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We introduce a series of activities to help students understand the partial derivatives that arise
in thermodynamics. Students construct thought experiments that would allow them to measure
given partial derivatives. These activities are constructed with a number of learning goals in mind,
beginning with helping students to learn to think of thermodynamic quantities in terms of how one
can measure or change them. A second learning goal is for students to understand the importance
of the quantities held fixed in either a partial derivative or an experiment. Students additionally are
given an experimental perspective—particularly when this activity is combined with real laboratory
experiments—on the meaning of either fixing or changing entropy. In this paper, we introduce the
activities and explain their learning goals. We also include examples of student work from classroom
video and follow-up interviews.

I. INTRODUCTION

In thermodynamics, most experiments are designed to
measure how one thermodynamic quantity changes as an-
other is controlled by the experimenter. This change
is represented by a partial derivative. Understanding
this role of experiment is challenging for students in sev-
eral ways.1–8 Students have been shown to struggle with
the operational definitions of pressure, temperature, and
volume, and commonly fail to recognize the covariation
among these three variables.4 At the upper-division level,
we add in entropy—a particularly challenging quantity—
as a fourth canonical variable. We go on to express “sim-
ple” quantities such as pressure or temperature as partial
derivatives of the internal energy. Even the notation used
to describe partial derivatives in thermodynamics,(

∂A

∂B

)
C

, (1)

is rarely used in other subfields of physics, and is not typ-
ically taught in math classes. Much of thermodynamics
involves mathematically deriving relations between dif-
ferent experiments that measure different partial deriva-
tives. This is a challenge when students struggle to un-
derstand these partial derivatives.

We have developed a sequence of activities to address
some of the student difficulties with partial derivatives
in thermodynamics. This sequence was developed in the
context of Energy and Entropy, the junior-level thermo-
dynamics course at Oregon State University.9 This two-
credit course teaches basic thermodynamics followed by
a brief introduction to statistical mechanics. Energy and
Entropy features three laboratory experiments: a rub-
ber band lab described in a previous paper10 and two
calorimetry experiments involving ice and water.

In this paper, we present three “name-the-experiment”
activities, which involve the instructor providing student
groups with a partial derivative, and asking the students
to draw a picture of an experiment that could be used
to measure that derivative. We introduce each activity
by announcing “Name the experiment!” The intent of

this announcement—which sounds like a game show—is
to tap into students’ intuitive understanding that this is
a new epistemological game, with its own rules and vic-
tory conditions for them to learn. We assign one partial
derivative to each group of three students and we end the
activity by having groups present to the entire class their
solution to each different partial derivative. Each activ-
ity typically requires half an hour of class time, including
the wrap-up discussion. We do each activity on a sepa-
rate day, with progressively more challenging derivatives
addressing different learning goals spread throughout the
course.

There are several overall learning goals for these activ-
ities. The primary objective is for students to be able to
identify partial derivatives as descriptions of experiments
in which one quantity is changed, while certain others
are held fixed. There are also several smaller—but still
important—learning goals that span all three activities.
One of these goals is for students to understand how to
measure all the thermodynamic variables. In the past, we
have observed students failing to recognize that adding
weights to a piston will increase the pressure! In these ac-
tivities, students are repeatedly forced to remember and
describe how to control or measure each of the thermody-
namic variables. Another aim is for students to discover
for themselves that some variables are easier than oth-
ers to change, to constrain, or to measure. Finally, we
desire for students to be able to use “canonical” thought
experiments such as a gas in a piston or the idea of a
heat bath as a big tub of water. Canonical thought ex-
periments are ubiquitous in physics—they exist in every
subfield—and allow us to easily apply physical intuition
to problems. This goal is usually accomplished through
the discussions that wrap up the activities.

