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Conceptual and procedural knowledge of mathematics represents a distinction.
that has received a great deal of discussion and debate through the years. Ques-
tions of how students learn mathematics, and especially how they should be
taught, turn on speculations about which type of knowledge is more important or
what might be an appropriate balance between them. Additionally, discussions
of conceptual and procedural knowledge extend beyond the boundaries of mathe-
matics education. The distinction between concepts and procedures plays an
important role in more general questions of knowledge acquisition. In some
theories of learning and development, the distinction cccupies center stage.
Although the types of knowledge that are identified from theory to theory are not
identical, there is much overlap. The differences are primarily in emphasis rather
than kind. For example, Piaget (1978) distinguishes between conceptual under-
standing and successful action; Tulving (1983) distinguishes between semantic
memory and episodic memory; Anderson (1983) distinguishes between de-
clarative and procedural knowledge. Parallel distinctions are made in philosoph-
ical theories of knowledge. For example, Scheffler (1965) distinguishes between
the propositional use of ‘‘knowing that’’ and the procedural use of “‘knowing
how to,”” The distinction between conceptual and procedural knowledge that we
elaborate in this chapter is not synonymous with any of these distinctions, but it
draws upon all of them.

Mathematics, with its tightly structured and clearly defined content, has pro-
vided an arena for much discussion of conceptual and procedural knowledge.
Over the past century, considerations of these twe kinds of mathematical knowl-
edge have taken different forms using different labels. Probably the most widely
recognized distinction has been that between skill and understanding. Often the
discussions of skill and understanding have taken the form of a debate about
which should receive greater emphasis during instruction. McLellan and Dewey
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(1895) argued for understanding and presented a mathematics curriculum they
felt would raise the level of understanding beyond that existing in classrooms at
the time. Thorndike (1922} presented the case for skill learning and described in
detail how skills should be taught to maximize retention. Brownell (1935) op-
posed the emphasis on learning isolated skills and argued forcefully for an
increased emphasis on understanding. Essentially the same debate was carried on
peciodically through Gagné’s (1977) emphasis on skill learning versus Bruner’s
(1960) case for understanding. Along the way there have been many additional
voices addressing the issue from a variety of perspectives (see Jones, 1970;
Shulman, 1970).

Currently, cognitive psychologists and mathematics educators are looking
again at conceptual and procedural knowledge in mathematics learning. Some-
times, the discussions are couched in terms different from those used in the past.
For example, Resnick (1982) talks about semantics and syntax, and Gelman and
Galliste] (1978) distinguish between principles and skills. Even within this vol-
ume, a variety of terms are used to differentiate between types of knowledge.
Baroedy and Ginsburg describe differences between meaningful and mechanical
knowledge, and Vanlehn distinguishes between schematic and teleologic
knowledge. But, regardless of the labels, the division between types of knowl-
edge Hes in approximately the same place today as it has in the past.

There are, however, three important differences between current discussions
of conceptual and procedural knowledge and the historic discussions of under-
standing and skill. First, the essays of the past have treated understandings and
skills as instructional outcomes and have dealt with them in the context of
advocating instructional programs. The issue has been whether skills, or under-
standings, or both should be emphasized during classroom instruction. The con-
text for addressing the question of the relative importance of skills and under-
standings often has been the prescription of instructional programs. Today,
many of the writings describe the acquisition of knowledge and the relationships

-between different kinds of knowledge. The implicit assumption is that more

complete descriptions are a first step on the road to better prescriptions. Detailed
descriptions are believed to provide a sound basis from which to develop effec-
tive instructional programs.

The second difference between past and cwrrent discussions of conceptual and
procedural knowledge is found in the current attention to relationships between
concepts and procedures. Historically, the two kinds of knowledge have been
viewed as separate entities, sometimes competing for the teacher’s attention, at
best coexisting as disjoint neighbors. Little interest has been shown in studying
the relationships between the two kinds of knowledge. In contrast, there is a
growing interest today in how concepts and procedures are related. Current
discussions treat the two forms of knowledge as distinct, but linked in critical,
mutually beneficial ways. The new language of cognitive science has facilitated
this approach because a single language can now be used to deal with both forms
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of knowledge (Anderson, 1983; Davis, 1984; Norman & Rumethart, 1975). It is
no longer the case that different theories are needed to express the principles
guiding the acquisition and application of each kind of knowledge; a single.
theoretical orientation can handle both conceptual and procedural knowledge.,

The third difference between past and present discussions is that past distinc-
tions between conceptual and procedural knowledge focused on mathematics
learning in school, whereas recent discussions of the issue have broadened the
scope to include preschool mathematics leamning in informal settings. Although it
has long been recognized that children enter school with significant mathematical
competencies (Brownell, 1941; McLaughlin, 1935), it is only recently that these
competencies have been analyzed in great detail. Some of the analyses have
revealed that the distinction between conceptual and procedural knowledge is as
appropriate and useful for understanding the acquisition of informal mathematics
as for formal mathematics. Preschool children acquire certain procedures or
skills along with concepts, understandings, or intuitions about mathematics. The
relationships between these kinds of knowledge, even at this level, appears to be
complex. )

Although the recent orientation to the issue of conceptual and procedural
knowledge promises to provide significant insights into mathematics learning
and performance, the relationship between these forms of knowledge are not yet
well understood. A primary reason for the intractable nature of the problem is
that the types of knowledge themselves are difficult to define. The core of each is
easy to describe, but the outside edges are hard to pin down.

