SPIN and QUANTUM MEASUREMENT (PH 425)

INSTRUCTOR GUIDE

Material covered
This course on Spin and Quantum Measurement was developed as part of the

Paradigms in Physics project at Oregon State University, which entailed a reform of the
junior level physics curriculum. The Spin and Quantum Measurement course is an
introduction to quantum mechanics through the analysis of sequential Stern-Gerlach spin
measurements. The approach and material are based upon previous presentations of spin
systems by Feynman, Sakurai, Cohen-Tannoudji, and Townsend. The postulates of
quantum mechanics are illustrated through their manifestation in the simple spin-1/2
Stern-Gerlach experiments. The organization of the postulates follows the presentation
of Cohen-Tannoudji. The table below lists the postulates briefly and their manifestations

in the spin-1/2 system as presented in the course.

Postulates of Quantum Mechanics Spin 1/2 manifestation
1)  State defined by ket [+, |-)

2)  Operators, observables S, S, H

3) Measure eigenvalues +h/2

4)  Probability [+ )

5)  State reduction ly)—|+)

6) Schrodinger equation evolution Larmor precession

The specific examples covered are: sequential Stern-Gerlach measurements of
spin-1/2 and spin-1 systems, spin precession in a magnetic field, spin resonance in an
oscillating magnetic field, neutrino oscillations, and the EPR experiment. The tools of
Dirac notation and matrix notation are used throughout the course. General two- and
three-state quantum mechanical systems are also covered as simple extensions of the spin

systems.
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The Stern-Gerlach experiments are discussed in class and are performed by the

students using a software program (SPINS) that simulates the experiments on spin-1/2

and spin-1 systems (also SU(3) for those ambitious enough!). The program permits the

students to study any configuration of sequential Stern-Gerlach measurements,

interferometers, spin precession in a magnetic field, and which-path (Welcher Weg)

detection to destroy interference. The program provides the student with unknown

quantum states that must be determined through experiment (i.e., simulation).

Goals

1)
2)
3)
4)

1)

2)

1)
2)
3)
4)
5)
6)

Primary Content/Knowledge Goals
Understand and analyze sequential Stern-Gerlach measurements on spin systems.

Analyze generic quantum problems using matrix mechanics.
Use time evolution to understand spin precession.

Analyze generic time dependent quantum problems using matrix mechanics.

Analytical/Metacognitive Goals
To give the students an immersion into the quantum spookiness of quantum

mechanics by focusing on simple measurements that have no classical
explanation.
To give the students experience with the mechanics of quantum mechanics in the

form of Dirac bra-ket notation and matrix representations.

Since these goals are so at odds with classical mechanics, the simplicity of the
spin-1/2 system allows the students to focus on these new features instead of the

complexity of the problem at hand.

Skills Objectives

Use bra-ket notation to calculate probabilities in Stern-Gerlach experiments.
Use matrix notation to calculate probabilities in Stern-Gerlach experiments.
Use matrix notation to analyze generic two-level quantum systems.

Find eigenvalues and eigenvectors of matrices representing operators.

Use the projection postulate to analyze sequential Stern-Gerlach experiments.

From Stern-Gerlach measurements, deduce initial state vectors.
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7) Use Schrodinger equation to analyze time dependent spin problems.

8) Use Schrodinger equation to analyze general time dependent QM problems.

Material not covered
We have deliberately left out some material, either for lack of time or for

pedagogical reasons. We do not cover systems with spin greater than 1. Spin 3/2, 2, etc
require more complex calculations, but provide no additional concepts. Rotation
operators are left out because they are mathematically abstract and can also lead to too
much geometric thinking. With more time, they could be introduced as in Townsend

(T p.28), and then used to show that the time evolution in spin precession is the same as a
simple angular rotation (T p.97). We also don't introduce raising and lowering operators,
due to lack of time and lack of applications later in the course. But they are used in the
Central Forces Paradigm when angular momentum is discussed.

There are other topics that could be covered with more time. Density matrices
provide another calculational tool and can be used to describe systems that are not pure
states (C pp. 437-442). Density matrices are a key aspect of the Energy and Entropy
Paradigm. Perturbation theory can often be simplified to the two levels of interest and

then the two-level results can be used (C pp. 405-415).

Important emphases
Calculate states from measurements: Homework problems based on the SPINS

software ask students to determine quantum states from measured probabilities in
computer simulations. This is the opposite of the common problem of finding
probabilities from given states, and is more similar to what physicists have to do in the
lab.

Projection postulate and projection operators: We emphasize the projection
postulate (p. 46 of text) and make use of the projection operator to find the state after a
measurement. Most texts simply state that the wave function is reduced and don't use the
formulaic statement of the projection postulate.

