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We present results from an investigation into how students interpret partial derivatives at different points in 

their undergraduate career.  We gave a long-answer survey to students that asked them to explain the 

meaning of the derivative in three different contexts.  The survey was given near the beginning of a 

multivariable calculus class and at the start and end of a year-long junior-level physics sequence.  We found 

two common overarching interpretations of the derivative: one corresponding to “slope” and the other to 

“change.”  We discuss the results using a concept image framework based on the work of Zandieh.  We also 

note differences in the response patterns of the students in the mathematics and physics courses and 

differences in how students interpret the derivative across different representations of functions. 

 

I. INTRODUCTION 

Physics is filled with functions of multiple variables, so 

the derivatives used in physics are often partial derivatives, 

in which some variables are held constant.  While partial 

derivatives are relevant to nearly all of physics, different 

physics subfields tend to use, calculate, and interpret them 

in very different ways.  For example, in electromagnetism 

the variables tend to be spatial, such as Cartesian (x, y, z) or 

spherical coordinates (r, θ, φ).  In thermodynamics, the 

variables (e.g., pressure and entropy) are not spatial, and it 

is common to find partial derivatives with respect to one 

variable while holding virtually any other variable(s) 

constant.  Furthermore, it is not possible in thermodynamics 

to hold all other variables constant.  These practices do not 

always match how partial derivatives are first introduced in 

multivariable calculus.  Thus, there is a need to explore 

student understanding of partial derivatives, and especially 

to identify how student thinking changes over time and how 

it differs in various mathematics and physics contexts.   

Mathematics education researchers have previously 

examined student understanding of derivatives [1-2].  One 

particularly relevant example is Zandieh’s theoretical 

framework [3], which uses Vinner’s concept image [4] to 

characterize student ideas about derivatives, and which has 

been extended to become more relevant for research in 

physics contexts [5-6].  In addition, physics education 

researchers have begun investigating student understanding 

of derivatives in introductory physics courses [7-8] and in a 

few upper-division physics courses [9-10]. 

In this article, we present results from an investigation 

into progressions of student ideas about partial derivatives 

in calculus and upper-division physics.  We focus on 

students near the beginning of two different courses: 

multivariable calculus and upper-level electro-magnetism.  

Our primary goal is to identify student interpretations of 

partial derivatives.  To address this goal, we examined 

student interpretations of ordinary derivatives as well as 

partial derivatives.  Of particular interest are differences 

both in the interpretations associated with different 

representations of multivariable functions and between 

students belonging to each population of interest.  

We focus in this article on student understanding in 

mathematical contexts (that is, without a physical context).  

This research provides a benchmark for student thinking 

about partial derivatives prior to upper-division physics 

instruction, laying the groundwork for comparing student 

interpretations at different instructional stages and 

observing patterns or changes over time.  It may also guide 

instructors and curriculum developers looking to improve 

upper-level physics courses by revealing what students 

think about derivatives at the start of their classes. 

We begin in section II by describing our methods for 

examining student thinking.  Section III gives the different 

interpretations of partial derivatives we identified.  In 

section IV, we discuss our results from a theoretical 

perspective influenced by Zandieh.  Lastly, we discuss 

implications for instructors and researchers in section IV. 

II. METHODS AND ANALYSIS 

This study was conducted with students enrolled in three 

courses at Oregon State University (OSU).  The first was 

honors multivariable calculus (MC), the first math course in 

which students learn about partial derivatives.  The MC 

students were mostly freshmen.  The next was junior-level 

electromagnetism (EM), the first physics course in which 

students use partial derivatives.  Most students in the EM 

course had previously completed MC, vector calculus, and 

ordinary differential equations.  The last course was central 

forces (CF), which serves as the culmination of the junior-

year physics sequence.  Virtually all students in CF 

completed the EM course earlier during the same year. 

We gathered data by administering a written survey in 

class.  It was given during week 1 of MC, week 2 of EM, 

and week 2 of CF, and took about 10 minutes of class time.  

The questions for each course were identical.  In MC, the 

survey was given prior to instruction on partial derivatives, 

and thus probes student knowledge given only single- 



 
FIG 1.  Three questions given as part of a written survey 

The plastic surface (used in all courses) is from the Raising 

Calculus to the Surface Project (see Ref. [11]). 

