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Chapter 1

The Structure of the Overview, Instructor’s Guide, and
Solutions

This project attempts to make the instructional activities used during the
first two Paradigms physics courses available to physics instructors at other
institutions via the worldwide web. The Paradigms in Physics program at
Oregon State University reorganized the sequence and structure of upper
division courses to align with the ways in which professional physicists un-
derstand the field. In addition, the courses utilize reformed-based instruction
that encourages students to take responsibility for their own learning. By cre-
ating instructor’s guides to the activities used during the Paradigms courses,
the hope is that instructors at other institutions will have the information
they need to improve the instruction and content in their own courses.

Five activities were chosen as the core activities that this project ad-
dresses. The first activity involves finding the potential on the z and yaxes
due to two point charges on the xraxis and representing that with a power
series expansion. The next four activities all involve a charged ring of radius
r and charge ). The second and third activities involve finding an elliptic
integral that represents the electrostatic potential and the electric field in all
space. The fourth and fifth activities involve a rotating ring of charge with
period T and finding an elliptic integral that represents the magnetic vector
potential and magnetic field in all space.

The structure chosen to communicate the essential features of each of the
five activities consists of 1) an overview, consisting of a few paragraphs, 2) a
linked solution to the problems and 3) an instructor’s guide which includes
a guide to the key instructional aspects, including a description of the places
where students face challenges and recommendations for how to help them
through those challenges. This chapter will describe how and why this par-
ticular format arose and also explain the overviews, instructor’s guides and
solutions in more detail.

The purpose of the designed web pages is to give instructors easy access
to the information they need in order to successfully use the sequence of
five activities. One of the challenges was to give instructors as much as
they need without giving them too much. Capturing the essential features
of each activity in sufficient detail and sufficient brevity was a task that
required over one hundred hours of discussions between Corinne and me.



These discussions focused both upon what was most important about the
activities and how best to present them. Numerous drafts of the documents
were created before a final format was agreed upon. At each stage we asked
ourselves the questions:

1. What is most important about this activity?
2. What would get another instructor interested in this?

3. What would another instructor most want and need to know in order
to do this activity?

4. How can we present the desired information in a user-friendly way?

The Overview

The one-page overview is designed to get the instructor interested and high-
light what is most important about the activity. We decided that the in-
structors would first want to know what the activity is and why they would
want to spend valuable class time using this activity. The overviews have
two short parts. The first section entitled Highlights of the activity has one to
three sentences describing the problem that students must solve. The second
section entitled Reasons to spend class time on this activity has one to three
short paragraphs describing the things students need to learn and how this
activity addresses this need.

In the second section of the overview we make the case that there are im-
portant understandings that students at this level typically do not yet have
and then briefly explain how the particular activity will help students de-
velop these important understandings. We briefly describe how the activity
allows students to wrestle with the key physics concepts in a way that builds
deeper understanding. Frequently we also point out that most students do
not initially have some important mathematical or physics skills and under-
standings that are frequently either assumed or overlooked in most curricula.

The Instructor’s Guide and Worked Solutions

If the overview is successful in gaining the interest of an instructor, then it
is essential that they are given the tools necessary to use the activity suc-
cessfully. Linked from the overview is an instructor’s guide. The instructor’s



guide includes practical details such as needed props, links to handouts, and
an overview of the activity. However, the “meat” of the instructor’s guide
fits into three general categories; prerequisite skills, the challenges students
face and how to address them, and the follow-up activities that build upon
what students learn during the primary activity.

The first of these categories addresses the prerequisite skills students need
to be successful at this activity. One of the most important aspects of these
activities is to give students algebraically complicated problems and have
them learn to break them into manageable pieces. Thus, it is essential that
students have enough background to make the pieces truly manageable. We
needed to clearly articulate what we believed to be the important prerequisite
skills and understandings that students will bring together to be successful
with these activities. These prerequisites are initially listed under the heading
This activity brings together student understanding of: and then are described
in the section entitled Student prerequisite skills.

The list of required understandings includes such things as electrostatic
potential, the physical and geometric meaning of |7_—1F_,|, superposition, and
power series expansion. The Student prerequisite skills section gives a more
detailed description of each of these items including required formulas and
yet-to-be-completed links to each of the activities Dr. Manogue uses to help
students build this prerequisite knowledge.

