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Abstract:  The complexity of thermodynamics challenges many students as well as faculty. Understanding what a partial 
derivative represents may be key to reducing the anxiety associated with this topic. In this session, participants engaged with a 
sequence of activities designed to elucidate the mathematics of thermodynamics through multiple representations of partial 
derivatives. Activities include: experiments that provide exemplars of measuring thermodynamic quantities involving partial 
derivatives; thought experiments where students design ways to measure particular partial derivatives representing 
thermodynamic quantities; a mechanical analogue that physically represents changes that hold specific quantities fixed; and an 
algebraic formulation of a partial derivative chain rule.  Our discussants, Ayush Gupta and Joseph Wagner, each comment on how 
their different research perspectives can contribute to and are necessary for a holistic understanding of what happens during this 
kind of curricular sequence. 
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INTRODUCTION 
Many students (and faculty!) find upper-division 

thermodynamics challenging and confusing—
especially in terms of its idiosyncratic mathematics [1-
4].  Yet we love physics because it enables us to 
understand the world around us using mathematics. As 
part of the Paradigms in Physics Project, we have 
developed a sequence of activities that bring fun back 
into thermodynamics.  Five activities in our Energy 
and Entropy course help students to connect 
thermodynamic and mathematical concepts, especially 
partial derivatives, with concrete reality. 

In this 2013 PERC session, attendees had a hands-
on opportunity to try out these activities. This paper 
begins with a brief description of each activity. The 
reader will find complete instructions for setting up 
(easy) and using these activities in the classroom on the 
Paradigms website [6] as well as further discussion in 
the papers cited below. This paper will conclude with a 
summary of how the session’s two discussants (AG 
and JFW) saw these activities through the lenses of 
their separate research perspectives. 

Ice calorimetry 

Our students’ first experience in Energy and 
Entropy is a laboratory experiment measuring the 
latent heat of fusion of ice and the heat capacity of 
water.  We give students a resistive heater, a styrofoam 
cup, a scale, a multimeter, a thermometer, and some ice 
and water, and ask them to measure how much energy 

is required to first melt the ice and then to warm up the 
water. This experiment is sketched in Fig. 1. The 
energy is measured with freshman physics concepts, 
using the multimeter. Students find the latent heat of 
melting and specific heat of water, using measurements 
of the energy required to melt the ice and the slope of 
the temperature with respect to energy added. 

Students further analyze their data to find the 
change in entropy of the system during this heating 
process, using the thermodynamic definition of entropy 
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where � �� is a small amount of energy added to the 
system by the heater, and the quasistatic subscript is a 
reminder that the ice water needs to be thoroughly 
stirred as the heating is performed. This experiment 

 
FIGURE 1: (a) Sketch of the ice calorimetry experiment
performed on the first day of class. (b) Solution to a “name-
the-experiment” activity in which students are asked to
imagine an experiment measuring ��� ��� ��. Students
commonly point out the connection in the second name-the-
experiment activity that this experiment is the same as they
did in the first week of class. 



gives our students their first exposure to entropy in our 
course. 

Rubber bands 

After we introduce Maxwell relations, midway 
through the course, we do an experiment.  Students 
measure the change in internal energy and entropy 
when a rubber band is isothermally stretched, using the 
Maxwell relation derived from the Helmholtz free 
energy, which is 
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where �is the tension in the rubber band, and L is its 
length. This relation connects a derivative of the 
tension with respect to temperature with a derivative of 
the entropy with respect to length.  This allows 
students to numerically integrate to find the change in 
entropy for a finite isothermal stretch. This experiment 
requires students to experimentally evaluate partial 
derivatives and to integrate experimentally measured 
quantities. This reinforces the idea that these 
mathematical manipulations describe concrete physical 
reality. 

For more detail, see the recently published paper 
describing this activity [7]. 

Name the Experiment 

Three times during the course we have “name-the-
experiment” activities. We ask student groups to 
describe and sketch an experiment that would measure 
a given thermodynamic partial derivative [8]. Name-
the-experiment activities require students to make use 
of operational definitions of thermodynamic quantities, 
articulate how they would hold a given variable 
constant, and (in the later activities) perform 
manipulations on derivatives in order to find a quantity 
that is easier to measure. 