 

variable calculus concepts.  In EM, the survey was given 

before partial derivatives were used in physics contexts, to 

serve as a pretest for the junior-level physics sequence.  The 

survey was given in CF as a corresponding post-test, after 

students have made substantial use of partial derivatives in 

EM and thermodynamics courses during the junior year. 

The survey consists of three questions about derivatives 

(see Fig. 1).  It is intended to probe students’ thinking about 

derivatives rather than their ability to compute a derivative.  

For example, question 1 asks students to explain what “rate 

of change” means in the context of a derivative.  This term 

was chosen because we found that, in preliminary versions 

of the survey that simply asked them to explain the meaning 

of a derivative, students often used the term without further 

description.  Questions 2 and 3 focus on what meaning 

students ascribe to the derivative of a multivariable function 

in different contexts.  Question 2 uses a three-dimensional 

surface and question 3 uses a contour graph, both of which 

students handled as part of a review exercise [11]. 

Each question asks about a derivative with respect to x.  

We intentionally do not specify what (if anything) should 

be held constant.  We also use the word “derivative” 

throughout the survey rather than using h', dh/dx, or ∂h/∂x.  

We chose to phrase the questions in this way so that our 

choice of notation would not affect student answers.  

Students are asked to answer using complete sentences and 

to support their answer with graphs or equations. 

We used open coding to characterize all statements in 

the student responses relevant to derivatives.  The codes 

were then examined to identify patterns in how students 

interpreted the derivative.  Interpretations with similar 

language and/or underlying structure were categorized 

according to the underlying meaning that those responses 

ascribed to the derivative.  Responses consistent with more 

than one interpretation were classified into all relevant 

categories—that is, our categories are not exclusive. 

III. STUDENT INTERPRETATIONS 

In this section, we present the interpretations we 

identified and their overall prevalence in each course.  The 

number of students in each course was relatively small: 19 

in MC, 30 in EM, and 29 in CF (22 took the survey in both 

EM and CF).  Therefore, we do not statistically compare the 

results, though some apparent differences in how the groups 

view derivatives may be worthy of more extensive study. 

We found two predominant interpretations applicable to 

both ordinary and partial derivatives.  The results are 

summarized in Table I.  Our description of the results 

focuses first on question 1, as the percentages do not 

change substantially from question to question.  We note 

that the same students did not always give identical 

responses across the entire survey: some answered the three 

questions similarly while others answered differently.  After 

describing the two primary interpretations, we discuss four 

student descriptions of how to hold something constant 

when explaining the derivatives in questions 2 and 3. 

Interpretations: Many students identified the derivative 

with slope, an interpretation that has been discussed at 

length in prior work [2-3,7-8].   On question 1, 53% of the 

MC students gave this interpretation.  However, “slope” 

was far less common among physics students: only 17% in 

EM and 28% in CF.  Although use of the term slope 

suggests that the interpretation is graphical, we found that 

only about half of the students who gave it supported their 

answer with a graph.  The following response, from an MC 

student, was typical: “Rate of change is the slope of the 

function at any point along line h.”  The level of detail 

surrounding the word “slope” was highly variable, 

regardless of whether the response was verbal or graphical.  

For example, it was relatively uncommon for students to 

give a more detailed account of what the slope was or how 

it might be found.  It was also rare for students to describe 

the slope in relation to a tangent line; instead, they tended to 

write about the slope of the function directly.  On questions 

2 and 3, a small number of students used the word “steep” 

or “steepness” to refer to the derivative, which also suggests 

to us a slope interpretation.  However, only one student 

used “steep” together with “slope” in the same response. 

The second prevalent interpretation was a tendency to 

make an equivalence between the derivative and the change 

in the given function.  More physics students (70% in EM 

and 82% in CF) than math students (37%) gave such a 

response.  These students primarily used words and 

symbols; it was rare for them to include a graph with such 

 

TABLE I. Student interpretations of derivatives for the 

MC (N=19), EM (N=30), and CF (N=29) courses.  The 

numbers represent percentages that are not exclusive. 