The second main category addresses how to set up the activity and the
how to effectively get students to do the essential learning. A brief section
entitled Ouverview describes in one paragraph how to get students started
on the activity and describes what they will be doing. The longest section
of the instructor’s guide is entitled, What the students will be challenged by
and how to facilitate their learning. An alternate title we had considered for
this section was, Where students get stuck and how to get them unstuck. As
the title suggests, this section describes the types of difficulties that students
have and how to effectively address these difficulties. This is the section that
deals with the most essential learning and pedagogical issues.

It was decided that the instructor guides would be too hard to follow, for
someone unfamiliar with the activity, unless worked solutions were also given.
With worked solutions available, instructors would be able to quickly see the
scope and nature of the problem and then be able to follow more clearly the
discussion of where students faced difficulties in reaching successful solutions.
This sent us “back to the drawing board” as we tried to establish how worked
solutions and the needed commentary should be presented.



There was much debate as to whether to have running commentary in the
solutions or whether to have the solutions be straight forward without ped-
agogical commentary and instead have the instructor’s guide have the com-
mentary that refers to the solutions. We eventually decided that instructors
would like to see a clean solution done in the way a physicist would solve the
problem. We could then use a separate document for the instructor’s guide
which would refer to the solutions and point out the places students faced
challenges. We also point out ways in which student solutions differed from
the ways physicists normally solve problems.

There was also debate about whether to present solutions in Math ML
or LaTex. The current strategy is to have all solutions as portable document
format (PDF) files made with LaTex. The hope is to eventually make the
documents available in multiple formats, including PDF and MathML. It was
also decided that the instructor’s guide, which had been written in Microsoft
Word for conversion to HTML, would be rewritten in LaTex so that equations
could be included in the commentary portion.

The separate solutions and instructor’s guide allow us to easily describe
differences between the student approach and the expert approach. For ex-
ample, it can be pointed out that when the square root of a squared quantity
is taken, many students will simply “cancel out” the square and square root
instead of recognizing that an absolute value of the quantity is required. Or
it can be discussed that something such as finding the linear current density
given the period, radius and charge of a rotating ring, which seem trivial
to the instructor, actually require a great deal of thinking and effort for the
students.

The instructor’s guide also describes how long it typically takes for stu-
dents to accomplish various steps and when it is most productive to quickly
offer help and when it is most productive to let students struggle in order to
gain a deeper understanding of the problem.

After learning and pedagogical considerations have been discussed, the
instructor’s guide has a final section entitled, Debriefing, whole-class discus-
siton, wrap-up and follow-up. This section describes the types of discussions
after the activity that help students focus on the main points of the activity.
During this time, results of different groups can be compared and contrasted,
key concepts can be emphasized, connections to other things can be made,
concepts can be generalized, and applications of the learned concepts can be
discussed.

This final section also contains suggestions for homework assignments

6



and future activities that will build upon the things students learned during
this activity. Although we believe that the five main activities have value on
their own, we see great value in reinforcing and expanding upon the concepts
learned. In this way, the activities can be more integrated into the class as
opposed to having activities that seem to appear out of nowhere and then
get dropped.

The framework of these web pages allows instructors to get involved in
various ways. Instructors could use the pages to spark their thinking without
actually adopting the specific activities. With this approach, instructors
could see the types of things we do in the Paradigms course and think of
ways to create similar activities in their own courses. On the other hand,
instructors could choose to use one or more of the described activities. If
they choose to do a described activity, the worked solutions and instructor’s
guide will hopefully allow instructors to efficiently determine the essential
ideas and have readily available the things they need to make the activity
run smoothly.

For instructor’s using some of the activities from the main sequence, the
links to the activities related to prerequisite knowledge and links to follow-
up activities will allow instructors to adopt varying degrees of the Paradigms
courses. Instructors could choose to try anywhere from one to all five of the
main sequence of activities and could adopt anywhere from none to all of
the activities that build to or follow from the five main activities. Using the
whole sequence along with all the build-up and follow-up activities would
result in a course highly similar to the Paradigms courses.

The hope is that we have met the needs of instructors interested in the
Paradigms project or in reform-based physics instruction.



Chapter 2

Theoretical Perspectives Statement

The purpose of this research is to describe the central activities used in two
reformed-based upper-division physics courses that are part of Oregon State
University’s Paradigms program and to document what the instructor, Dr.
Corinne Manogue, sees as the meaningful and important aspects of these
activities. This research draws upon the case study tradition and utilizes the
social constructionist ontology and epistemologies.

