ACKNOWLEDGMENTS

Amirhossein Davoudi, Jessica Rood, Stephanie V. Chasteen and Steven J. Pollock. Translated a paper from a non-English language.

REFERENCES

Cree Brown, Philadelphia University, Philadelphia, PA 19104.

NEW CATEGORIES OF RESPONSES

- **Regular**
 - (A) clear and complete, correct answer with the correct answer
 - (B) clear and complete, correct answer with an incorrect answer
 - (C) correct answer with no explanation
 - (D) full credit with no answer
 - (E) full credit with a wrong answer

DATA ANALYSIS (USING NEW CATEGORIES OF RESPONSES)

EQUIPMENT

1. A charged insulating solid sphere of radius R with a uniform charge density that depends on the distance from the origin, \(r = 100a \).
2. A charged insulating solid sphere of radius R with a uniform charged in the center of a conducting sphere, centered on the origin, with a non-
3. A charged insulating solid sphere of radius R with a uniform charge density that depends on the distance from the origin, \(r = 100a \).
4. A charged insulating solid sphere of radius R with a uniform charge density that depends on the distance from the origin, \(r = 100a \).

EXPLANATION

1. The rubric, which gives more credit for terminology, emphasizes terminology.
2. The rubric in its current form does not provide in-

CONCLUSIONS

1. The rubric is currently being used to grade the exam.
2. The rubric is currently being used to grade the exam.
3. The rubric is currently being used to grade the exam.
4. The rubric is currently being used to grade the exam.

DATA ANALYSIS (USING NEW CATEGORIES OF RESPONSES)

EQUIPMENT

1. A charged insulating solid sphere of radius R with a uniform charge density that depends on the distance from the origin, \(r = 100a \).
2. A charged insulating solid sphere of radius R with a uniform charge density that depends on the distance from the origin, \(r = 100a \).
3. A charged insulating solid sphere of radius R with a uniform charge density that depends on the distance from the origin, \(r = 100a \).
4. A charged insulating solid sphere of radius R with a uniform charge density that depends on the distance from the origin, \(r = 100a \).

EXPLANATION

1. The rubric, which gives more credit for terminology, emphasizes terminology.
2. The rubric in its current form does not provide in-

REFERENCES

Cree Brown, Philadelphia University, Philadelphia, PA 19104.

NEW CATEGORIES OF RESPONSES

- **Regular**
 - (A) clear and complete, correct answer with the correct answer
 - (B) clear and complete, correct answer with an incorrect answer
 - (C) correct answer with no explanation
 - (D) full credit with no answer
 - (E) full credit with a wrong answer

DATA ANALYSIS (USING NEW CATEGORIES OF RESPONSES)

EQUIPMENT

1. A charged insulating solid sphere of radius R with a uniform charge density that depends on the distance from the origin, \(r = 100a \).
2. A charged insulating solid sphere of radius R with a uniform charge density that depends on the distance from the origin, \(r = 100a \).
3. A charged insulating solid sphere of radius R with a uniform charge density that depends on the distance from the origin, \(r = 100a \).
4. A charged insulating solid sphere of radius R with a uniform charge density that depends on the distance from the origin, \(r = 100a \).

EXPLANATION

1. The rubric, which gives more credit for terminology, emphasizes terminology.
2. The rubric in its current form does not provide in-