One reason for these “big picture” learning goals is to
enculturate these physics majors into the physics com-
munity and aid their development as expert physicists.
As experts, we smoothly move from a symbolic repre-
sentation of a partial derivative to a description of an
experiment that would measure that derivative. For ex-
ample, experts can identify the derivative (∂p/∂V )S as
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essentially the adiabatic compressibility—even though it
differs in sign, and by a factor of volume, and has been
inverted. The essence of adiabatic compressibility is
present in this derivative. Why is this? In order to find
this derivative, one must perform the same measurement
that gives the adiabatic compressibility. As was nicely
summarized by Jeppsson et al., “. . . there is increasing
plausibility to the claim that expert scientists’ formal
conceptual understanding draws on concrete notions of
material substance.”11

In addition to the overall learning goals discussed
above, there are others specific to each activity. In
this paper, we describe each name-the-experiment ac-
tivity, explain the learning goals for that activity, and
discuss some particular student difficulties that are ad-
dressed. For more detailed information about how name-
the-experiment fits into our course, see the thermody-
namics activities presented on the Paradigms in Physics
Activities wiki.9 This website also includes narratives,
which are annotated transcripts of videos of class ses-
sions. These narratives provide examples of how these
activities can be enacted in the classroom and of what
an instructor and students might say and do during such
activities.

The final reason for all these learning goals is
affective—we believe that if students understand that
the derivatives they are manipulating are physically mea-
surable quantities, they are likely to be more interested
in understanding relationships between these derivatives.
How can students understand the the laws of thermo-
dynamics as real scientific laws if they cannot connect
the mathematical expressions involved with experimen-
tal measurements?

II. ACTIVITY 1A: SIMPLE DERIVATIVES

We begin the first name-the-experiment activity with
derivatives that relate to experiments that the students
can simply envision. At this stage, we have introduced
students to operational definitions for the thermody-
namic quantities, which are descriptions of how one could
measure these quantities. We have talked about entropy
and the concept of adiabatic processes as quasi-static pro-
cesses in which there is no heat exchange and the entropy
is held fixed. Finally, students have been presented the
first law of thermodynamics, which is that the change in
the internal energy of a system is the sum of the energy
added to it by heating, and energy provided by doing
work on it:12–14

dU = d̄Q+ d̄W. (2)

Table I lists the derivatives that we give students in
this first activity. We group these derivatives into four
categories: easy derivatives for a three-dimensional fluid
system (involving only pressure p, temperature T , and
volume V ); easy derivatives for a one-dimensional sys-
tem (involving temperature, length L, and tension τ);

TABLE I. Easy derivatives for the first activity, grouped into
four categories, according to the physics concepts required.

Simple 3D:

(
∂V

∂p

)
T

(
∂V

∂T

)
p

Simple 1D:

(
∂L

∂τ

)
T

(
∂L

∂T

)
τ

Simple adiabatic:

(
∂T

∂V

)
S

(
∂V

∂p

)
S

First law:

(
∂U

∂T

)
V

(
∂U

∂p

)
S

adiabatic processes (with fixed entropy S); and deriva-
tives of the internal energy that require students to use
first-law reasoning. The first-law derivatives (discussed
in Section III) are the most challenging in this set, and
are assigned as a second task to groups that quickly finish
describing their first experiment.

This first name-the-experiment activity is designed to
address several learning goals. Some of these are gen-
eral, addressed by all of the partial derivatives in Table
I; others are specific to only some of these partial deriva-
tives. The challenge of exposing the entire class to these
specific learning goals is addressed by having each group
report on their solution to the class.

The first general learning goal for this first activity is
to reinforce the operational definitions of thermodynamic
quantities that students have already been shown. For
instance, students need to formulate how they will mea-
sure or fix the pressure in terms of a force measurement
divided by an area, reinforcing the definition of pressure.

The second, and primary, general learning goal is for
students to appreciate the meaning and importance of
the quantity that is held fixed. Many students expect
that this quantity is redundant; they have been taught
in their mathematics course, and sometimes in earlier
physics courses, that when taking a partial derivative,
“everything else” is held constant. The belief that the
quantity held fixed is redundant is surprisingly persis-
tent, even in problems that aren’t explicitly asking about
a partial derivative. Research has shown that students
also commonly—and incorrectly—hold fixed any vari-
ables that are not currently under consideration in ques-
tions involving finite changes.15 In fact, the idea of mea-
suring the effect of changing one variable while holding
“everything else” constant is taught as early as elemen-
tary school, where it is called “control of variables” and
used to teach the scientific process.16 By having stu-
dents design their experiment in a way that explicitly
constrains the quantity held fixed, students are given a
physical perspective as to why this matters.

