of a head is 1/2; this is just the binomial distribution shown in Fig. A1.  The data 

have a mean of 5.42, with a standard deviation of 1.70, which you can see gives a measure of the 

width of the distribution of measurements but is much larger than what you might guess is the 

uncertainty of the mean value.  (Note that if we do more experiments (increase N), the standard 

deviation s will not decrease, but we expect our uncertainty in the mean (i.e., the standard 

deviation of the mean) to decrease.)  From this data we would estimate the probability   P  of a 

head and its uncertainty   P  to be 

  

P  x 
M

 5.42
10

 0.542

P  m

M
 s

M N
 1.70

10 100
 0.017

 

Note that the uncertainty is about 3% of the value of the probability.  This is a common result in 

statistics:  if you measure something N times, you can generally determine it with a precision of 
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Figure A2: Experimental histogram of coin flipping. 
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1 / N .  We already saw this in the standard deviation of the mean.  In our counting experiments 

here, we are actually counting NM atoms and it shouldn’t matter whether we measure them as N 

groups of M or M groups of N, or any other combination; it's all the same data.  This is evident if 

we recall that the standard deviation of the probability distribution scales as M .  Thus we 

expect the uncertainty in the probability to scale like: 

  
P 

m

M


s

M N


M

M N


1

MN
. 

The percent uncertainty in the probability is then given by σp/p.  In the coin tossing example 

above NM = 1000 flips, so 1 / 1000  3%.  In the 10 atoms case shown in #2 of the lab above, 

NM = 100 atoms, so 1 / 100 10%. 

Note that the experimental estimate of the probability in the coin tossing example above 

differs from what we know the real value to be by about 2.5 times the standard deviation.  This is 

only expected to happen 1.5% of the time, but it can happen.  We expect our results to be within 

one standard deviation 68% of the time and within 2 standard deviations 95% of the time. 

 

 

 