In their historical account of the case study, Hamel, Dufour and Fortin
(1993) report that Bronislaw Malinowski, considered a founder of modern
anthropology, studied in as much detail as possible the behaviors, beliefs, and
rituals of particular cultures, and realized that to understand that culture
required an understanding of the meanings that the members of that culture
assigned to their own behaviors and rituals. The approach at that time was
to become a participant observer who attempted to integrate into the culture
while trying not to alter it. This study utilized the basic approach of selecting
a case and then using a variety of sources to build an understanding of that
case. However, the researcher’s role evolved from that of participant observer
to one of collaborator.

Denzin (1997) and Lincoln and Guba (1994) are among those who have
argued that an understanding of meaning requires interpretation and that
researchers participate in meaning creation with those being studied. From
this social constructionist perspective, reality is actively constructed through
social interactions and knowledge consists of mutually created understand-
ings. With this perspective as a basis, the researcher can legitimately be
an advocate and facilitator who strives along with the other participants
to co-create a better world through creation of meaning and understanding
(Lincoln and Guba, 1994).

An example of a social constructionist theoretical framework in science
education research is entitled, Emotional issues in science teaching: A case
study of a teacher’s views (Zembylas, 2004). In this case, Zembylas initially
set out to study how children’s knowledge was legitimated in the classroom of
an elementary school teacher, Catherine, who had been honored and recog-
nized for her science teaching. The study evolved and focused on the role of
emotions after both researcher and teacher discovered a common interest in
this topic. The two then worked in collaboration over a three year period to



understand the role emotion plays in teaching science.

Undergoing a similar type of transformation, this study initially started
by looking at student learning and the effectiveness of instruction but evolved
into a three-year collaboration between the author and Dr. Manogue to un-
derstand the essential features and meaning in the activities in her classroom.
As a former high-school science teacher who used reformed based methods
and as a graduate student who had taken Dr. Manogue’s physics courses, I
shared an interest with Dr. Manogue in advocating for an increased usage of
reformed-based curriculum and instruction in upper division college physics
courses. Our combined understanding of pedagogy and learning was used to
build an understanding of her instructional techniques.

In addition to audio-taped discussions between Dr. Manogue and the au-
thor, course documents, video of students working, student work, and student
interviews were used to understand the student viewpoint and the nature of
interaction between the instructor and her students. However, the primary
purpose of using these resources was to find examples of the types of interac-
tions and student thinking that the instructional approaches were designed
to generate. Thus while data that directly contradict assertions were not
intentionally ignored and were sometimes used to help build understandings,
the additional data were primarily used to illustrate assertions rather than
evaluate them. Thus, this study is limited to describing the types of activ-
ities that are used, their meaning, and their influence on student learning
that are viewed as important by both the instructor and the author.

As part of the grant requirements that led to the creation of the Para-
digms program, there has already been extensive data and analysis of the
program that shows that compared to the school’s earlier program, there has
been improved student retention, improved grades, and generally positive
student attitudes toward the program (Manogue and Krane, 2003). Thus
the assumption of this study is that there already exists sufficient reason to
consider Dr. Manogue’s instruction to be of interest to the physics education
community and that there is value in describing that instruction and the
meanings given to it that have led to the instructor’s conviction for using the
reformed-based instructional approach..

While social constructionism was used as the theoretical framework for
the research methods, the primary theoretical lens for understanding the
learning and instruction was that of cognitive apprenticeship (Collins, Brown
and Holum, 1991). The cognitive apprenticeship model relies on learners
having opportunities to see the thinking of experts and to engage in the
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types of thinking that experts engage in, including using learning strategies,
metacognitive strategies and heuristic strategies or 'tricks of the trade’. The
teaching method includes:

1. the expert modeling thinking,
2. coaching students as they work on tasks,

3. providing scaffolding in various forms to support the student as they
work through a task,

4. having students articulate their knowledge, reasoning and problem-
solving process,

5. reflecting and having students and compare their problem solving strate-
gies to those of an expert,

6. engaging in exploration in the form of having students ask their own
questions and use their problem solving abilities with a minimum of
support (Collins, Brown and Holum).

Dr. Manogue has chosen the cognitive apprenticeship model as appropri-
ate for interpreting the learning experiences that she fosters in her classroom.

An example of a study using the cognitive apprenticeship framework is
Darabi’s (2005) case study of a graduate course in performance systems
analysis. Darabi saw an absence of examples in the literature of how the
cognitive apprenticeship model was actually applied to designing a learn-
ing environment. He proceeded to describe what he believed to be the key
features of that learning environment.

Similarly, there is a lack of literature describing the application of a cog-
nitive apprenticeship model to upper-division physics courses. One goal of
this study is to begin filling the gap by producing a clear example of how the
cognitive apprenticeship model can be applied to a set of learning activities
in these particular upper-division courses. One potential limitation of using
a cognitive apprenticeship model to analyze the instructor’s teaching is that
although much of her teaching aligns with this model, Dr. Manogue had
never actually heard of this model until the second year of this study, and
thus there may be important aspects of her instruction that get overlooked
once this model is taken as the primary lens for looking at her classroom
learning environment.
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My own interest in this study has been formed by several aspects of my
own background. Twelve years as a high school and middle school math
and science teacher has led to an interest in student learning and instruc-
tional strategies that encourage students to learn at a deeper level and de-
velop knowledge that will be usable in their future lives. Being a student
in physics master’s program that included Dr. Manogue’s classes led to my
having a great personal appreciation for the learning environment in these
classes compared to the lecture-centered approach practiced by many other
instructors. Being a PhD student in a science education program has helped
me understand different learning and instructional models. Thus, I see my-
self as an advocate for the dissemination and expanded use of instructional
techniques such as those used in these classes. I hope to advance this cause
with this case study.
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Chapter 3

The Rationale for Selecting These Five Activities

The five activities chosen for this project are seen as central to the first two
Paradigms courses. Why are these five activities important? One answer
to this question is that they cover critical mathematics and physics content
by pulling together student understanding of power series, curvilinear coordi-
nates, electric potential, electric field, linear charge densities, magnetic vector
potential, and magnetic field. Another answer is that these five activities are
important pieces in advancing the “hidden curriculum” of getting students
closer to “thinking like a physicist,” including using geometric reasoning,
understanding what algebraic symbols represent physically, and breaking a
complex problem into manageable pieces. This chapter will describe the chal-
lenges students face and how these activities build student understanding of
the content as well as help students begin to think more like a professional
physicist.

Activity 1 - Potential due to two point charges

The first activity asks students to consider two point charges on the x axis
and find the power series expansion for the potential either very close or very
far from the origin on either the x— or y—axis. The four prerequisites skills
listed for this activity are understandings of 1) electrostatic potential, 2) the
physical and geometric meaning of ‘?_—1;%, 3) superposition, and 4) power
series expansions.

In prior physics courses students have seen potential as V' = % and have
probably dealt with problems involving the potential of more than one point
charge. In this respect, this activity is somewhat of a “refresher” problem
for the first three understandings, pulling together knowledge students had
used before this course and asking them to actively bring it to bear on a
new problem. However, this problem asks students to consider potentials,
superposition, and position vectors at a more sophisticated level.

There is a substantial difference between what students are asked to do
here and what most students have seen previously, which usually has been
solving for the potential at one point on a plane due to multiple coplanar
charges by using the formula V = % and simply plugging in values. These
prior problems require minimal thinking about electrostatic potential, do not

12



require using position vectors and vector addition, and allow for applying the
superposition principle by default instead of careful thought. Instead of r
being a value that can be simply plugged into a formula, creating the power
series for the potential along an axis requires a more sophisticated thinking
using V (#) = S| % Yet-to-be-created links for prerequisite skills will
show activities that get students to start thinking more deeply about the
concepts of potential, superposition, and the geometric meaning of adding
and subtracting position vectors.

The piece of the problem that requires the creation of a power series will
be something few students will have ever done in a physics context. Further-
more, making a physical interpretation of a power series will be something
most students have never been asked to do.

This first activity asks only for potentials on the x and y axes. Whereas
a professional physicist might immediately envision a three-dimensional po-
tential field, many students will think entirely within the confines of two-
dimensions and won’t consider that they are solving for a specific case with
z = 0 of a more generalized three-dimensional situation. This point is
brought up in the whole-class discussion following the activity.

Most of the challenges students face in reaching an answer to their specific
case of this problem will lie within the mathematics. The single biggest
challenge for students is turning an expression like ﬁ into something that
looks like (1 + 2)P. The most challenging aspect of this is figuring out how to
get a “1” and a “something small” in the problem by factoring out a D or an
x, depending on their specific question. First students need to recognize that
it is possible to factor out a variable, and then they will need to correctly
do the algebra. Although this will probably be the biggest challenge, the
students will often spend time thinking about things a professional physicist
wouldn’t even imagine as requiring effort, such as wondering about having a
z in the power series formula, but no z variable in the problem. Other things
students will need to do in this problem include:

1. Recognizing that p in the power series formula will need to be negative

2. Correctly dealing with signs when applying the power series in con-
junction with the superposition principle

3. In some cases, students will need to deal with the square root of a
squared quantity, which they will often attempt to handle by “canceling
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out” the square and square root without recognizing the need for an
absolute value.

While most groups will not encounter extended difficulties in all these
areas, very few will do this without significant effort. It is important that
instructors realize the need to have students be supported while they work
through these types of problems, or students will face enormous difficulty in
solving problems that take for granted mathematical proficiency.

Making meaning of the answers students get is a critical portion of this ac-
tivity. In individual conversations and in the whole-class discussions, it will
be important for students to consider what their answer tells them about
the physical situation. Having groups share their answers for different cases
allows them to compare and contrast different situations, including interpret-
ing the significance of odd and even functions. Students will also be asked to
consider cases with non-zero z component and to envision the potential field
in three dimensions.

One additional feature of this activity is that it allows for introduction of
Laurent series, which is an expansion with the variable in the denominator, in
a way that makes them seem like an almost trivial extension of power series.
Expanding (1+%)_1 for % << 1 requires students to do nothing significantly
different than expanding (1 + %)*1 for §; << 1. However, past experience
has shown that if Laurent series are introduced as a separate topic, they can
be very intimidating for students.

Activity 2 - Potential due to a charged ring

The second activity is finding the electrostatic potential in all space due to
a ring of charge () and radius R. This is the first problem where students
are truly asked to use three dimensional geometric thinking and to solve
a complex problem by bringing together several pieces in new ways. The
problem builds upon the first activity, but introduces several new aspects

The first concept students need to understand is linear charge density.
Given that the ring has a charge () students will need a few minutes to
realize that the charge density A = 2% In general students come up with
this on their own without help.

Students will grapple with how the linear density relates to the “chopping
and adding” aspect of integration. Students frequently leave math classes un-

derstanding integration as “the area under a curve”. In this activity, students
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need to consider the potential due to a charged ring. Doing this requires that
students imagine chopping the ring into a bunch of infinitesimal pieces at dif-
ferent points in space and then figure out how to sum up the contribution
to the potential from each of those pieces. Thus, integrating %, often re-
quires students to think of integration a way that they have not done before.

Students must use three dimensional geometric thinking to deal with the
|# — 7’| piece in the denominator, including using an appropriate coordinate
system to take advantage of the symmetry of the problem. Most students
will choose to center the ring at the origin and use cylindrical coordinates.

This problem raises additional challenges because students need to realize
that \?f—lf"’l cannot be evaluated by simply using #’ in curvilinear coordinates.
Some instructors may even miss this point if they have not carefully con-
sidered it prior to this activity. In Cartesian coordinates ¥ = X+ yy +
2z and 7' = 'X'+ 'y + 2'Z'. Because X = X', y =¥y, and z = 7/, then
r—7 = (z—2 )%+ (y—v')¥ + (¢ —2')z. Similarly, in curvilinear coordinates
¥ = rit and ¥ = '/, and ¥ — ¥ = ri — 't/ However, there is a problem
because T and ' can be oriented in different directions at any angle. They
cannot be simply added or subtracted.

Unfortunately, solving this problem entirely in rectangular coordinates
from the beginning is quite cumbersome. The solution to this dilemma is the
conversion from cylindrical coordinates to Cartesian coordinates and back to
cylindrical coordinates, which results in:

7 — 7| = \/r2 4+ 2rRcos(¢ — ¢) + R2 + 22.

The final component is that students need to recognize an elliptic integral
and what to do when they run into one. Refer to the solution manual, Eq.8
to see the resulting elliptic integral. Most commonly students have never
seen such “unsolvable” integrals in their calculus classes. There are two
approaches used to dealing with the elliptic integrals. One is to use Maple
to use the elliptic integral to create a visualization of the potential field. The
other is to use series expansions to understand “what is going on” along the
axes.

The power series and Laurent series expansions along the 2z axis are highly
similar to those for the two point potentials, but creating the expansion for
the x axis requires using the expansion prior to integration and using a more
complicated expression as the “something small” in the expansion. This
also helps students understand how power series can be used for creating
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solutions to otherwise unsolvable integrals. In addition, the “messiness” of
adding terms in the expansion results in students having new interest and
motivation for understanding how many terms are needed for a “reasonable”
approximation.

Overall, this second activity of finding the potential for a ring builds
upon the knowledge students gained during the first activity with point po-
tentials. The key additional physics and mathematics concepts used during
this activity are

1. linear charge density

2. curvilinear coordinates

3. using geometric reasoning in three dimensions
4. integration as “chopping and adding”

5. using power series and Laurent series prior to integration to deal with
elliptic integrals.

This activity also addresses key parts of the “hidden curriculum” of help-
ing students think like a physicist. First, it requires students to go repeatedly
back and forth among physical understanding, geometric reasoning, and al-
gebraic symbols to get students out of the mode of seeing algebraic symbols
simply as formulas into which numbers are plugged. And second, the com-
plexity of the problem forces students to try breaking the problem into man-
ageable pieces, which goes far beyond the “pattern matching” that students
often do with textbook homework and example problems.

Activity 3 - Electric field due to a charged ring

By using the same geometry, students can focus on the differences and simi-
larities of the electric field and the electric potential instead of dealing with
both a new geometry and a new type of field and seeing the problems as
unrelated. Specifically, students will need to consider the vector nature of
the field. The scalar field in the previous example of electrical potential re-
quires different geometric arguments and different symmetry considerations
than the electric field.

The single most challenging new piece to this problem is dealing with
¥ — 7' in the numerator of the integrand. As mentioned earlier ¥ and ' are
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not in the same direction and thus cannot be simply subtracted in cylindrical
coordinates. To a professional physicist, dealing with rr — #’ in the numer-
ator may seem like an almost trivial extension of the previous problem, in
which students needed to use |7 —#| = (12 +2rRcos(¢ — ¢') + R? +22)1/2 in
the denominator. However, the particular expression for |# — 7| was created
by students in an earlier homework assignment, and individual students may
have received significant assistance during the assignment. Since students
are allowed to use their earlier homework, many may have simply used this
expression in the previous activity without careful consideration of the geo-
metric reasoning. Thus, students may now be genuinely constructing the
geometric argument for the first time. However, even for students who did
the geometric reasoning during the homework, it is often the case that stu-
dents write down algebraic expressions naively without thinking about the
geometry and thus end up writing incorrect things.

In fact, there are some additional mathematical complexities and consid-
erations. When considering the special cases of the r or z axes, students are
forced to deal with i,j, and k components separately in the integral. The
results allow students to gain insights into the symmetry of the problem.
Refer to Eqgs. 8 - 14 in the solution to see this in detail.

Activity 4 - Magnetic vector potential due to a charged
ring

In this problem students must deal with the concept of current density and
with the concept of a vector potential. Students will often find it surprising
that their intuition about electrostatic potential is not directly applicable to
vector potentials.

Instructors may see it as so simple that they wouldn’t consider that it
would require considerable mental effort from students to find the linear
current density from a ring of charge () and radius R rotating with period
T. The reality is that the concept of current density is sufficiently new and
unfamiliar that students must spend time grappling with the concept in this
context. The understanding gained during this problem “pays off” when
students face future problems involving linear, surface and volume current
densities.

In addition to determining the magnitude of the current, students will
need to consider direction. This may be the first time students have had to
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consider the vector nature of current beyond simply using the “right hand
rule.” The understandings gained here will also be needed for the fifth ac-
tivity where students are required to find the magnetic field.

The concept of magnetic vector potential is new to most students. Be-
cause most people try to understand something new by comparing it with
something familiar, students will often try to use intuitions about electric
potential to understand magnetic vector potential. Because expressions for
both potentials contain ﬁ, students may make the assumption that both
potentials represent basically the same thing with a different constant in
front. This activity will force students to confront some of the important
differences between a scalar potential and a vector potential.

One example of a situation where students must confront this difference
is with the magnetic vector potential along the axis of the ring. Whereas the
electric potential is positive for all finite values along this axis, the magnetic
vector potential is always zero. For many students this result will be coun-
terintuitive and will cause them to think more deeply about the differences
between scalar potentials and vector potentials.

Activity 5 - Magnetic field due to a charged ring

This is designed as the culminating activity for this unit which allows stu-
dents to connect much prior learning in a single problem. Prior to upper divi-
sion physics courses, students have little experience in dealing with anything
involving the synthesizing or “pulling together” of so many things simulta-
neously. Students need to use symmetry and geometric understanding to be
able to construct the integral using the Biot-Savart Law. For many students,
this will be the messiest integral they have ever had to face (see Eq. 6 for this
activity). Successfully unpacking (dealing with) this integral requires that
students first believe that they are capable of tackling something like this.
The primary new piece to the problem is the vector cross product in
the numerator of the integrand. Although students have done vector cross
products in math classes, students will need to realize that they can apply
vector cross products to this context and that doing so will help mak