## Student Interpretations of Partial Derivatives

## Background

We are developing a learning progression [1] for partial derivatives; one aspect is taking research "snapshots" at different points along the progression, such as:

* How do student ideas about derivatives and partial derivatives evolve as they progress through undergraduate math and physics?
(3-question survey given in three courses)


## Learning Progression for

EM ( $\mathrm{N}=30$ ) Start of the Paradigms

Question 1
For a function $h$, the derivative of $h$ with respect to $x$ is sometimes known as a rate of change. Explain the meaning of rate of change in this context.

Question 2
During a previous class period, you were provided with a plastic surface, which is a representation of a function $h(x, y)$. Explain the meaning of the derivative of $h$ with respect to $x$ in this context.

## Question

The contour graph also represents a function $h(x, y)$. Explain the meaning of the derivative of $h$ with respect to $x$ in this context.


CF ( $\mathrm{N}=29$ )
End of the Paradigms



|  | Q1 | Q2 | Q3 |
| :---: | :---: | :---: | :---: |
| MC | $53 \%$ | $42 \%$ | $42 \%$ |
| EM | $17 \%$ | $27 \%$ | $17 \%$ |
| CF | $28 \%$ | $20 \%$ | $20 \%$ |

- More prevalent among math than physics students Rate of change is the slope of the function at any point along line $h$." "The rate of change
expresses how much $h$
changes as x changes." "The derivative of a
function captures the
instantaneous change of the function.'

|  | Q1 | Q2 | Q3 |
| :---: | :---: | :---: | :---: |
| MC | $37 \%$ | $37 \%$ | $37 \%$ |
| EM | $70 \%$ | $60 \%$ | $47 \%$ |
| CF | $82 \%$ | $60 \%$ | $66 \%$ |

- More prevalent among physics than math students

Students commonly used the phrase "how much" the function changes across all questions.

- Few students discussed the derivative as a ratio.

| Theoretical perspective - Concept image [3-4] |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Process-object layer | Graphical | Verbal | Symbolic | Numerical | Physical |
|  | Slope | Rate of Change | Difference Quotient | Ratio of Changes | Measurement |
| Ratio |  | "average rate of change" | $\frac{f(x+\Delta x)-f(x)}{\Delta x}$ | $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ <br> numerically |  |
| Limit |  | "instantaneous | $\lim _{\Delta x \rightarrow 0} \cdots$ | ... with $\Delta x$ small |  |
| Function |  | "... at any point/time" | $f^{\prime}(x)=\cdots$ | $\begin{aligned} & \text {... depends } \\ & \text { on } x \end{aligned}$ | tedious repetition |

## Conclusions from comparing student work to theoretical perspective

- Student interpretations tended to be verbal or symbolic in nature.
- Few students discussed the derivative as a ratio - many students wrote $d h / d x$, but this seemed to be common notation rather than division.
- Almost no students discussed the derivative as an explicit limit - but 30-40\% of physics students did use words like "small" or "instantaneous."
- Few used language that distinguished between the derivative at a point $v s$. as a function. Our results are only indicative of students' first-level interpretations - further research is necessary to explore the concept image of these student populations.

"How does h change as $x$ is wiggled and $y$ is constant."


## change

"How much the distance between contour lines changes as $x$ (and only $x$ ) is changed by a given amount."

Common language like "hold $y$ constant" was prevalent, especially on Question 2. Students who talked about moving in a direction may be thinking graphically, but rarely drew graphs.
A surprising number of physics students did not discuss this idea at all!

|  | Question 2 |  |  |
| :---: | :---: | :---: | :---: |
|  | MC | EM | CF |
| Hold $y$ constant | $16 \%$ | $33 \%$ | $41 \%$ |
| Only change $x$ | $0 \%$ | $7 \%$ | $7 \%$ |
| In a direction | $32 \%$ | $43 \%$ | $38 \%$ |
| Cross-section | $11 \%$ | $3 \%$ | $3 \%$ |
| Did not discuss | $26 \%$ | $17 \%$ | $21 \%$ |


"How quickly and in what direction the value of $h$ would change if you moved only in the $x$-direction."
Question 2
Question 3

| Question |  |  |
| :---: | :---: | :---: |
| MC | EM | CF |
| $5 \%$ | $3 \%$ | $24 \%$ |
| $11 \%$ | $3 \%$ | $7 \%$ |
| $11 \%$ | $53 \%$ | $48 \%$ |
| $16 \%$ | $10 \%$ | $0 \%$ |
| $47 \%$ | $20 \%$ | $10 \%$ |

## Conclusions from open-coding analysis of student work

- Math students favor slope while physics students favor change.
- Students' interpretations at the end of a year of junior physics are mostly the same as at the start of the year.
- The "how much $h$ changes" language was incredibly common ( $\sim 50 \%$ of physics students); while it is not present in physics or calculus textbooks, it may be common language among physics experts.
- Students were not more likely to interpret the derivative graphically in graphical contexts.
- Discussions of what to hold constant were somewhat different given the two graphical contexts, but student language tended to be symbolic rather than graphical.

[^0]
[^0]:    Acknowledgements: We thank the Paradigms research project, especially Tevian Dray, Elizabeth Gire, and David Roundy, and the students who participated! This work was supported in part by NSF grant DUE-132380o.