One of the specific learning goals is addressed by the
“adiabatic” derivatives, which require students to re-
member that fixing the entropy corresponds to thermally
insulating the system. An example from the list of adia-
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FIG. 1. Sketch of an experiment to measure the derivative
(∂p/∂T )S . The procedure involves slowly adding weights to
the top of the piston to change its pressure, having measured
the area. The piston itself is insulated to keep the process
adiabatic, and we use a thermometer inside to measure the
resulting change in temperature.

batic derivatives is (
∂p

∂T

)
S

, (3)

which showcases several of the student learning oppor-
tunities at this stage. Since entropy is being held fixed,
this corresponds to an adiabatic process, in which the
system is thermally insulated from its environment. We
are changing the temperature, while at the same time
not heating the system! This is a source of confusion for
students, an issue that will be more forcefully addressed
by the isothermal derivatives in the second activity (de-
scribed in Section IV).

This experiment is actually much easier to imagine if
we turn the derivative upside down,(

∂p

∂T

)
S

=
1(

∂T

∂p

)
S

. (4)

By examining this inverse, we see that we can change the
pressure on an insulated piston, for instance by putting
weights on it, and measure how much the temperature
changes with a thermometer, as illustrated in Fig. 1,
which is far easier than trying to directly change the
temperature of a thermally insulated piston. Inverting
partial derivatives in this way blurs the distinction be-
tween the dependent and independent variables, and the
distinction between controlled and measured variables.

Most students (and even some faculty) are unsure of
the validity of Eq. (4). In both abstract math courses

and other fields of physics, it is rate to invert partial
derivatives in this way. It is hard to imagine the meaning
of the derivative (∂t/∂ψ )x,y,z in quantum mechanics, for
instance. In their math classes, students are likely to
be taught that such a relationship is, in fact, not true
for partial derivatives. Notationally, Eq. 4 is close to
meaningless when expressed in standard math notation:

∂u

∂x
=

1

∂x

∂u

(5)

because u here is a function, while x is not a function
but an independent variable. If we do understand x to
represent a function, it is not clear what variables it is a
function of, which would determine which variables are
being held constant. In short, even the simple process
of inverting a partial derivative, which on its face may
seem obvious to experts, requires assistance for students
to grasp.

III. ACTIVITY 1B: THE FIRST LAW

In the same first activity in which we do simple deriva-
tives, as described in the previous section, we also include
derivatives that require the use of the first law, which
states that the change in internal energy of a system is
found by adding together its changes due to heating and
working.12–14 One of the first-law derivatives from Table I
is (

∂U

∂p

)
S

, (6)

which corresponds to another adiabatic process and is
thus easiest to understand by imagining an insulated pis-
ton. We are changing the pressure, which is easy to man-
age by placing weights on the piston. However, we don’t
have a way to directly measure the change in internal
energy, so we must relate this change to something else
using the first law. Since the change is adiabatic, there is
no heating (Q = 0), and the change in internal energy is
equal to the amount of work done, so ∆U = −p∆V for
small ∆V . Thus,(

∂U

∂p

)
S

=

(
∆U

∆p

)
S

=

(
−p∆V

∆p

)
S

= −p
(
∂V

∂p

)
S

, (7)

which is a result we could also obtain using the ordinary
chain rule together with the definition

p = −
(
∂U

∂V

)
S

. (8)
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FIG. 2. Sketch of an experiment to measure the derivative
(∂U/∂p )S in Eq. (6). The piston is the same as that described
in Fig. 1. As mentioned in the text, the procedure involves
slowly adding weights to the top of the piston to change the
pressure, and measuring the change in volume using a ruler.
From this, the work is found, and from that the change in
internal energy.

Our students seldom arrive at Eq. (7) mathematically,
but students are able to express that they measure the
work by seeing how the volume changes, in order to find
the change in internal energy as pressure changes. Using
Eq. (7), we can design an experiment to measure the
change in volume as we change the pressure adiabatically,
as illustrated in Fig. 2.

