Navigate back to the activity.
This activity can also be part of a larger integrated laboratory. See the Spins Lab 3 activity page.
Estimated Time: 15 minutes
Before performing this activity, students should already have experience finding Probabilities for Different Spin-$\frac{1}{2}$ Stern Gerlach Analyzers. Since students have likely not worked with the spin-1 case yet, introduce the system by telling students that the spin-1 system is more challenging than the spin-$\frac{1}{2}$ system because each Stern-Gerlach device has three exit ports. Introduce the class to the proper state notation for the z-basis (that is, $\vert 1 \rangle$, $\vert 0 \rangle$, and $\vert -1 \rangle$ ). If you wish, this is also a good time to introduce the spin operators for the spin-1 system if operators have already been discussed. Let the students take the data and fill out the table on the activity handout.
Bring the class back together ask the students about any results that they were not expecting. Be sure to note how the probabilities for receiving the states $\vert 1 \rangle_{x}$, $\vert 0 \rangle_{x}$, and $\vert -1 \rangle_{x}$ from the input state $\vert 1 \rangle$ or $\vert -1 \rangle$ are not split into perfect thirds (same for receiving any y states). Also discuss how for the initial state $\vert 0 \rangle$, the probability for receiving $\vert 1 \rangle_{x}$ or $\vert -1 \rangle_{x}$ appears to be one-half from the experiment and that the probability for receiving $\vert 0 \rangle_{x}$ is zero.
These probability results will certainly have an impact on what the representations for $\vert 1 \rangle_{x}$, $\vert 0 \rangle_{x}$, $\vert -1 \rangle_{x}$, $\vert 1 \rangle_{y}$, $\vert 0 \rangle_{y}$, and $\vert -1 \rangle_{y}$ will look like in the z-basis. Having the students find these states in the z-basis makes for an excellent homework exercise.