Spin-1/2 vs. spin-1 distinctions: The use of the unknown states in the SPINS

program leads students to note that the spin-1/2 state |+>n is the most general state for a
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spin-1/2 system (i.e., any state in the vector space can be written as

|+>n = cos§|+> +sing e |—> with appropriately chosen 0 and ¢), whereas the spin-1 states

1,

states in the spin-1 system that cannot be written as a projection eigenstate of 1, 0, or —1

O)n , Or |—1>n are not the most general states in the spin-1 system (i.e., there are

along an axis). In the spin-1/2 case, this means that it is always possible to align the S,

detector in a way that the probability of a measurement is 100%. On the other hand, the
third unknown state in the spin-1 case is |y,) = &[1) - £|0) - &[-1) , and it is not
possible to align the S, detector to get a 100% measurement. One way to understand this
distinction is to note that the S, detector has two degrees of freedom (0 and ¢). A general
state in the spin-1/2 case can be written as |y) = a|+)+b|-), where a and b are complex

and so represent four numbers. However, the state must be normalized and an overall

phase has no physical significance, so the state can be rewritten as
lw)=lal|+)+/1-|a|’ €?|-), showing that there are really only two degrees of freedom,
matching the two degrees of the eigenstate |[+) =cos%|+)+sin%¢”|—). However, the

general state in the spin-1 case is |l//> =al1)+b|0)+ c|-1), with six numbers to specify it.

The conditions on normalization and overall phase reduce this to

lw)=al|1)+[b|e [0)+1=|al* —|b["e® |1} , with four degrees of freedom, which is

more than the eigenstates of §,.

Mixtures vs superpositions: We discuss the important distinction between a
coherent superposition of states and a mixture of states (which has a random phase) (p. 19
of text). We don't have any examples or problems related to this, but it could be a useful
addition. [Ref. 1]

Bell inequalities: We cover the Einstein-Podolsky-Rosen (EPR) paradox and
Bell inequalities as an application of what can be done with the new tools students have
learned. [Refs. 2, 3]

Neutrino oscillations: We do the modern example of neutrino oscillations as an
example of a time dependent application, rather than the standard example of the

ammonia maser. [Refs. 4, 5, 6]
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Course Activities

Lecture
The course is roughly divided into 3 parts corresponding to the 1* three chapters

of the text. The content of the three parts is summarized below. The breakdown of the
material in hourly blocks as presented in the course is detailed in the appendix.

Part 1:

The six quantum mechanical postulates are introduced immediately, but their
explanations are reserved until needed in the context of the spin examples. The Stern—
Gerlach (SG) experiment is explained and then four experiments using sequential
measurements are presented. The concept of a ket as a simple way to label the output of
a SG magnet is introduced and the 1% postulate (state defined by ket) is explained. The
mathematics of kets is reserved for later. The four SG experiments introduce the new
quantum ideas of state preparation, state analysis, probabilistic or random measurement
results, incompatible measurements, interference, and probability amplitudes. (Lab 1)
After qualitative discussions of the 4 experiments, the mathematics of bras and kets is
explained. The 4" postulate (probability) and the inner product are explained. These
allow the students to analyze the first 2 experiments quantitatively. The results of
experiment 2 lead to the idea of superposition, which is contrasted with the idea of a
mixture of states (as opposed to a pure quantum state). Matrix notation (for bras and
kets) is introduced and used to analyze the experiments again. Both bra-ket and matrix
calculations are done as example of the two techniques. The extension of these ideas to
general quantum systems is introduced. (Lab 2)

Part 2:

The idea of using operators to represent physical observables is introduced along
with their representation as matrices. Postulates 2 (operators, observables) and 3
(measure eigenvalues) are explained at this point. The importance of eigenvalues and
eigenvectors is explained and the students are shown how to "diagonalize" a matrix. The
students work with the spin component operators S, etc. in a variety of homework

problems and labs. The projection operators are introduced as another example of a
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quantum mechanical operator and their use in the reduction postulate (postulate 5) is
explained. This permits quantitative analysis of experiments 3 and 4. Measurement
expectation values and standard deviations are discussed and related to commuting
observables and the uncertainty principle. S is introduced as another important operator.
The extension to spin 1 is discussed. (Lab 3)

Part 3:

The Schrodinger equation (postulate 6) is introduced and the importance of
energy eigenstates as stationary states is discussed. A recipe is given for solving time
dependent problems. This is applied to spin precession and the Larmor frequency is
derived. (Lab 4) Rabi's formula is derived for the spin-1/2 system and then used in other
problems: neutrino oscillations and magnetic resonance.

The course ends with a discussion of the EPR paradox, Bell's inequalities, and

Schrédinger's cat paradox.