Devising an experiment to measure derivative (6) is
a challenging task, which requires students to recognize
that the first law is needed to describe a measurement
of work needed to change the volume slightly, to realize
that changing the pressure requires that they change the
force on a piston, and to realize that the system must
be insulated. When this name-the-experiment question
was given on a final exam, over half of the students (16
out of 27) were correctly able to express either Eq. (7)
or the idea that they would measure the work in order
to find ∆U . The same number of students—although
not the same set of students—recognized that the system
must be insulated in order to measure a process at fixed
entropy.

As a part of a separate study,17 one of the authors
(MBK) conducted interviews with six students just af-
ter they had completed the Energy and Entropy course.
Part of the interview involved asking them to draw and
describe an experiment to measure (∂U/∂p)S , a deriva-
tive that these students had not encountered in class. We
present here an analysis of Bob’s response as an example

of a somewhat weak (C+) student’s response.
Bob began by identifying that one must isolate the

system to maintain constant entropy.

“First I’m just thinking, I guess just read-
ing this out loud in my head to conceptu-
ally understand what it’s asking, measure the
change in internal energy as a function of
pressure at constant entropy, which [inaudi-
ble] entropy, constant entropy is a little bit
interesting, although it’s not as hard as con-
stant pressure. Alright, so, the experi-
ment’s going to be isolated from its sur-
roundings if you want the entropy to be
constant.”

As Bob proceeded to address the question of how to mea-
sure internal energy, he correctly identified measuring the
change in height as a way of measuring work, with the im-
plicit assumption that this told him something about in-
ternal energy. However, he became confused about what
is being held constant, and decided to change the height
of the piston by heating the gas with the pressure held
fixed. At this point, Bob was describing a measurement
of (∂V /∂T )p.

“So, measure the change in internal energy, at
constant pressure [long pause]. I imagine I’d
have some sort of insulated channel [begins
drawing Fig. 3] and then, a piston that can be
raised freely. It’s a little bit harder with real
world experiments, cause you have to think
about the friction of the piston. But there’s
some gas in here and we have measured, we
know the weight of the piston, all of that
and we can measure the height here [makes a
mark and labels ‘h’] and maybe some height
it gets raised to [makes second mark and la-
bels ‘h’] when we increase the temperature of
the gas. There’d be some isolated heating el-
ement inside here [draws at the bottom left]
and if you measure the heights, you can find
the work done to move this weight in the grav-
itational potential energy, from this point to
this point.”

The unusual phrase “isolated heating element” is telling,
as it suggests that Bob is confusing an “isolated system”
with one that is surrounded by insulation, as the com-
bined system of gas and heating element is in this case.
As Bob began to summarize his approach, he returned to
the idea of a thermally isolated system with no heat ex-
change, correctly using the first law to find the change in
internal energy under those conditions, but the heating
element is still present.

“And how I’d essentially model [pause]. The
work done would be the internal energy
because we’re not adding or removing
heat from the system and so you’d es-
sentially be measuring the work done at
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FIG. 3. Interviewed student’s sketch of an experiment to
measure the derivative (∂U/∂p )S in Eq. (6) (compare to Fig.
2).

constant entropy, as a function of increase
in pressure, because from the temperature in-
crease of our monitored heating element, we
can know the pressure of the gas. We put
the gas in there, we know what it is, and all
about it.”

Bob is clearly struggling with the concept of thermal
isolation. He recognizes that an isentropic process means
the the system cannot be heated, and therefore adds ther-
mal insulation to isolate the piston from its surroundings.
However, he proceeds to add a heating element to the sys-
tem, failing to recognize that the energy from the heating
element comes from the surroundings. Throughout this
episode, Bob is also inconsistent about whether he sees
the pressure as changing or held constant.

We include a discussion of this episode because it is
typical of the student reasoning that is addressed both
in small groups and in the whole-class discussion. The
activities presented in this paper give students the chance
to wrestle with these issues through interactions with
their peers, as well as the instructors and teaching assis-
tants. Additionally, observing the conversations between
students during these activities can help instructors to
better tailor their instruction to the needs and confusions
of that particular set of students.

IV. ACTIVITY 2: CHANGING ENTROPY

After we have spent some more time in the class talking
about entropy, we have a second name-the-experiment
activity, in which students examine derivatives in which
the entropy itself is changing, as listed in Table II. This
set is composed of two easier derivatives, which corre-
spond to measurements of the heat capacities CV and

TABLE II. Derivatives for the second activity, in which we
change the entropy, grouped according to the type of experi-
ment required.

