
Student Interpretations of Partial Derivatives

Background	Question 1			
We are developing a learning progression [1] for partial derivatives; one aspect is taking research "snapshots" at different points along the progression, such as:	For a function <i>h</i> , the derivative of <i>h</i> with respect to <i>x</i> is sometimes known as a <i>rate of change</i> . Explain the meaning of			
 How do student ideas about derivatives and partial derivatives evolve as they progress through undergraduate math and physics? (3-question survey given in three courses) 	rate of change in this context. <i>Rate of change is slope of the function</i>			
Learning Progression for Partial Derivatives Vec Calc Thermo E&M	any point along lir			
Int MechCInt MechCF (N=29)EM (N=30) Start of the ParadigmsEnd of the ParadigmsMC (N=19) Multivariable calculusV	expresses how mu			

Th	eoretical p	perspective	– Co 1
Dracass object	Graphical	Verbal	Sym
Process-object layer	Slope	Rate of	Differ
	biope	Change	Quot
		"average	
Ratio		rate of	$\frac{f(x+\Delta x)}{\Delta}$
		change"	
Limit		"instantaneous "	$\lim_{\Delta x \to 0}$
Function		" at any point/time"	f'(x)

Conclusions from comparing student work to theoretical perspective

- Student interpretations tended to be verbal or symbolic in nature.
- Few students discussed the derivative as a *ratio* many students wrote *dh/dx*, but this seemed to be common notation rather than division.
- Almost no students discussed the derivative as an explicit limit but 30-40% of physics students did use words like "small" or "instantaneous."
- Few used language that distinguished between the derivative at a point vs. as a function.
- Our results are only indicative of students' first-level interpretations further research is necessary to explore the concept image of these student populations.

did not disc

Acknowledgements: We thank the Paradigms research project, especially Tevian Dray, Elizabeth Gire, and David Roundy, and the students who participated! This work was supported in part by NSF grant DUE-1323800.

Paul J. Emigh Corinne A. Manogue

Question 2

During a previous class period, you were provided with a plastic surface, which is a representation of a function h(x, y). Explain the meaning of the *derivative* of *h* with respect to *x* in this context.

The contour graph also represents a function h(x, y). Explain the meaning of the *derivative* of *h* with respect to *x* in this context.

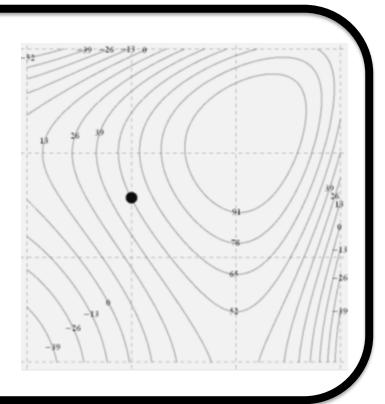
nourous rate		Q1	Q2	Q3	•	More pr
ntaneous rate of change.	MC	53%	42%	42%	•	Only ab
	EM	17%	27%	17%		support
	CF	28%	20%	20%	•	Few dre
rivative of a		Q1	Q2	Q3	•	More pr
rivative of a captures the	MC	Q1 37%	Q2 37%	Q3 37%	•	- 1
-	MC EM				•	•