Computer Laboratory
The SPINS computer lab is conducted on the 2 hour days (Tues, Thurs), but only

1 of the 2 hours is used for the lab. The other hour is for lecture. This should make it
easy to adapt to more normal schedules. The SPINS program is an updated Java version
of a program originally written with Pascal on a Mac. [Ref. 7] The Java version can be
run as a standalone application or as an applet from within a network browser. The
spinhelp file has tips on using the program, and the javahelp file has tips on running the
java code. Further details on each lab are available in the instructor versions of the lab
handouts.

Lab 1 (day 2): Introduction to successive Stern-Gerlach spin-1/2 measurements.
Randomness of measurements is demonstrated and students use statistical
analysis to deduce probabilities from measurements. The results
demonstrate the orthonormality of the S, basis kets and are used to deduce
the S, and S, basis kets in terms of the S, kets.

Lab 2 (day 4): Deduce quantum state vector from measurements of spin
projections. Unknown states are easy at first and then become
progressively harder. Students are given a recipe for solving for unknown

states. This procedure is chosen to be in concert with the specific

6 1.23.12



unknown states in the program. Unknown #1 (|+> ) is obvious from the
data and is trivial to solve for with the recipe. Unknown #2 (|—)y) is also

obvious from the data, but is not so trivial to solve for with the recipe.
The recipe forces students to take the longest route to the solution so they
get practice with all the trigonometry and complex number arithmetic.
Solutions to unknowns can be checked by using a spin analyzer aligned
along a new direction. New unknown states can be made with the User
State option, a spin analyzer aligned along a new direction, or by spin
precession with the magnet, which they don't know about yet, but you can
tell them what to do (so it’s a black box). This latter option provides
information for later problems with spin precession (Lab 4). Use the
projection postulate to calculate expected results in an interferometer.
Perform which-path experiments to see perturbative effect of
measurement. Spin unknown states can be changed in Java code if desired

(definitions of unknown states start at line 215 in Experiment.java file).

Lab 3 (day 7): Repeat Labs 1 (part 4) and 2 (parts 2 and 3) for the spin-1 system.

Lab 4 (day 9): Spin precession in magnetic field. No worksheets handed out.

Students asked to design experiment to figure out how magnet affects
spins. They must take data, analyze, develop hypothesis, test hypothesis,
and determine scale for magnetic field parameter displayed on screen.

They can get a head start if they have done the magnet part of Lab 2.

Lab wrap up (day 12): Simply make sure everyone knows all the workings of the

program, especially the unknown states and how to confirm them with an

aligned detector.

Homework

Bra-ket exercises, spin projection probabilities
Matrix exercises, change of bases, commutators, SPINS Lab unknowns,

generic QM 3-level system
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HW 3:  Spin precession, generic QM 2-level time-dependent system, spin 1
interferometer (could be in HW2), generic QM 3-level time-dependent
system

At the beginning of the term a set of key problems (2.22, 2.23, 3.7, and

3.13) is handed out that is linked to the four primary content goals of the course.

These same problems are part of the homework during the course. These four

types of problems are used again in the final exam.

Final Exam
In our course we give a two-hour final exam on the Monday evening after

the three-week course. The exam has four questions similar to the four key

problems handed out at the beginning of the course. These problems test the

students on the four primary course goals:

1) Understand and analyze sequential Stern-Gerlach measurements on spin
systems.

2) Analyze generic quantum problems using matrix mechanics.

3) Use time evolution to understand spin precession.

4) Analyze generic time dependent quantum problems using matrix mechanics.

Necessary Preparation for this Paradigm

Physics Concepts
1) Understanding of behavior of a magnetic dipole in a magnetic field (General

Physics with Calculus PH 213).
2) Resonance ideas (Oscillations Paradigm PH 421).

Mathematical Techniques
1) Familiarity of vector concepts of orthogonality, normality, and scalar products.

2) Ability to find the determinant of a matrix.
3) Ability to solve for eigenvalues and eigenvectors of 2 x 2 and 3 x 3 matrices.
These ideas are covered in the mathematical preface at the beginning of the term

(see appendices B and C).
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Current Problems

Problems encountered

Compared to other Paradigms courses, this one has more lecturing and could use
more group activities. One thing we have tried is to have students work on some of the
derivations in the text (e.g., p. 17 and p. 21).

Often students will take data in labs and then run, without taking time to solve or
begin solving problems. The labs do require more time than we give them in the class
period, but it is important that they get started with the calculations in the class.

Other ideas tried

An analogy can be drawn between a spin-1/2 system and polarized light (S p. 6,
T p. 51). In the first year, we spent one session doing an optics experiment to illustrate
this analogy. We did it early in the course and found that it didn't add much value and
could confuse some students.

One year we tried starting the course in the computer lab with the SPINS
program, but that turned out to be too early to be useful.

Student problems and misunderstanding

Some students rely too strongly on a classical or geometric view of spin.