These activities work synergistically with the 
laboratory experiments described above. Students often 
recognize that they have sketched an experiment 
similar to one that they actually performed. As an 
example, consider the derivative ��� ��� ��. This 
derivative is closely related to the heat capacity, which 
students measure in the ice calorimetry lab. A name-
the-experiment solution is shown in Fig. 1, next to the 
diagram of the experiment they performed. 

Partial Derivative Machine 

This year we added a new week of hands-on 
activities that precede the Energy and Entropy course, 

which are intended to teach students the mathematics 
they will need in order to work with differentials and 
partial derivatives. These activities (discussed in more 
detail in two separate papers in these Proceedings [9, 
10]) use a mechanical analogue of thermodynamics, in 
which two distances and two forces play the roles of 
entropy, volume, temperature, and pressure. This 
allows students to grapple with partial derivatives (both 
literally and figuratively) in a field of physics that is 
comfortable. We use this elastic system to illustrate and 
teach everything from partial derivatives, total 
differentials, the thermodynamic identity (except that it 
is not thermodynamic), Maxwell relations and 
Legendre transforms. 

Chain Rule Diagrams 

Many homework and exam problems in 
thermodynamics expect students to be fluent in 
manipulating partial derivatives through the repeated 
application of various chain rules. The common 
experience of becoming totally lost in this forest of 
equations contributes to students’ fear of this subject. 
Partial derivative diagrams are common to many 
multivariable calculus texts [11, 12].  We have adapted 
partial derivative diagrams to the language of 
differentials—which are anathema to many 
mathematicians. The reader can try using the chain rule 
diagram in Fig. 2 as a map to find the adiabatic 
magnetic susceptibility 
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for a system, given complicated expressions for M and 
S in terms of B and T—sufficiently complicated that it 
is impossible to solve for M(B,S). Add together the 
contributions from all possible paths on the map from 
dM to dB, and multiply together all the partial 
derivatives that lie on a given path. More information 
on this strategy can be found in [13-15]. 

 
FIGURE 2: A chain rule diagram using differentials. 



DISCUSSANTS 

by Ayush Gupta 

My first reaction to the activities was one of 
curiosity, playful confusion, and a call to sense-
making. I felt drawn to start manipulating the partial 
derivative machine even before I was briefed formally 
on how the machine is supposed to work. Similarly, 
coming up to the “rubber-bands experimental set-up” 
naturally raised the question for me: Will the tension in 
the chain (connected to the rubber band) increase or 
decrease as the water is heated up?  The set-up invites 
one to start asking interesting inquiry questions. So the 
developed activities can open up pathways for students 
to start approaching the “feared” ideas of 
thermodynamics in a more playful manner. 

It is not clear to me whether my experience is 
typical of how the students experience these activities. 
While mine and the other authors’ intuition says that 
these activities should ease some of the fears 
traditionally associated with thermodynamics and help 
facilitate learning in that domain, I think that future 
work should aim to address (1) whether the activities 
have the intended effect (assessment) and (2) how the 
activities alleviate fear or facilitate learning 
(mechanism). This raises the following question: if a 
designed curriculum achieves the intended curricular 
goals, then why should we undertake the extensive 
work of showing how it works?  I have multiple 
reasons to argue that it is essential that we undertake 
that effort. 

For one, systematic research into how students 
approach learning in the context of these novel 
activities can help us refine the curriculum and its 
implementation [16, 17]. For example, while it was 
challenging and fun for me to play with arguments and 
counter-arguments for why the tension in the chain 
might increase as the rubber band is heated up, the 
focus of the analysis of the experiment is on the 
mathematics of entropy change as the rubber band is 
stretched—a much more structured activity. As a 
workshop participant, I felt I had the freedom to 
explore the question that came to my mind when I saw 
the set-up. As a student, would I have felt the same 
freedom to explore or would I have felt compelled to 
simply do what I was being told to do? What might the 
affective and conceptual consequences be for such a 
student?  What role do the epistemological messages 
embedded in the worksheet play in constraining how 
students approach the task? How students approach a 
task can significantly influence what knowledge 
resources they bring to bear and whether they are 
successful or not [18, 19]. Of course, with a diversity 
of students, there will be a diversity of ways in which 

they experience the activities. But my point is that 
exploring how students approach and experience the 
activities can help us better tailor the design and 
implementation of curriculum. 