Our position is that the distinction between conceptual and procedural knowl-
edge is useful for thinking about mathematics learning, and the clearer we can be
about the distinction, the better. We do not believe, however that the distinction
provides a classification scheme into which all knowledge can or should be
sorted. Not all knowledge can be usefully described as either conceptual or
procedural. Some knowledge seems to be a little of both, and some knowledge
seems to be neither. Nevertheless, we believe that it is possible to distinguish
between the two types of knowledge and that such a distinction provides a ém« of

interpreting the learning process that helps us better understand students’ failures
and successes.

DEFINITIONS OF CONCEPTUAL
AND PROCEDURAL KNOWLEDGE

Conceptual Knowledge

Conceptual knowledge is characterized most clearly as knowledge that is rich in
relationships. It can be thought of as a connected web of knowledge, a network

in which the linking relationships are as prominent as the discrete pieces of
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information. Relationships pervade the individual facts and propositions so that
all pieces of information are linked to some network. In fact, a unit of conceptual
knowledge cannot be an isolated piece of information; by definition it is a part of
conceptual knowledge only if the holder recognizes its relationship to other
pieces of information.

The development of conceptual knowledge is achieved by the construction of
relationships between pieces of information. This linking process can occur
between two pieces of information that already have been stored in memory or
between an existing piece of knowledge and one that is newly learned. It may be
helpful to consider each of these phenomena in turn. The literature of psychology
and education is filled with accounts of insights gained when previously unrelat-
ed items are suddenly seen as related in some way. Such insights are the bases of
discovery learning (Bruner, 1961). We characterize this as an increase in concep-
tual knowledge. Two illuminating accounts of this kind of conceptual knowledge
growth in elementary mathematics are found in Ginsburg (1977) and Lawler
(1981). Ginsburg describes many points in the learning of number and arithmetic
where understanding involves building relationships between existing bits of
knowledge. For example, Jane (age nine) understood multidigit subtraction for
the first time when she recognized the connection between the algorithm she had
memorized and her knowledge of the positional value of each digit (p. 155).
Relationships can tie together small pieces of information or larger pieces that are
themselves networks of sorts. When previously independent networks are relat-
ed, there is a dramatic and significant cognitive reorganization (Lawler, 1981).

A second way in which conceptual knowledge grows is through the creation
of relationships between existing knowledge and new information that is just
entering the system. The example of Jane cited above would {it here if Jane had
recognized the connection between algorithm and place value immediately upon
being taught the algorithm. Again, this phenomenon has been described with a
variety of labels. Perhaps ““understanding’ is the term used most often to de-
scribe the state of knowledge when new mathematical information is connected
appropriately to existing knowledge (Davis, 1984; Skemp, 1971; Van Engen,

1953). Other terms, like ‘‘meaningful learning,” convey similar sentiments
(Ausubel, 1967; Brownell, 1935; Greeno, 1983b). Regardless of the term used,
the heart of the process involves assimilating (Piaget, 1960) the new material into
appropriate knowledge networks or structures. The result is that the new material
becomes part of an existing network.

It is useful to distinguish between two levels at which relationships between
pieces of mathematical knowledge can be established. One level we will call
primary. At this level the relationship connecting the information is constructed
at the same level of abstractness (or at a less abstract level) than that at which the
information itself is represented. That is, the relationship is no more abstract than
the information it is connecting. The term abstract is used here to refer to the
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degree to which a unit of knowledge (or a relationship} is tied to specific con-
texts. Abstractness increases as knowledge becomes freed from specific con-
texts.

An example may help to clarify the idea of primary level relationships. Wher
students learn about decimal numbers, they learn a variety of things about deci-
mals, including the following two facts. First, the position values to the right of
the decimal point are tenths, hundredths, and so on; second, when you add o
subtract decimal numbers you line up the decimal points. Usually, it is expectec
that students will relate these two pieces of information and recognize that wher
you line up decimal points in addition you end up adding tenths with tenths,
hundredths with hundredths, and so forth. If students do make the oousaoaom_
they certainly have advanced their understanding of addition. But a :oﬂméong.
characteristic of this primary relationship is that it cohmects two pieces of infor-
mation about decimal numbers and nothing more. It is tied to the decimal
context.

. Some relationships are constructed at a higher, more abstract level than the
pieces of information they connect. We call this the reflective level. Rela-
aozmgum at this level are less tied to specific contexts. They often are created by
_.woomz_ﬁmm similar core features in pieces of information that'are superficially
m&.ﬁm&. The relationships transcend the level at which the knowledge carrently
is represented, pull out the common features of different-looking pieces of
knowledge, and tie them together. In the example cited earlier, the learner might
step back mentally and recall that you line up munerals on the right to add whole
numbers and end up adding units with units, tens with tens, hundreds with
hundreds. When adding common fractions, you look for common denominators
and end up adding the same size pieces together. Now the connection between
the position value and lining up decimal points to add decimal numbers is
recognized as a special case of the general idea that you always add things that
are alike in some crucial way, things that have been measured with a common
unit. Lining up decimal points results in adding together the parts of the decimal
fractions that are the *‘same size.’’ This kind of a connection is at a reflective
Moﬁw_ because building it requires a process of stepping back and reflecting on the
information being connected. It is at a higher level than the primary level,
becanse from its vantage point the leamer can see much more of the mathe-
matical terrain.