Many students have trouble with the complex arithmetic. For example, many do
not know that they can use a+ib or re' as they find convenient. We stress the amplitude-
phase approach since it leads to simple trig and is better practice for other complex
problems.

The 2 x 2 matrix algebra of the spin-1/2 system is often so easy that students
know the answers for the simple problems, but don't really know how to work out the
algebra when a slightly harder problem is posed. To help those students we have given a
recipe for the solutions of the SPINS lab unknown states.

Some students have trouble recognizing that basis vectors are always unit vectors
when written in their own basis; i.e., if I say there is a basis |1),|2), they often don't

associate this with ( (1) ],( (1) ] Problem 2.23 is an example of where this arises.

In the labs, some students will record actual numbers of counts rather than
probabilities.

Students are often taught the proper matrix diagonalization technique in math
classes and have to be reminded that we only need to find the eigenvalues and
eigenvectors, and we stop short of finding the transformation that diagonalizes the matrix
and actually producing the diagonal matrix (since that would be in a different basis than
we are working in).
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Links to Other Paradigms/Capstones
1) Bra-ket notation used in Central Forces (PH 426) and Energy and Entropy

(PH 423).

2) Eigenvalue and eigenvector ideas used in Central Forces (PH 426) and Rigid
Bodies (PH 428)

3) SPINS software used in Energy and Entropy (PH 423).
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Appendix

PH 425: Brief notes on class sessions

Lecture ideas, topics, key points, activities, connections to other ideas, broken down by
hours in our course as taught at OSU. We have 15 class sessions and 21 total class hours
since we have six 2-hour sessions on T/Th.

Hour Text pp. Material

1 1-5

2 5-11
3

4 11-19
5 19-28
6

7 34-41

Stern-Gerlach expt, magnetic moment, force in inhomogeneous field,
SG results — two beams, Postulate 1

Sequential SG measurements, Expt. 1, Expt. 2, randomness, Expt. 3,
incompatible observables, Expt. 4, interference, state vector, ket

Do SPINS Lab 1

Bras and kets, basis vectors, inner product, bra+ket=bracket, square to
find probability, Postulate 4, Analyze Expts. 1 & 2, use data from
Expt. 2 to find S, eigenkets in terms of S, states,

Analyze Expts. 3 &4, discuss important distinction between coherent
superposition of states and mixture of states (which we won't use in
course), introduce matrix notation as bookkeeping for amplitudes of
states, introduce representation notation, analyze Expt. 2 with second
analyzer along y-axis as practice in using matrix notation and as way
to find S, eigenkets, relate bra-ket notation to generic QM two-state
system.

Do SPINS Lab 2

Operators, Postulate 2, Postulate 3, eigenvalue equation, eigenvalues,
eigenvectors, find S, matrix from eigenvalue equations, generic matrix
elements, matrix diagonalization procedure (even though never
complete diagonalization!), Hermitian operators, action on bras and
kets.
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10

11

12

13

14

15

16

17

41-54

54-63

68-71

72-76

76-78

78-84

84-87

Other operators?, ket-bra as operator, Projection operators, Postulate 5,
measurement perturbation, how to do measurements, probabilities,
expectation values, do simple examples, standard deviation, do same
simple examples

Commutator, commuting observables, simultaneous eigenstates,
uncertainty relation, S* operator, spin vector model, spin-1 example

Do SPINS Lab 3

Schrodinger equation and time evolution, Postulate 6, Hamiltonian,
energy eigenstates, energy basis importance, time evolution simply
written in terms of energy basis, stationary states, relative phase, Bohr
frequency

Application of time evolution to spin 1/2, magnetic dipole in magnetic
field, spin Hamiltonian, H already diagonal, stationary states,
precessing states

Do SPINS Lab 4

Larmor precession, Larmor frequency, relation to classical torque,
time dependent probabilities

Apply additional field along x-axis to flip spins aligned along B field
(z-axis), calculate new Hamiltonian, now not diagonal, diagonalize H,
calculate probability of spin flip, Rabi's formula

Apply time dependent results to other 2-level systems, Neutrino
oscillations, mass eigenstates vs weak eigenstates, mixing angle,
relativistic neutrino energy, calculate probability of electron neutrino

to muon neutrino oscillation

Finish computer labs and make sure everyone understood all aspects
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18 87-93

19,20 97-105

21

Magnetic resonance, how do we make spin flip without applying huge
additional field?, explain first with classical picture in rotating frame,
apply rotating field, get time dependent Hamiltonian, solve by using
rotating state vector to take time dependence out of equations, then get
time-independent equations for new vector, use old Rabi solution, get
Rabi flopping equation with resonance characteristic, discuss relation
to NMR

Class discussion on EPR Paradox, Bell's inequalities, and
Schrédinger's cat, class handouts

wrap up and review
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