Interpr

-etation 

Question 1 Question 2 Question 3 

MC   EM    CF MC   EM    CF MC   EM    CF 

Slope 53 17 28 42 27 20 42 17 20 
Change 37 70 82 37 60 60 37 47 66 



an interpretation.  The following example (from an EM 

student) was a typical way of phrasing this idea: “The rate 

of change expresses how much h changes as x changes.”  

The phrase “how much” was especially common, though 

some students instead referred to the derivative as “the 

change in h.”  Most of these students also referenced a 

change in x, but a few did not explicitly mention x at all.  In 

response to questions 2 and 3, students often used language 

similar to their initial response to question 1, and a few 

stated explicitly that the same interpretation was valid 

(often with some additional information about what to hold 

constant—see below). 

What to hold constant: The categories discussed above 

are equally applicable to ordinary and to partial derivatives.  

One important extra step that must be taken when finding a 

partial derivative is identifying what is held constant.  This 

step is not always a straightforward one, particularly in 

physics contexts [9-10,12].  We focus on questions 2 and 3, 

since very few responses to question 1 were relevant.  We 

found four common approaches, summarized in Table II. 

The first approach was simply stating that y is held 

constant when taking the derivative.  For example, an EM 

student wrote that the derivative in question 2 means “how 

does h change as x is wiggled and y is constant.”  Since the 

questions indicate that h is a function of x and y, this is not 

surprising.  The percentage of the students who gave this 

answer appeared to increase with more instruction, which 

may indicate an increase in familiarity with the common 

language associated with partial derivatives. 

A few students gave answers that emphasized that only 

x should be changed for the derivative.  For example, a CF 

student answered question 3 by stating that the derivative is 

“how much the distance between contour lines changes as x 

(and only x) is changed by a given amount.”  However, this 

was not a prevalent response in any class, and about half of 

the students who gave it also gave one of the other 

descriptions for how to hold something constant. 

Many students described the derivative as being “in the 

x-direction” or “along the x-axis.”  In response to question 

2, few of these students drew a graph, but their language 

suggests visual or graphical thinking.  Although these 

students did not explicitly identify some quantity to hold 

constant, they did so implicitly by providing a path for the 

derivative to follow in the xy-plane.  It should be noted that 

 

TABLE II. Student responses to questions 2 and 3 related 

to what is held constant while taking a partial derivative.  

As in Table I, the numbers represent percentages and the 

categories are not exclusive. 

Interpretation 
Question 2 Question 3 

MC EM CF MC EM CF 

Hold y constant 16 33 41 5 3 24 
Only change x 0 7 7 11 3 7 
Direction/axis 32 43 38 11 53 48 
Cross-section 11 3 3 16 10 0 

No discussion 26 17 21 47 20 10 

 
FIG 2.  Sketches drawn in response to question 2 (left) and 

3 (right) showing the “cross-section” mode of thinking 

about what to hold constant for a partial derivative. 

 

a derivative with respect to x can be taken “in a direction” 

other than the direction in which y is constant.  Such 

derivatives are common in thermodynamics but are 

substantially less common in spatial contexts. 

The final idea expressed by students was more strongly 

visual: using a cross-section to create a new function of one 

dimension and then finding the resulting derivative.  Some 

students sketched an example cross section, as shown on 

the left of Fig. 2.  Others described the process of finding a 

cross-section in words, with some also drawing an example 

of the resulting one-dimensional function, as shown on the 

right of Fig. 2.  This response was the least common, given 

by fewer than 16% of the students in each case. 

Few physics students (in either EM or CF) did not 

describe holding something constant.  More students at the 

beginning of multivariable calculus (26% on question 2 and 

47% on question 3) did not discuss this idea.  Such 

responses tended to be very similar to the responses to 

question 1.  Since the MC students had not studied partial 

derivatives yet, while the EM and CF students had, this 

result is not necessarily surprising.  Only one student found 

a total derivative rather than a partial derivative. 

IV. THEORETICAL PERSPECTIVE –  

CONCEPT IMAGE 

The primary theoretical perspective that has influenced 

the analysis and interpretation of our results is Zandieh’s 

concept image framework for derivatives [3].  A concept 

image is defined as all properties and mental pictures 

related to a concept.  Zandieh’s framework, which was 

developed to describe students’ ideas about ordinary 

derivatives, organizes those properties along two 

dimensions: representations and process-object layers.  

Below, we briefly describe each dimension and some of the 

insight it provided to us in evaluating students’ responses. 

Representations are contexts within which a derivative 

may be understood; Zandieh’s are graphical, verbal, 

physical, and symbolic.  For contexts related to physics, we 

have found it useful to add a numerical representation, 

which refers to treating the derivative as a ratio of small 

(but not infinitesimal) changes [6,13].  This is particularly 

relevant because physics often deals with real-world data 

for which differences cannot be taken as arbitrarily small. 

We found that student interpretations tended to be 

primarily verbal or symbolic in nature.  Even students who 

described the derivative using slope often did not draw a 

picture or provide a visual connection to their answer.  



Students who wrote instead about change, including the 

vast majority of physics students in both EM and CF, rarely 

made any reference to graphs.  We found this to be true 

across all three questions on the survey, even when students 

were prompted with a visual representation of a function. 

Process-object layers, based on Sfard [14], refer to 

mathematical processes acting on mathematical objects that 

have previously been established.  For example, division 

can be thought of as a process that acts on two numbers 

(objects).  The process is then reified into a new object that 

can be acted on by other processes (e.g., division produces 

a fraction that can then be treated as a single quantity).  

Zandieh describes the derivative in terms of three such 

layers: ratio, limit, and function.  Each layer begins as a 

process that becomes an object to be acted upon by the 

process in the next layer.  We focus here on the ratio and 

limit layers, as these are the most relevant to physics. 

Few students in any course discussed the ratio process-

object layer.  This was true whether they interpreted the 

derivative as a slope or as a change.  Although many 

students wrote the expression dh/dx, very few indicated that 

they thought of this symbol as explicitly representing 

division.  It is thus possible that dh/dx is simply a familiar 

notation for representing the derivative, rather than a ratio.  

Similarly, almost no students discussed an explicit limit.  A 

few used a word such as “instantaneous,” “infinitesimal,” or 

“small” to characterize the derivative. 

At first glance, our results suggest that students’ concept 

images of the derivative may be incomplete, even after a 

year of junior-level physics.  Instead of directly equating 

the derivative with the change in a function, we would like 

students to think of the derivative as a “ratio of small 

changes” that also encompasses the ratio and limit process-

object layers.  Only three students (all in CF!) gave a 

response including all of these elements.  We do not 

necessarily think the absence of language related to ratios 

or limits in students’ written responses indicates they lack 

any knowledge of these aspects, but we are increasingly 

coming to believe that this may be the case for some.  We 

have conducted interviews with students on this subject that 

will allow us to explore their ideas more extensively.  

Whether or not the language students use is indicative of a 

deep misunderstanding of the nature of derivatives, we 

believe it is valuable to devote instructional resources to 

enriching students’ concept image by giving them a starting 

point that is more reflective of the complicated layers that 

make up the derivative.  This is particularly useful when 

students proceed to partial derivatives, where the new layer 

of what to hold constant is added to the already complex 

concept image. 

V. DISCUSSION AND IMPLICATIONS 

One of the primary goals of this study is to describe 

student understanding of partial derivatives as a guide to 

improving instruction in upper-level physics.  Our results 

are a first step toward characterizing how student learning 

about partial derivatives progresses through undergraduate 

math and physics courses.  We identified two common 

interpretations of the derivative—slope and change—along 

with some interesting patterns in the student responses. 

Foremost, it appears that more physics majors view the 

derivative as related to change than to slope.  We have 

examined several textbooks used for introductory calculus 

and calculus-based physics, including those in use at OSU, 

in an attempt to identify possible sources for this language.  

The use of slope appears to be widespread in both the 

calculus and the physics texts.  Language similar to the 

change interpretation, however, was absent from the texts 

surveyed.  We find this surprising because “how much h 

changes” strikes us as a familiar description of derivatives 

in physics classrooms (introductory and upper-division) and 

among physics experts.  We intend to survey math and 

physics instructors to gain insight into this interpretation. 

The learning of partial derivatives is a fundamental goal 

of OSU’s upper-division physics program.  One strategy we 

use to foster this learning is a focus on the coordination of 

partial derivatives across multiple representations. The 

results of this study indicate that there is still room to 

improve how students think of and talk about ordinary 

derivatives as building blocks toward a more complete 

understanding of more advanced partial derivatives. 
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