There are other ways to describe the different kinds of relationships that are
part of one’s conceptual knowledge in mathematics, but the primary and reflec-
tive levels provide a useful distinction. The analysis is similar in some important
ways to the different types of understanding described by Greeno (1980, 1983b)
E.E.Sw.&m.oﬁa types of intelligence proposed by Skemp (1971). Although this
distinction is not always made explicit in the remaining discussion, it is impor-
tant to remember that not all relationships are of a single kind.
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Procedural Knowledge

Procedural knowledge, as we define it here, is made up of two distinct parts. One
part is composed of the formal language, or symbol representation system, of
mathematics. The other part consists of the algorithms, or rules, for completing
mathematical tasks. The first part is sometimes called the “‘form’™ of mathemat-
ics (Byers & Erlwanger, 1984). It includes a familiarity with the symbols used to
represent mathematical ideas and an awareness of the syntactic rules for writing
symbols in an acceptable form. For example, those who possess this aspect of
procedural knowledge would recognize that the expression 3.5 + [1 = 2.71 is
syntactically acceptable (although they may not know the ““answer’’} and that 6
+ = [J2 is not acceptable. At more advanced levels of mathematics, knowledge
of form includes knowledge of the syntactic configurations of formal proofs.
This does not include the content or logic of proofs, only the style in which proof
statements are written. Notice that, in general, knowledge of the symbols and
syntax of mathematics implies only an awareness of surface features, not a
knowledge of meaning.

The second part of procedural knowledge consists of rules, algorithms, or
procedures used to soive mathematical tasks. They are step-by-step instructions
that prescribe how to complete tasks. A key feature of procedures is that they are
executed in a predetermined linear sequence. It is the clearly sequential nature of
procedures that probably sets them most apart from other forms of knowledge.
The only relational requirement for a procedure to run is that prescription » must
know that it comes after prescription n — 1. Actually, at the barest minimum it
needs to recognize as input only the outcome of prescription n — I.

The procedures we are describing can be characterized as production systems
(Anderson, 1983; Newell & Simon, 1972) in that they require some sort of
recognizable input for firing. For the completion of a task, the initial procedure
operates on the input and produces an outcome that is recognized by the next
procedure in sequence. In this way, the sequence of procedures moves the given
state (the statement of problem) to a goal state (the answer).

It is useful to distinguish between two kinds of procedures by noticing the
objects upon which they operate. A basic distinction can be a@zm between
objects that are standard written symbols {e.g., 3, +, v ) and objects that are
nonsymbolic (e.g., concrete objects or mental images). After students have been
in school for a few years, the objects often are symbols. Students are presented
with problems in the form of symbel expressions, such as adding whole num-
bers, translating from common to decimal fraction notation, or solving algebraic
equations. The task is to transform the symbol expression from the given form to
an answer form by executing a sequence of symbol manipulation rules. In pro-
duction system terms, the given state is a pattern of symbols {e.g., 3 + § = ._Hs.
Each step in the procedure recognizes the pattern it receives and changes :. to
another pattern, which in turn is recognized by the next step, and so on until a
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number is produced that is recognized as the answer. Procedures whose input and
output are visual symbol patterns have been labeled “*visually-moderated se-
quences” (Davis, 1984, p. 35). Such procedures make up the lion’s share of
school mathematics. _

That school tasks most often involve symbol manipulation procedures is a fact
whose importance should not be underestimated, It means that examinations of
students’ procedural knowledge often deal with a rather narrow but critical kind
of procedure. Because of their importance in school learning, we believe it is
useful to distinguish procedures that essentially are syntactic maneuvers on sym-
bols. Chapters in this volume that focus on school-age children reflect this
emphasis, especially those by VanLehn, Hiebert and Wearne, and Silver.

A second kind of procedure is a problem-solving strategy or action that
operates on concrete objects, visual diagrams, mental images, or other objects
that are not standard symbols of our mathematical systems. Such procedures are
used extensively by preschool children, by older children on ““nonschool”’ tasks,
and occasionally by students in school. Young children, for example, use a
variety of counting strategies to solve verbally presented addition and subtraction
problems (Carpenter, this volume). More elemental counting and number pro-
cedures are described by Gelman and Meck, Sinclair and Sinclair, and Baroody
and Ginsburg (this volume). Examples of school tasks that require nonsymbol
procedures are straightedge and compass constructions in geometry (Schoenfeld,
this volume). The important point here is that procedures, like concepis, are not
all of one kind. Some procedures manipulate written mathematical symbols,
whereas others operate on concrete objects, visual diagrams, or other entities.

An important feature of the procedural system is that it is structured. Pro-
cedures are hierarchically arranged so that some procedures are embedded in
others as subprocedures. An entire sequence of step-by-step prescriptions or
subprocedures can be characterized as a superprocedure. The advantage of creat-
ing superprocedures is that all subprocedures in a sequence can be accessed by
retrieving a single superprocedure. For example, to apply the superprocedure
“multiply two decimal numbers™ (e.g., 3.82 X .43) one usually applies three
subprocedures: one to write the problem in appropriate vertical form, a second to
calculate the numerical part of the answer, and a third to place the decimal point
in the answer. The second of these is itself made up of lower level subprocedures
for (whole number) multiplication. Often it is possible to identify several levels
of subprocedures that comprise a single superprocedure. The subprocedures are
accessed as a sequential string once the superprocedure is identified.

In summary, procedural knowledge of mathematics encompasses two kinds of
information. One kind of procedural knowledge is a familiarity with the indi-
vidual symbols of the system and with the syntactic conventions for acceptable
configurations of symbols. The second kind of procedural knowledge consists of
rules or procedures for solving mathematical problems. Many of the procedures
that students possess probably are chains of prescriptions for Emiwc_mm%m SyIm-
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bols. However, procedural knowledge also includes strategies for solving prob-
lems that do not operate directly on symbols. Perhaps the biggest difference
between procedural knowledge and conceptual knowledge is that the primary
relationship in procedural knowledge is ‘‘after,”” which is used to sequence
subprocedures and superprocedures linearly. In contrast, conceptual knowledge
is saturated with relationships of many kinds.

Meaningful and Rote Learning

Lurking just below the surface is the question of how the notions of conceptual
and procedural knowledge are related to the issue of meaningful versus rote
learning. There are some clear similarities, to be sure, but there are also some
important differences. In addition to settling (momentarily) the question of how
these ideas are related, a discussion of their similarities and differences may help
to clarify our view of conceptual and procedural knowledge.

Meaningful learning, as we indicated earlier, often has been used to convey
many of the same ideas that we presented as part of conceptual knowledge (see
Brownell, 1935; Davis, 1984; Greeno, 1983b). Meaning is generated as rela-
tionships between units of knowledge are recognized or created. Conceptual
knowledge, by our definition, must be learmed meaningfully. Procedures, on the
other hand, may or may not be learned with meaning. We propose that pro-
cedures that are learned with meaning are procedures that are linked to concep-
tual knowledge. This is such an important idea in mathematics learning that its
discussion takes up most of the remaining part of this chapter.

Rote learning, on the other hand, produces knowledge that is notably absent
in relationships and is tied closely to the context in which it is learned. The
knowledge that results from rote learning is not linked with other knowledge and
therefore does not generalize to other situations; it can be accessed and applied
only in those contexts that look very much like the original. Conceptual knowl-
edge, as we have described it, cannot be generated directly by rote learning.
Facts and propositions learned by rote are stored in memory as isolated bits of
information, not linked with any conceptual network. Of course at some later
time the learner may recognize or construct relationships between isolated pieces
of information. In this case, conceptual knowledge 1s created from information
that was learned initially by rote.

In contrast, procedures can be learned by rote. Procedures can be acquired
and executed even if they are linked tightly to surface characteristics of the
original context. In fact, many procedures, especially those that operate on
symbol patterns, are triggered by surface features similar to those of the original
context. The sequential nature of procedures also is not violated by rote learning.
In fact, learning a predetermined linear sequence of actions seems to lend itself to
rote memorization as an instructional method. Thus procedures can be learned by
rote and probably often are learned by rote since they seem especially susceptible
to this form of instruction.
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No sooner than we propose definitions for conceptual and procedural knowl-
edge and attempt to clarify them, we must back up and acknowledge that the
definitions we have given and the impressions they convey will be flawed in
some way. As we said earlier, not all knowledge fits nicely into one class or the
other. Some knowledge lies at the intersection. Heuristic strategies for solving
problems, which are themselves objects of thought, are examples. Rather than
operating on symbols, heuristic strategies seem to have concepts as their argu-
ments. Consider young children who invent strategies to solve addition problems
(e.g., 8 + 9 = ]} by combining their knowledge of doubles (e.g., 8 + 8 = 16)
with their knowledge of number relationships (e.g., 9 is one more than 8)
{Carpenter, this volume). Here it is not always clear where conceptual knowl-
edge ends and procedurai knowledge begins.

Furthermore, it is difficult to imagine someone possessing conceptual and
wH.oSQ:E,_ knowledge as entirely independent systems. Some connections are
inevitable (Nantais, Herscovics, & Bergeron, 1984). In fact, although it is possi-
ble to consider procedures without concepts, it is not so easy to imagine concep-
teal knowledge that is not linked with some procedures. This is due, in part, to
the fact that procedures translate conceptual knowledge into something observ-
able. Without procedures to access and act on the knowledge, we would not
know it was there.

A final caveat about our definitions is that not everyone working in this
area—even the contributors to this volume—will agree with them. There are
explicit differences between our definitions and those contained in other chap-
ters, and some contributors suggest other distinctions that are not part of our
definition. For example, Gelman and Meck distinguish between conceptual,
procedural, and utilization competence, and Schoenfeld discusses differences
between empiricism and deduction, a distinction that has some similarities but
certainly is not identical with our discussion of concepts and procedurss. Rather
than viewing these differences as a statement of discord, we believe they are a
sign of a healthy, vital discussion about very complex issues. .

POTENTIAL RELATIONSHIPS BETWEEN
CONCEPTUAL AND PROCEDURAL KNOWLEDGE

Mathematical knowledge, in its fullest sense, includes significant, fundamental
relationships between conceptual and procedural knowledge. Students are not
fully competent in mathematics if either kind of knowledge is deficient or if they
both have been acquired but remain separate entities. When concepts and pro-
cedures are not connected, students may have a good intuitive feel for mathemat-
ics but not solve the problems, or they may generate answers but not understand
what they are doing. Critical links between conceptual and procedural knowl-
edge not only would prevent these deficit cases from developing but also would
contribute in many other ways to the development of a sound _Soinwmw base.
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Benefits for Procedural Knowledge

Linking conceptual and procedural knowledge has many advantages for .moe:?
ing and using procedural knowledge. The advantages apply to both kinds of
procedural knowledge identified earlier. Building aoﬂmmonmgvm. between concep-
tual knowledge and the formal symbol system of mathematics is the process that
gives meaning to symbols. Building relationships between conceptual knowl-
edge and the procedures of mathematics contributes to memory (storage and
retrieval) of procedures and to their effective use.

Developing Meaning for Symbols. Few would deny _...Umﬂ meaningful sym-
bols provide an essential foundation for genuine mathematical ooE@wﬁwaS. But
students do not always establish meanings for the symbeols they use. Given our
description of procedural knowledge, it is possible 8. acquire .wuoioamw of
symbols purely as visual patterns that conform to certain syntactic constraints.
Symbols acquired in this way make no demands on conceptual knowledge. For
symbols to develop meaning they must be connected to the conceptual knowl-
edge they represent.

mﬁa ww00amm of relating symbols to conceptual W:oi.oamo is described by Van
Engen (1949). Symbols like 5.2, +, =, § all represent ideas that nmu be encoun-
tered in concrete or real-world experiences. Once experienced, the ideas can be
represented as conceptual knowledge. It is these conceptual, concretely W.uw&om
ideas that provide the referents for symbols. For example, the symbol “*+
represents the joining idea in the story, ‘‘Sue has three marbles. Her mother gave
her five more marbles. How many marbles does Sue have m:omoﬁw.oﬁ: Hm. the
joining idea is connected with **+,’" the symbol takes on meaning. Similar links
must be made between each symbol and appropriate referents in order for the
formal language of mathematics to become meaningful. .

The notion-of connecting symbols with their referents is presented in a more
formal way by Schoenfeld (this volume). Schoenfeld Enmmmom a reference
world, a symbol world, and mappings between them. The mappings connect the
referents and operations on them with symbol representations and m:m_omozm
operations on the symbols. A critical part of mathematical noawﬁgow .mEUEmSm
that entities in the symbol world must represent (for the learner) entities in the

reference world.

Recalling Procedures. Doing mathematics requires the omonﬁno.: &. ._Eu-
dreds of different procedures, probably too many to memorize as individual
pieces of information. In order to make the task manageable, the learner must
call on some additional intellectual equipment. A good choice would be the
available store of conceptual knowledge. If procedures are related to the underly-
ing rationale on which they are based, the procedures begin to look Hmmm..o_.gmgn.. It
is possible to understand how and why the procedures work. Because it is easier
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to remember things that make sense {Chase & Simon, 1973; Chi, 1978), pro-
cedures that are meaningful, that are understood by their users; are more likely to
be recalled.

There are several reasons to believe that connecting procedures with their
conceptual underpinnings is the key in producing procedures that are stored and
retrieved more successfully. First, if procedures are linked with conceptual
knowledge, they become stored as part of a network of information, glued
together with semantic relationships. Such a network is less likely to deteriorate
than an isolated piece of information, because memory is especially good for
relationships that are meaningful (Anderson, 1983; Rohwer, 1973; Skemp,
1976) and highly organized (Baddeley, 1976, Bruner, 1960; Hilgard, 1957).
Second, retrieval is enhanced because the knowledge structure, or network, of
which the procedure is a part comes equipped with numerous links that enable
access to the procedure. The “‘conceptual’’ links increase the chances thar the
procedure will be retrieved when needed, because they serve as alternate access
routes for recall (Anderson, 1983). For example, suppose students are learning to
add decimal numbers and the teacher says, *‘When you add decimals you must
first line up the decimal points.”* If this is all the information students acquire
about setting up decimal addition problems, the line-up-the-decimal-points rule
likely will be stored as an isolated piece of information with retrieval dependent
on retracing a single link between the procedure and the perception of an addition
problem as one involving decimal numbers. However, if students also learn that
the concept underlying the procedure is the adding together of things that are
alike, and they are able to recognize the similarity between this rationale and that
used in adding whole numbers or common fractions, they are in a much better
position to remember the rule. The likelihood of recalling the appropriate pro-
cedure is increased, partly because now the retrieval process can be triggered by
several external and internal cues, and the procedure can be accessed by crossing
a number of different conceptual bridges (e.g., ideas about place value or about
common denominators, or intuitive notions about relative sizes of quantities}, In
fact, with this sort of conceptual base, the rule could be reconstructed extempo-
raneously.

Using Procedures. There also is reason to believe that in addition to enhanc-
ing memory for procedures, linking conceptual and procedural knowledge facili-
tates the effective use of procedures. This may occur in at least three different
ways. If conceptual knowledge is linked to procedures it cam: (a) enhance prob-
lem representations and simplify procedural demands; (b) monitor procedure
selection and execution; and (c) promote transfer and reduce the number of
procedures required.

The logic behind the first claim, that related conceptual knowledge enhances
problem representations and thus makes the problems easier to solve, is as
follows. Problems are solved by building mental representations of the vmoEmEm
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and then dealing with the representations to select appropriate @Bnnmﬁnm” Rele-
vant conceptual knowledge can be brought to bear on the task by elaborating the
problem context (Siiver, 1982). Related conceptual knowledge is accessed, and
the problem representation is enriched (Larkin, 1983). The advantage of repre-
senting the problem conceptually is that it allows one to reason &805. mvoi the
quantities involved rather than reasoning about the symbols of a Eo&m:mm lan-
guage (Greeno, 1983a). In this way, conceptual knowledge can turn a 939._:
problem into a simpler one, which can be solved by available procedures (Davis,
1984). .

Data supporting the importance of problem representations that are heavily
conceptual come from two different sources. First, comparisons between experts
and novices suggest that expert problem solvers in a particular domain represent
problems by using underlying structure and conceptual features of the problem
context, whereas novices focus more on superficial features and specific symbol
manipulation rules that might apply (Chi, Feltovich, & Glaser, Em_w hmnw:.r
McDermott, Simon, & Simon, 1980; Silver, this volume). The implication is
that conceptually enriched problem representations facilitate successful perfor-
mance.

A different data source that delivers the same message comes from observing
adults solve what they perceive to be *‘real-life”” problems (Lave, Murtaugh, &
de La Rocha, 1984; Lesh, Landau, & Hamilton, 1983). It appears that problem
representations drawing on conceptual knowledge to place the problem in a
meaningful context influence the selection of procedures and raise the accuracy
and efficiency of the applied procedures. More specifically, problems that lack a
conceptual representation, that are solved only by selecting and m@@@im memo-
rized procedures, are more susceptible to error than problems for Ego.r a rich
conceptual knowledge representation can be built (Carraher & Schliemann,
1985; Lave et al., 1984).

A second way in which links with conceptual knowledge can erhance Em use
of procedures is by executive control. Conceptual knowledge, if linked with a
procedure, can monitor its selection and use and can evaluate the reasonableness
of the procedural outcome. With regard to selection, conceptual knowledge
serves (a) as an aid in the choice of appropriate procedures (Gelman & Meck,
this volume; Piaget, 1978) and (b) as & constraint that discourages the selection
of unacceptable procedures (Gelman, 1982; Gelman & Meck, this volume;
Greeno, 1980). Piaget (1978) argues that when conceptual knowledge is on par
with procedural actions, the conceptualization of a task enables one to anticipate
the consequences of possible actions. This information can be used to select and
coordinate appropriate procedures. o .

Conceptual knowledge can also inform a user that a procedure is inappropri-
ate. This happens when the procedure itself violates conceptual principles.
Gelman and Meck (this volume) argue that children leam to count relatively
early in life because conceptual principles provide constraints against which they
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can evaluate their counting behaviors and reject them or alter them to conform to
the conceptual principles. For an example later in life, consider again the student
who is adding decimals (Hiebert & Wearne, this volume). Suppose the student is
presented with 3.5 + 1.76. One procedure that specifically would be rejected by
conceptual considerations is adding the 5 to the 6 and the 3 to the 7. It would be
rejected because these operations would combine quantities of different de-
nomination or size. So, in addition to assisting with the selection of an appropri-
ate procedure, conceptual knowledge acts as a screening agent to reject inap-
propriate procedures.

A second and related executive control function for conceptual knowledge is
monitoring procedural outcomes. Conceptual knowledge fulfills this function by
playing the role of a validating critic (Brownell, 1947, Davis & McKnight,
1980). The critic judges the reasonableness of the answer; it checks whether the
answer “‘makes sense.’’ Consider, for example, a word problem described by
Silver (this volume) that involves long division. The problem asked students to
find how many buses would be needed to transport a given number of people.
Most eighth-grade students computed correctly but consistently provided an-
swers (involving remainders) that were unreasonable solutions to the problem.
Conceptual knowledge of the problem situation would wam students that their
answers were inappropriate. Another example comes from an earlier National
Assessment of Educational Progress (Post, 1981). Students were asked to esti-
mate the answer to 3 + § and were given choices of 1, 2, 19, 21, and *‘I don’t
know.”” A conceptual knowledge critic would warn the student that 19 and 21,
the two most frequent responses, were unreasonable. Ideally, the warnings in
both of these examples would encourage the student to reevaluate the solutions
and perhaps the choice of procedures.

On complex mathematical problems, executive decisions must be made at a
macroscopic strategic level as well as at the tactical level (Schoenfeld, 1983).
Both functions described above, selecting a procedure and checking its outcome,
are tactical decisions. Strategic decisions involve planning the direction in which
a solution will be pursued and managing intellectual resources to keep the pursyit
running. Conceptual knowledge undoubtedly plays a strong role in strategic
decision making as well. Schoenfeld (1983) has illustrated that effective use of
procedures requires conceptually informed decisions at both the tactical and the
strategic levels. .

Up to this point, the ways in which conceptual knowledge can improve the
use of procedures have dealt with using procedures on a single problem, Another
benefit bas to do with using procedures across two or more problems. It has long
been recognized that if procedures are understood, or learned in a meaningful
way, they transfer more easily to structurally similar problems (Brownell, 1947;
Dewey, 1910). It now is possible to describe the phenomenon in more detail.
Problems that are structurally similar have problem representations with some
conceptual elements in common. The links between the procedure and related -

(|
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concepts connect the procedure, by way of the common elements, {0 many
problem representations. Therefore, the appropriateness of the procedure for
many superficially different problems is recognized, and the procedure “‘trans-
fers’’ from one probiem to another (Greeno, 1983a). In other words, conceptual
knowledge releases the procedure from the surface context in which it was
learned and encourages its use on other structurally similar problems.