Heat capacity measurement:

(
∂S

∂T

)
V

(
∂S

∂T

)
p

Isothermal (challenging):

(
∂S

∂V

)
T

(
∂S

∂p

)
T

Cp, along with two more challenging isothermal deriva-
tives. Since we don’t have a direct way to measure en-
tropy itself, all of these derivatives are more challenging
than those in the first activity. Instead of measuring en-
tropy directly, we must infer the change in entropy by
measuring the energy transferred by heating and using
the thermodynamic definition of entropy:

∆S =

∫
d̄Qquasistatic

T
. (9)

The energy transferred by heating can be measured by
heating the system with a resistor, as our students do in
an experiment measuring the heat capacity of water.

One of the primary goals of the heat capacity deriva-
tives is to provide a review of the concept of heat capac-
ity. At this stage of the course, students have already
measured the heat capacity of water, and many groups
recognize that these derivatives correspond to an experi-
ment that they have already performed.18 This name-the-
experiment activity highlights the distinction between
CV and Cp, because students are required to explain how
they hold the volume or pressure fixed. We find this an
excellent opportunity to discuss the difficulty of keep-
ing the volume fixed and to introduce the term “bomb
calorimeter” for a device to measure CV . Students ap-
preciate the humor of this term.

The isothermal derivatives with changing entropy are
considerably more challenging, but also provide several
excellent learning opportunities. In particular, these
isothermal derivatives address a common student diffi-
culty: many students assume that when a system is held
at fixed temperature, it is not being heated and since Q is
zero, its entropy must also be held constant. This is com-
plementary to the issue mentioned in Section II, in which
an adiabatic process resulted in a changing temperature.
During this activity, this difficulty comes up early in stu-
dent discussions, and many groups are able to overcome
it without the need for instructor intervention.

In one of these isothermal derivatives,(
∂S

∂V

)
T

, (10)

we need to change the volume at fixed temperature, and
measure the energy transferred between the system and
environment by heating. There are two mechanisms one
can imagine for this, neither of which is very easy.

One approach is to create a thermostat, described by
one group this way:
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FIG. 4. Student sketch of an experiment to measure the
derivative (∂S/∂V )T in Eq. (10). The students assumed that
the material being measured was ice water, and put the ice
water in a balloon. The mixture is then heated with a resistor
and the resulting change in volume is measured.

“We were just thinking that we could have
like something, an object that we can change
the volume and then we’d have like a resistor
and thermometer and, say like we expand it
so it cools off and measure how much heat
we have to put into the system to keep the
temperature constant.”

This approach is somewhat awkward and does require
that the temperature change somewhat, so that the ther-
mostat can respond.

The second approach, proposed by a different group,
would be to use a mixture of ice and water to hold the
temperature fixed. Figure 4 shows a student presenting
this group’s solution. The material that is being mea-
sured is ice water that is held in a balloon. A resistor
heats the ice water, and the volume of the balloon is
then measured. This student solution has a few disad-
vantages: it is hard to imagine thermally insulating the
balloon, and measuring the change in volume could be
tricky.

As mentioned in Section I, we desire to aid in the devel-
opment of these students as expert physicists. A signifi-
cant part of the culture of physics involves peer evalua-
tion and critique. Having students present their solutions
to the rest of the class can provide opportunities for stu-
dents to engage in this practice. For example, consider
the discussion between the instructor (IN) and two stu-
dents (S1 and S2) from different groups that followed the
presentation of Fig. 4:

FIG. 5. Sketch of experiment to measure the derivative
(∂S/∂V )T in Eq. (10). The system of interest is inside a
metal cylinder that is immersed in ice water with a known
quantity of ice. The cylinder and ice water are inside an insu-
lated container. The volume of the cylinder is slowly changed,
and afterwards the mass of the ice is measured.

S1: Does that work because when you change
phase in water, uh, like, water is larger as a
solid than a liquid, which is not, most things
aren’t like that, and that’s because of the hy-
drogen bonds?