Second, instructors are known to adapt rather than 
adopt curricular materials. So a more fleshed-out 
knowledge-base on how students approach these 
activities can help instructors adapt the activities to fit 
their instructional goals in a more informed manner. 

Finally, developing this knowledge-base can add 
fundamental knowledge to our understanding of how 
students approach learning physics and mathematics in 
the context of these novel activities that draw on 
students’ formal (physics, mathematics), informal 
(everyday sense-making), and kinesthetic knowledge. 
For example, recent work by Sian Beilock and Susan 
Fischer shows that students learn concepts such as 
angular momentum better if they are made to have 
sensorimotor experiences related to the concept [20]. 
Beilock and Fischer pose neurological mechanisms for 
why this might be the case: that the kinesthetic 
experience engages the motor system of the brain, 
which is also shown to be active when students later 
think about the concept without the physical 
stimulation. Does engaging students in kinesthetic 
experiences that involve partial derivatives work 
through a similar mechanism?  Or does learning partial 
derivatives via the partial derivative machine work 
through a different mechanism?  This knowledge-base 
can further spur the development of and research on 
such activities, more than if the community had access 
only to the designed activities. 

Where the physics meets the math, by Joseph F. 
Wagner 

A particular appeal of some of these activities is 
their ability to engage students simultaneously in 
making sense of physics and making sense of 
mathematics. Many of the mathematical ideas used 
within these activities (e.g., partial derivatives, 
numerical integration) are known to students primarily 
or exclusively in the context of static, spatial/geometric 
interpretations typically used in mathematics 
classrooms. In the context of these activities, however, 
students are expected to apply their mathematical 
knowledge to model dynamically changing phenomena 
that they can experience, measure, and sometimes even 
feel kinesthetically. 

Traditional investigations of knowledge transfer ask 
how it is that something learned in one context is later 
used and applied in a new and different context. At 
face value, this would suggest that students need to 
take knowledge of mathematics that they already know 
and “apply” it in the context of these activities. We 
know, of course, that students struggle to transfer their 



mathematical knowledge to these activities [7], quite 
possibly because of the mismatch between the static, 
geometric explanations and representations used in 
mathematics classrooms, and the dynamic and often 
non-spatial phenomena they need to model. This 
suggests that what occurs with students engaging in 
these activities is not simply an application of 
previously learned mathematical knowledge, but a 
refinement and development of that knowledge that is, 
in fact, transformed by their reasoning supported by the 
affordances of the new contexts. 

As an example, it is common for students to 
complete their calculus courses with an understanding 
of integration as a means of finding “area under a 
curve.” Even though more dynamic interpretations of 
integration as an accumulation of a changing quantity 
may receive some attention, the dominance of the 
spatial representations in mathematics classrooms 
maintains the “area under the curve” interpretation as 
primary, even exclusive. Only with the experience of 
new contexts, particularly contexts involving dynamic 
and non-spatial phenomena, are students able to 
develop a more broadly applicable understanding of 
integration as accumulation. From this perspective, the 
typical geometric and spatial representations and 
interpretations of central ideas in calculus should not 
be thought of as abstract (as I believe mathematicians 
tend to think of them), but rather as very particular 
contextual instantiations of mathematical ideas whose 
complexity cannot be adequately conveyed in such a 
limited context. 

I believe that activities such as those presented here 
offer opportunities for educational researchers in both 
physics and mathematics interested in student learning 
and cognition, especially for researchers interested in 
knowledge transfer. Consistent with my earlier 
work [21], I propose that students engaging in 
activities such as these do not transfer their existing 
knowledge into a new context but, rather, that their 
experiences in the new contexts challenge students to 
transform and refine their existing knowledge. As a 
result, we may expect to see as the fruit of these 
activities the simultaneous development of students’ 
knowledge of physics and mathematics. At least, this is 
my theory. If supporting evidence is to be found, these 
activities seem an ideal place to look for it. 

CONCLUSION 

We have presented a sequence of activities that 
ground thermodynamics in tangible, physical reality 
for students. Anecdotal evidence suggests that these 
activities contribute to removing the fear from 
thermodynamics 
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