An example of how conceptual knowledge facilitates transfer of procedures is
provided by Carpenter (this volume). As young children’s concept of subtraction
is enriched to include different interpretations (such as take away, difference,
and adding on), they are able to use a particular strategy learned for solving one
type of problem to solve problems of a different type. The key is building a rich
store of conceptual knowledge that covers a variety of task situations and,
through its interconnections, becomes linked to a single, efficient procedure.

The real significance of increasing transfer of procedures is that it reduces the
number of procedures that must be learned. Procedures that can be used flexibly,
that are not tied to specific tasks, are procedures that have at least some gener-
ality. Generalized procedures eliminate the need to learn different procedures for
each task, thereby reducing the number of procedures that must be learned and
remembered. For instance, consider the process of multidigit subtraction with
regrouping. If the process is learned at 2 purely syntactic level, different pro-
cedures must be learned for different kinds of problems (e.g., borrowing across
zeros is syntactically different from borrowing across nonzeros). However, at the
semantic level a single process of regrouping governs all cases. The slight
syntactic variations that are executed for different tasks need not be treated as
different procedures to be memorized independently; instead they simply appear
as syntactically different manifestations of the same process applied to struc-
turally similar tasks. Mathematics is filled with examples of a single, concep-
tually linked procedure that replaces numerous syntactically distinct ones.

To reiterate, a linking relationship between conceptual and procedural knowl-
edge appears to increase the usefulness of procedural knowledge. The benefits
accrue for both kinds of procedural knowledge, symbols and procedures. Link-
ing conceptual knowledge with symbols creates a meaningful representation
system, an essential prerequisite for intelligent mathematical learning and perfor-
mance. Linking conceptual knowledge with rules. algorithms, or procedures

reduces the number of procedures that must be learned and increases the like-
lihood that an appropriate procedure will be recalled and used effectively.

Benefits for Conceptual Knowledge

Linking conceptual and procedural knowledge benefits conceptual knowledge as
well as procedural knowledge. The benefits for conceptual knowledge are cited
less often but are equally significant. Under an organizational scheme similar to
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the previous section, some benefits for conceptual knowledge arise from the
formal language system and syntax conventions, whereas others emerge from the
use of rules and procedures.

Symbols Enhance Concepts. The formal language system of mathematics
provides a powerful tool for dealing with complex ideas. Symbols that have been
connected with meaningful referents can be used to think about the concepts they
represent. ‘It is largely by the use of symbols that we achieve voluntary control
over our thoughts’ (Skemp, 1971, p. 83). Thought is aided by the fact that
symbols can represent complex or densely packed concepts; in these cases,
cognitive effort in dealing with the concepts is reduced by focusing on the
symbols. In fact, one of the powerful features of mathematics is the effortless-
ness with which complex ideas can be manipulated by moving symbols.

Viewed as cognitive aids, symbols help to organize and operate on conceptual
knowledge. But that is not all. The symbol system can also produce conceptnal
knowledge. Byers and Erlwanger (1984) draw attention to the fact that the
notation system, or syntax of mathematical symbols, is responsible for the devel-
opment of some key mathematical concepts. Place-value notation and Leibniz’s
integral notation are two especially apt examples. Advances in form often bring
with them advances in related concepts (Struik, 1967).

Procedures Apply Concepts to Solve Problems. Conceptual knowledge is
useful for solving mathematical tasks only when it is accessed and converted into
appropriate form. Anderson (1983) describes one way in which this might hap-
pen. Problems for which no routine procedures are available are solved initially
by applying facts and concepts in an effortful, laborious way. As similar prob-
lems are solved repeatedly, conceptual (declarative) knowledge is gradually
transformed into set routines (condition-action pairs) for solving the problems.
The condition-action pairs constitute the basic elements of the procedural sys-
tem. Thus knowledge that is initially conceptual can be converted to knowledge
that is procedural. : '

Gelman and Gallistel (1978} describe another way in which procedures can
bring conceptual knowledge into the problem-solving arena. They believe that
young children possess a significant store of conceptual knowledge about count-
ing and number. However, they can only use their conceptual knowledge to
reason about specific numerosities, about quantities to which a numerical value
has been assigned. Counting procedures bring number within the purview of
conceptual knowledge by generating specific numerosities with which concep-
tual knowledge can reason. \ |

Third, procedures can facilitate the application of conceptual knowledge be-
cause highly routinized procedures can reduce the mental effort required in
solving a problem and thereby make possible the solution of complex tasks. Case
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{1985) explains this phenomenon by pointing out that efficient procedures re-
quire less of one’s limited cognitive processing capacity. This frees additional
space for more effortful processes, such as planning (Kotovsky, Hayes, & Si-
mon, 1985}, or looking for relationships between novel aspects of a problem and
relevant conceptual knowledge. In other words, automated and efficient strat-
egies make room for applying conceptual knowledge.

Procedures Promote Concepts. Just as new symbol notation occasionally
generates or advances concepts in the discipline of mathematics, new procedures
can trigger for individuals the development of concepts. It is clear that during the
early years, relationships between conceptual and procedural knowledge are
intricate and dynamic (Baroody & Ginsburg, this volume; Gelman & Meck, this
volume; Sinclair & Sinclair, this volume). It appears that on occasion procedural
knowledge takes the lead and spurs the development of new concepts. For
example, Gelman and Meck (this volume) present a scenario in which children
use already acquired counting skills to promote the development of an ordinal
concept of number. Baroody and Ginsburg (this volume) describe other instances
in which young children’s conceptual development is motivated by the applica-
tion of procedures.

Summary

Linking conceptual knowledge and procedural knowledge has many advantages.
Usually the advantages are claimed for procedural knowledge. Procedural
knowledge that is informed by conceptual knowledge results in symbols that
have meaning and procedures that can be remembered better and used more
effectively. A closer look reveals theoretical advantages for conceptual knowl-
edge. Procedural knowledge provides a formal language and action sequences
that raise the level and applicability of conceptual knowledge. These are the
theoretical claims. In reality, the advantages are not always realized.

ACTUAL RELATIONSHIPS BETWEEN CONCEPTUAL
AND PROCEDURAL KNOWLEDGE

If students of mathematics naturally and routinely connected their conceptual and
procedural knowledge, the issue (and this book) would be of little interest. The
skill versus understanding debate of the past would certainly not have persisted
and probably would not have arisen at all. Examining the relationships between
conceptual and procedural knowledge is a worthwhile pursuit only because stu-
dents often fail to recognize or construct the relationships. Being competent in
mathematics involves knowing concepts, knowing symbols and procedures, and
knowing how they are related. Why is it that the relationships frequently are not
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constructed? What are the factors that inhibit the creation and recognition of
relationships between conceptual and procedural knowledge?

Factors That Inhibit
the Construction of Relationships

Building relationships between pieces of information does not always occur
spontaneously. Even if the relationships are made explicit, they are not always
recognized or internalized. Many factors may contribute to the failure to estab-
lish relationships between units of knowledge; we address three of them that may
have special importance for mathematics learning.

Deficits in the Knowledge Base. Relationships between items of knowledge
cannot be constructed if the knowledge does not exist. This observation is ob-
vious, but it is worth elaborating because of its importance in mathematics
learning. Three examples illustrate the point. Silver (this volume) argues that the
common error in adding fractions of adding numerators and adding denominators
(e.g., ¥ + % = #) may not be due so much to a separation of concepts and
procedures as to an erroneous and incomplete conceptual base. Many visual
diagrams and other conceptual models unwittingly contribute to a conceptual
structure that reinforces (rather than discourages) this error. Hicbert and Wearne
(this volume) suggest that a critical relationship in decimal fractions is the equiv-
alence relation between a decimal fraction and its associated common fraction.
For many students, such relationships are impossible to establish because the
students enter instruction on decimals with deficient knowledge of common
fractions. A final example, from a slightly different perspective, comes from
Carpenter (this volume). Carpenter points out that children’s increasing profi-
ciency in solving simple addition and subtraction problems can be traced to
increases in conceptual knowledge. Furthermore, meaning for procedures cannot
be developed unless a rich conceptual knowledge base is in place.

All three examples suggest that a sound knowledge base is necessary for
useful relationships to be established. Deficiencies in concepts or procedures,
although sometimes hidden, can be the source of weak or missing connections.

Difficuities of Encoding Relationships. A second factor that inhibits the
construction of relationships is young children’s tendency to overlook or fail to
encode relationships that may be obvious to adults. Research on young children’s
encoding of information, specifically studies on elaboration in paired-associate
learning, suggests that sometimes children have trouble constructing rela-
tionships between items of information (Ackerman, 1985; Pressley, 1982; Roh-
wer, 1973). Even when conceptual relationships between items are obvious to
adults, children do not readily encode them. It may be that the failure to encode
and construct relationships between units of information is not limited to these

]
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rather special paired-associate tasks but extends to more complex school learning
tasks as well. Relationships between units of mathematical wwoﬁmamo, although
taught by adults using seemingly appropriate methods, may not be picked up and
internalized by children.

Tendency ro Compartmentalize Knowledge, A third mosﬁ& factor Smﬁ
seems to impede the construction of relationships between units of wmoigma 18
that knowledge just acquired often is context bound sz.Enr 1673; Tulving,
1983). Things learned in a particular context are initially tied 6 .w:anmoo charac-
teristics of that context. This prevents one from noticing similarities moﬂsa@m the
newly acquired knowledge and previously acquired wnoéoamo. held in memory.
Context-bound knowledge is not looking for relationships outside the _.Bﬁ..:o&mﬂo
context. The phenomenon is illustrated well by Lawler’s Smmt momomwmwu of a
young child learning to compute in several different contexts : ) Dﬁ,ﬂdﬁ meth-
ods were learned in each context, and the methods remained faithful to E@
context in which they were acquired. Money methods were :mma only with
money, LOGO methods with LOGO, paper and pencil methods with paper and
pencil. For some time the methods remained encapsulated by the context. hmﬁ.mﬁ
similarities between the methods were recognized, but then only by awaoﬂ:m
regularities in the outcome of the different methods rather than by detecting
similarities. in the methods themselves. -

The experience of acquiring, information as isolated, context-specific bits of
knowledge is known to both older and younger leamners and ﬁm.?maam N.E oosﬁom.:
domains. In whole numbers (Carpenter, this volume), fractions (Silver, this
volume), decimals (Hiebert & Wearne, this volume), algebra Awnmv.cr 1982), and
geomelry (Schoenfeld, this volume), students acquire knowledge in one context
and hold it separate from knowledge acquired in other contexts. W:osm.oamo
compartments can remain isolated even when they are well developed indi-
vidually. Furthermore, the content of these knowledge moBmmnH:oEm can be
mutually incompatible, a condition that does not necessarily mzm.aa the learner.
Evidence for the isolated nature of students’ knowledge often is collected by
observing students solve the same problem in two different oonