\documentclass[10pt]{article} \usepackage{graphicx, multicol, amsmath, wrapfig} \pagestyle{empty} \parindent=0pt \parskip=.1in \newcommand\hs{\hspace{6pt}} \begin{document} \centerline{\bf Eigenvalues and Eigenvectors} \bigskip Each group will be assigned one of the following matrices.\\ $$ A_1\doteq \left(\begin{array}{cc} 0&-1\\ 1&0\\ \end{array} \right) \hs A_2\doteq \left(\begin{array}{cc} 0&1\\ 1&0\\ \end{array} \right) \hs A_3\doteq \left(\begin{array}{cc} -1&0\\ 0&-1\\ \end{array} \right) $$ \medskip $$ A_4\doteq \left(\begin{array}{cc} a&0\\ 0&d\\ \end{array} \right) \hs A_5\doteq \left(\begin{array}{cc} 3&1\\ 1&3\\ \end{array} \right) \hs A_6\doteq \left(\begin{array}{cc} 0&0\\ 0&1\\ \end{array} \right) \hs A_7\doteq \left(\begin{array}{cc} 1&1\\ 2&2\\ \end{array} \right) $$ \medskip $$ A_8\doteq \left(\begin{array}{ccc} -1&0&0\\ 0&-1&0\\ 0&0&-1\\ \end{array} \right) \hs A_9\doteq \left(\begin{array}{ccc} -1&0&0\\ 0&-1&0\\ 0&0&1\\ \end{array} \right) $$ \medskip $$ S_x\doteq \frac{\hbar}{2}\left(\begin{array}{cc} 0&1\\ 1&0\\ \end{array} \right) \hs S_y\doteq \frac{\hbar}{2}\left(\begin{array}{cc} 0&-i\\ i&0\\ \end{array} \right) \hs S_z\doteq \frac{\hbar}{2}\left(\begin{array}{cc} 1&0\\ 0&-1\\ \end{array} \right) $$\\ For your matrix: \begin{enumerate} \item Find the eigenvalues. \item Find the (unnormalized) eigenvectors. \item Normalize your eigenstate. \item Describe what this transformation does.\\ \end{enumerate} When you are finished, write your solutions on the board. \\ If you finish early, try another matrix with a different structure, \emph{i.e.} real vs. complex entries, diagonal vs. non-diagonal, $2\times 2$ vs. $3\times 3$, with vs. without explicit dimensions. \vfill \leftline{\textit{ by Corinne Manogue, Kerry Browne, Elizabeth Gire, David McIntyre\hfill}} \leftline{\copyright 2010 Corinne A. Manogue} \end{document}