old y	
stant	

60% 66%


CF 82%

stant $change$ $direction$ $change as x isbetween contour lines"How quickly and in whatdirection the value of h wouldchange as x (and only x) ischanged by a given amount.""How quickly and in whatdirection the value of h wouldchange if you moved only in thex-direction."u = 1anguage like "hold y constant"Question 2Question 3ent, especially on Question 2.who talked about moving in amay be thinking graphically, butv graphs.MCEMCFHold y constantHold y constant16%33%41%Only change x0%7%7%In a direction32%43%38%Cross-section11%3%3%Did not discuss26%17%21%$		What to hold constant					C	T.	S i
C h a h g e"How much the distance change as x is y is constant.""How much the distance between contour lines changes as x (and only x) is changed by a given amount.""How quickly and in what direction the value of h would change if you moved only in the x-direction."anguage like "hold y constant" ent, especially on Question 2. tho talked about moving in a may be thinking graphically, but V graphs.Question 2 MCQuestion 2 CFHold y constant Only change x (ross-section 11%)MCEMCF 5%Mode about moving in a may be thinking straphically, but V graphs.Nonly change x (11%)0%Mode about moving in a may be thinking straphically, but V graphs.Nonly change x (11%)0%MaxNonly change x (11%)11% (11%)MaxNonly change x (11%)11% (10%)MaxNonly change x (11%)11% (10%)MaxNonly change x (11%)10% (10%)	old y			I	n a				S
change as x is between contour lines direction the value of h would y is constant." changes as x (and only x) is change if you moved only in the changed by a given amount." x-direction." anguage like "hold y constant" Question 2 Question 3 ent, especially on Question 2. /ho talked about moving in a may be thinking graphically, but // graphs. ag number of physics students Did not discuss 26% 17% 21% 47% 20% 10%	stant	c h a n g	e d	ire	cti	i o n		ect	
MC EM CF MC EM CF MC MC Mc EM CF Mc EM Mc Mc Mc EM CF Mc EM Mc Mc Mc Mc EM CF Mc Mc Mc Mc Mc Mc EM CF Mc <td>•</td> <td>between contour l changes as x (and on</td> <td>ines direct ly x) is change</td> <td>tion the e if you</td> <td>value oj moved o</td> <td>f h would only in the</td> <td>r S</td> <td>x Jah</td> <td>dh dh dx</td>	•	between contour l changes as x (and on	ines direct ly x) is change	tion the e if you	value oj moved o	f h would only in the	r S	x Jah	dh dh dx
Hold y constant 16% 33% 41% 5% 3% 24% y ho talked about moving in a may be thinking graphically, but y graphs.Hold y constant 16% 33% 41% 5% 3% 24% Only change x 0% 7% 7% 11% 3% 7% In a direction 32% 43% 38% 11% 53% 48% Cross-section 11% 3% 3% 16% 10% 0% Did not discuss 26% 17% 21% 47% 20% 10%	anguage like "h	old y constant"		Ç	Juestion	2	(Question	3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ent, especially o	n Question 2.		MC	EM	CF	MC	EM	CF
may be thinking graphically, but v graphs.Only change x 0%7%11%3%7%In a direction32%43%38%11%53%48%In a direction11%3%3%16%10%0%In a direction11%3%3%16%10%0%In a direction11%3%3%16%10%0%	vho talked abour	t moving in a	Hold y constant	16%	33%	41%	5%	3%	24%
In a direction 32% 43% 38% 11% 53% 48% In a direction 11% 3% 3% 11% 53% 48% In a direction 11% 3% 3% 11% 53% 48% In a direction 11% 3% 3% 16% 10% 0% In a direction 11% 3% 3% 16% 10% 0% In a direction 11% 3% 3% 16% 10% 0% In a direction 11% 3% 3% 3% 16% 10% 0% In a direction 11% 3% 3% 3% 16% 10% 0% In a direction 11% 3% 3% 16% 10% 0% In a direction 10% 10% 10% 10% 10%	nay be thinking graphically, but		Only change x	0%	7%	7%	11%	3%	7%
ing number of physics students $\frac{\text{Cross-section}}{\text{Did not discuss}} \frac{11\%}{26\%} \frac{3\%}{17\%} \frac{3\%}{21\%} \frac{16\%}{47\%} \frac{10\%}{20\%} \frac{0\%}{10\%}$			In a direction	32%	43%	38%	11%	53%	48%
Did not discuss $\frac{126\%}{120\%} = \frac{120\%}{120\%} = \frac{120\%}{120\%} = \frac{120\%}{120\%} = \frac{120\%}{100\%} = \frac{100\%}{100\%}$		vaige students	Cross-section	11%	3%	3%	16%	10%	0%
			Did not discuss	26%	17%	21%	47%	20%	10%


Conclusions from open-coding analysis of student work

• Math students favor *slope* while physics students favor *change*.

• Students' interpretations at the end of a year of junior physics are mostly the same as at the start of the year. • The "how much *h* changes" language was incredibly common (~50% of physics students); while it is not present in physics or calculus textbooks, it may be common language among physics experts. • Students were not more likely to interpret the derivative graphically in graphical contexts. • Discussions of what to hold constant were somewhat different given the two graphical contexts, but student language tended to be symbolic rather than graphical.

Question 3

prevalent among math than physics students. bout half of these students drew a graph in t of their answer.

ew or discussed a tangent line.

prevalent among physics than math students. ts commonly used the phrase "how much" the on changes across all questions.

• Few students discussed the derivative as a ratio.