IN: Uh huh.
S1: So, it seems like that’s adding in an extra fac-

tor that doesn’t really have anything to do
with the heat, necessarily.

IN: [furrows brow]
S1: Or like, thermodynamics in general.
IN: Well it does certainly does have to do, I mean,

thermodynamics is all about what do things
actually do.

S1: But, I mean, I guess what I’m saying is if
you use something that wasn’t water, like just
some other.

IN: If you use...
S2: The change of volume would just be different.
IN: [nods] mmhmm, yeah. So, your change of vol-

ume would be different in that case.
S1: But, [pause] ok.
IN: [shifts the discussion to other issue related to

phase changes]

At the end of this exchange, it is not clear that S1 is
completely convinced by S2’s answer. However, both S1’s
critique of the previous group’s methodology and S2’s
willingness to try to address S1’s question demonstrate
that they understand that they are a part of a culture
that values peer feedback. In addition, both students
recognize that the experiment should be able to measure
this property for an arbitrary system.

A more satisfactory variant of this solution is displayed
in Fig. 5, which uses a piston such that the volume is eas-
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TABLE III. Derivatives for the third activity, in which we use
Maxwell relations to find an easier experiment. In the upside
down cases, the Maxwell relation required involves the inverse
of the derivative requested.

Right side up:

(
∂S

∂V

)
T

(
∂S

∂p

)
T

Upside down:

(
∂S

∂p

)
V

(
∂S

∂V

)
p

ily controlled, and the system is taken to be separate from
the ice water. In this case, the challenge is to measure
how much ice remains after changing the volume of the
system. One could use a sieve to pull out the ice and
measure its mass. Both of these solutions (Figs. 4 and
5) have the disadvantage of requiring that we make our
measurement at 0◦C, but the advantage of reinforcing
the concept that fixed temperature does not mean zero
heating, and they build on the ice-water calorimetry ex-
periments that we do earlier in the course.

During this second name-the-experiment activity, stu-
dents encounter their first really “hard” derivatives, and
experience the difference between quantities that are con-
ceptually easy to measure and those that are inherently
challenging. In this case the heat capacities are easy to
measure, while the isothermal derivatives of entropy are
challenging, since it is hard to fix the temperature while
changing the entropy by a measured amount. Under-
standing this distinction is one of the primary learning
goals of this second activity. Allowing students time to
struggle with this challenging task that has no particu-
larly elegant solution helps them to appreciate the dif-
ference between an easily measurable quantity and one
that is less so, an appreciation that will pay off in the
next activity.

V. ACTIVITY 3: MAXWELL RELATIONS

Before the final name-the-experiment activity, we have
shown students the Legendre transforms, and asked them
find the total differentials for enthalpy, Helmholtz free
energy, and Gibbs free energy. We discuss how each of
these total differentials gives us a new set of expressions
for the thermodynamic variables p, V , S, and T , and
then remind students of Clairaut’s theorem regarding the
equality of mixed partial derivatives. We then introduce
Maxwell relations to our students and have students find
a given Maxwell relation in small groups.

At this point, we use a final name-the-experiment ac-
tivity. The students are given a partial derivative to
“measure.” They then use a Maxwell relation to find
a second (ideally easier) experiment that is equivalent to
their given partial derivative. We actually ask students
to find two experiments for their derivative, one easy ex-
periment and one hard experiment. Table III lists the
derivatives that may be assigned in this activity, each

FIG. 6. Sketch of an experiment to directly measure the
derivative (∂p/∂T )V in Eq. (11). The procedure involves
heating the contents of an insulated cylinder with a resistor,
and measuring how much weight needs to be added to the
piston in order to return the system to its original volume.

expressed as a derivative of entropy. In two of the four
cases, this results in a derivative that is the inverse of
the derivative that occurs in a Maxwell relation, which
creates an additional challenge for students. This idea
of turning derivatives “upside down” can be used at any
stage in the name-the-experiment sequence, to add one
more step for students to consider in analyzing a deriva-
tive.

