Solution method and error evolution of student responses to chain rule problems within a thermodynamics course

Ian W. Founds
Advisor: Dr. Corinne A. Manogue
Department of Physics
Oregon State University
June 6, 2017

SPECIAL REQUEST: If you are taking the thermodynamics paradigm (PH 423) next year, please leave the room!

INTRODUCTION

MOTIVATION:

- To better understand the evolution of errors and solution method choices in students' responses to chain rule problems in thermodynamics
- To improve student learning experiences with partial derivatives and chain rules in thermodynamics

METHODS:

1. Collected, scanned, and anonymized student responses
2. Sorted student responses by method, per assignment
3. Analyzed student migration between methods
4. Sorted student responses by contained errors, per assignment
5. Analyzed student error evolution
6. Analyzed correlations in methods and errors

INTRODUCTION

MOTIVATION:

- To better understand the evolution of errors and solution method choices in students' responses to chain rule problems in thermodynamics
- To improve student learning experiences with partial derivatives and chain rules in thermodynamics

METHODS:

1. Collected, scanned, and anonymized student responses
2. Sorted student responses by method, per assignment
3. Analyzed student migration between methods
4. Sorted student responses by contained errors, per assignment
5. Analyzed student error evolution
6. Analyzed correlations in methods and errors

PROMPTS

Quiz 14 prompt:

Given the definitions below, evaluate the requested partial derivative.

$$
\begin{gathered}
U=x^{2}+y^{2}+z^{2} \\
z=\ln (y-x) \\
\quad \text { Find }\left(\frac{\partial U}{\partial z}\right)_{y}
\end{gathered}
$$

Final exam question 4.b prompt:

Given the definitions below, evaluate the requested partial derivative.

$$
\begin{gathered}
U=\frac{3}{2} N K_{B} T-\frac{a N^{2}}{V} \\
S=N K_{B}\left(\ln \left(\frac{\mathrm{~N}-\mathrm{Vb}}{N C} T^{\frac{3}{2}}\right)+\frac{5}{2}\right) \\
\text { Find }\left(\frac{\partial U}{\partial V}\right)_{S}
\end{gathered}
$$

Prompts have similarities, but are not parallel:

- Context
- Number of variables
- Constant variable
- Complexity

PROMPTS

Quiz 14 prompt:

Given the definitions below, evaluate the requested partial derivative.

$$
\begin{gathered}
U=x^{2}+y^{2}+z^{2} \\
z=\ln (y-x) \\
\quad \text { Find }\left(\frac{\partial U}{\partial z}\right)_{y}
\end{gathered}
$$

Final exam question 4.b prompt:

Given the definitions below, evaluate the requested partial derivative.

$$
\begin{gathered}
U=\frac{3}{2} N K_{B} T-\frac{a N^{2}}{V} \\
S=N K_{B}\left(\ln \left(\frac{\mathrm{~N}-\mathrm{Vb}}{N C} T^{\frac{3}{2}}\right)+\frac{5}{2}\right) \\
F \operatorname{ind}\left(\frac{\partial U}{\partial V}\right)_{S}
\end{gathered}
$$

Prompts have similarities, but are not parallel:

- Context
- Number of variables
- Constant variable
- Complexity

POSSIBLE SOLUTION METHODS

$$
\text { Given: } \begin{gathered}
U=x^{2}+y^{2}+z^{2} \quad \text { Find: }\left(\frac{\partial U}{\partial z}\right)_{y}, ~ \\
z=\ln (y-x)
\end{gathered}
$$

- Variable Re-Expression (Var RE)
-Replacing the undesired variable
- Differential Re-Expression (Diff RE)
-Replacing the undesired differential
- Implicit Differentiation (Imp Diff)
-Implicitly differentiating the initial function
- Chain Rule Diagram (CRD)
-Using a chain rule diagram to create a chain rule
- Differential Division (Diff Div)
-Mindfully dividing by a differential

POSSIBLE SOLUTION METHODS

$$
\text { Given: } \begin{gathered}
U=x^{2}+y^{2}+z^{2} \quad \text { Find: }\left(\frac{\partial U}{\partial z}\right)_{y} \\
z=\ln (y-x) \\
x=y-e^{z}
\end{gathered}
$$

- Variable Re-Expression (Var RE)
-Replacing the undesired variable

Differential Re-Expression (Diff RE)

-Replacing the undesired differential

- Implicit Differentiation (Imp Diff)

$$
U=\left(y-e^{z}\right)^{2}+y^{2}+z^{2}
$$

Only works if the undesired variable can be isolated in the secondary equation!

- Chain Rule Diagram (CRD)
-Using a chain rule diagram to create a chain rule
- Differential Division (Diff Div)
-Mindfully dividing by a differential

POSSIBLE SOLUTION METHODS

-Replacing the undesired variable

$$
\text { Given: } \begin{gathered}
U=x^{2}+y^{2}+z^{2} \quad \text { Find: }\left(\frac{\partial U}{\partial z}\right)_{y} \\
z=\ln (y-x) \\
d x=1 d y-e^{z} d z \\
d U=2 x d x+2 y d y+2 z d z
\end{gathered}
$$

- Differential Re-Expression (Diff RE)
-Replacing the undesired differential
- Implicit Differentiation (Imp Diff) -Implicitly differentiating the initial function

$$
\begin{gathered}
d U=2 x\left(1 d y-e^{z} d z\right)+2 y d y+2 z d z \\
d U=[2 x+2 y] d y+\left[-2 x e^{z}+2 z\right] d z \\
d U=\left(\frac{\partial U}{\partial y}\right)_{z} d y+\left(\frac{\partial U}{\partial z}\right)_{y} d z
\end{gathered}
$$

Replacing the undesired differential
-Using a chain rule diagram to create a chain rule

- Differential Division (Diff Div)
-Mindfully dividing by a differential

POSSIBLE SOLUTION METHODS

$$
\text { Given: } \begin{gathered}
U=x^{2}+y^{2}+z^{2} \quad \text { Find: }\left(\frac{\partial U}{\partial z}\right)_{y}, ~ \\
z=\ln (y-x)
\end{gathered}
$$

- Variable Re-Expression (Var RE)
-Replacing the undesired variable
- Differential Re-Expression (Diff RE)
-Replacing the undesired differential
- Implicit Differentiation (Imp Diff)
-Implicitly differentiating the initial function

$$
\left(\frac{\partial U}{\partial z}\right)_{y}=2 x\left(\frac{\partial x}{\partial z}\right)_{y}+2 y\left(\frac{\partial y}{\partial z}\right)_{y}+2 z\left(\frac{\partial z}{\partial z}\right)_{y}
$$

- Chain Rule Diagram (CRD)
-Using a chain rule diagram to create a chain rule
- Differential Division (Diff Div)
-Mindfully dividing by a differential

POSSIBLE SOLUTION METHODS

$$
\text { Given: } \begin{gathered}
U=x^{2}+y^{2}+z^{2} \\
z=\ln (y-x) \quad \text { Find: }\left(\frac{\partial U}{\partial z}\right)_{y}, ~
\end{gathered}
$$

- Variable Re-Expression (Var RE)
-Replacing the undesired variable
- Differential Re-Expression (Diff RE)
-Replacing the undesired differential
- Implicit Differentiation (Imp Diff)
-Implicitly differentiating the initial function
- Chain Rule Diagram (CRD)
-Using a chain rule diagram to create a chain rule

Differential Division (Diff Div)
-Mindfully dividing by a differential

$$
\left(\frac{\partial U}{\partial z}\right)_{y}=\left(\frac{\partial U}{\partial x}\right)_{y, z}\left(\frac{\partial x}{\partial z}\right)_{y}+\left(\frac{\partial U}{\partial z}\right)_{x, y}
$$

POSSIBLE SOLUTION METHODS

$$
\text { Given: } \begin{gathered}
U=x^{2}+y^{2}+z^{2} \\
z=\ln (y-x) \quad \text { Find: }\left(\frac{\partial U}{\partial z}\right)_{y}, ~
\end{gathered}
$$

- Variable Re-Expression (Var RE)

-Replacing the undesired variable

- Differential Re-Expression (Diff RE)
-Replacing the undesired differential
- Implicit Differentiation (Imp Diff)
-Implicitly differentiating the initial function
- Chain Rule Diagram (CRD)
-Using a chain rule diagram to create a chain rule

$$
\begin{aligned}
d U & =2 x d x+2 y d y+2 z d z \\
\frac{d U}{d z} & =\frac{2 x d x+2 y d y+2 z d z}{d z} \\
\frac{d U}{d z} & =2 x \frac{d x}{d z}+2 y \frac{d y}{d z}+2 z \frac{d z}{d z}
\end{aligned}
$$

- Differential Division (Diff Div)
-Mindfully dividing by a differential

$$
\left(\frac{\partial U}{\partial z}\right)_{y}=2 x\left(\frac{\partial x}{\partial z}\right)_{y}+2 y\left(\frac{\partial y}{\partial z}\right)_{y}+2 z
$$

SOLUTION METHOD DISTRIBUTION

QUIZ 14 PROMPT:

$$
U=x^{2}+y^{2}+z^{2}
$$

$z=\ln (y-x) \quad$ Find $\left(\frac{\partial U}{\partial z}\right)_{y}$

FINAL 4.B PROMPT:

$$
\begin{gathered}
S=N K_{B}\left(\ln \left(\frac{\mathrm{~N}-\mathrm{Vb}}{N C} T^{\frac{3}{2}}\right)+\frac{5}{2}\right) \\
U=\frac{3}{2} N K_{B} T-\frac{a N^{2}}{V} \quad \text { Find }\left(\frac{\partial U}{\partial V}\right)_{S}
\end{gathered}
$$

CONCLUSIONS

Implications for Instruction:

- Use of Diff RE and CRD should be further encouraged
- Students need more practice with:
- Constructing and reading chain rule diagrams
- Holding variables constant while evaluating partial derivatives
- Identifying partial derivatives

Future Work:

- Examination of a pre-test problem
- Better synonymy between prompts

ACKNOWLEDGEMENTS

- Dr. Corinne Manogue, for her oversight, insight, and foresight.
- Dr. Paul Emigh, for his extensive insight and his work as the secondary data anonymizer.
- Mike Vignal, for his work as the interrater reliability tester and primary data anonymizer.
- Dr. Janet Tate, for her feedback and her thesis-writing instruction.
- Nicole Quist, for her feedback.