Two of the derivatives in Table III are also present in
Table II. One of these, (∂S/∂V )T , was discussed in detail
in the previous section. This derivative required a “hard”
experiment to measure, performed with good thermal in-
sulation and either a thermostat or some ice water, but
we can find a Maxwell relation involving (∂S/∂V )T from
the Helmholtz free energy. From the total differential
dF = −S dT − p dV we have

−
(
∂2F

∂T∂V

)
=

(
∂S

∂V

)
T

=

(
∂p

∂T

)
V

. (11)

This gives us a “simple” derivative to measure, which
involves changing the temperature of a system and mea-
suring the change in pressure required to keep the volume
fixed, as illustrated in Fig. 6. This experiment is far eas-
ier than the difficult experiment shown in Fig. 5 in which
the quantity of ice melted must be measured.

In the case above, we were able to reuse the hard ex-
periment that we had discussed earlier. When assigning
derivatives to students, however, we prefer to avoid as-
signing a derivative to the same students who have al-
ready tackled it during a previous name-the-experiment
activity. This policy provides the opportunity to rein-
force their learning by designing a new experiment, in-
stead of merely attempting to recall a solution that they
previously created. In many cases students will have seen
an applicable experiment described by another group
during an earlier wrap-up discussion, so the derivative
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A

FIG. 7. Sketch of an experiment to directly measure the
derivative (∂S/∂V )p in Eq. (12). The procedure involves
heating the contents of an insulated cylinder with a resistor,
while measuring the current (and thus power) and the tem-
perature, and measuring the change in volume.

will still feel somewhat familiar to them.
Let us consider another of the derivatives from Ta-

ble III, which we have not previously discussed:(
∂S

∂V

)
p

. (12)

Interpreted directly, this derivative requires us to change
the volume at fixed pressure, and measure the change in
entropy. Practically, it is easier to change the entropy and
measure the change in volume, which we can do by heat-
ing a thermally insulated system with a resistive heating
element, keeping track of the amount of power dissipated
and the temperature. This direct experiment is illus-
trated in Fig. 7.

We can construct an alternative experiment that does
not require a heat measurement by seeking a Maxwell re-
lation that involves (∂S/∂V )p. As discussed above, there
is no Maxwell relation that explicitly uses this derivative,
since Maxwell relations come from mixed partial deriva-
tives between two thermodynamic variables that are not
conjugate pairs as p and V are. We present students
with these “upside down” derivatives in order to encour-
age them to think about how else to look at any given
derivative. In this case, we seek a Maxwell relation in-
volving (∂V /∂S )p, which we can find using the enthalpy.
From the total differential dH = T dS + V dp we have(

∂2H

∂S∂p

)
=

(
∂V

∂S

)
p

=

(
∂T

∂p

)
S

. (13)

In this case, the “simple” derivative is the inverse of
the first derivative we discussed in Section II, which
could be measured with a simple insulated piston with
a thermometer and a set of weights, as illustrated in
Fig. 1. Through this activity, students encounter un-
familiar derivatives that can be related to much more
familiar experiments.

This final activity allows students to gain experience
in the lessons of the previous activities, while at the same
time demonstrating how a seemingly obscure relationship
between derivatives is actually a powerful experimental
tool. We follow this activity with a laboratory in which
we use a Maxwell relation to enable us to measure the
entropy change when isothermally stretching a rubber
band without resorting to calorimetry.10

VI. CONCLUSIONS

We have introduced a sequence of three activities in
which students describe an experiment corresponding
to a given partial derivative. These activities provide
students the opportunity to think of thermodynamic
derivatives as descriptions of experiments. Students also
gain practice with the operational definitions of ther-
modynamic quantities, and experience with constructing
canonical thought experiments. These concrete ways of
thinking about abstract concepts further enculturate stu-
dents into ways of thinking like expert physicists. Finally,
these activities explicitly address student difficulties with
partial derivatives and thermodynamics that have been
previously documented in the literature.

ACKNOWLEDGMENTS

We thank Emily van Zee for helpful discussions, and for
her work in creating the narrative descriptions of these
activities, which are available, together with more infor-
mation regarding the Paradigms in Physics curriculum,
on the project webpage.9 We also wish to acknowledge
significant contributions from an anonymous referee. The
funding for this project was provided, in part, by the
National Science Foundation under Grant Nos. DUE 06-
18877, DUE 08-37829, and DUE 10-23120.
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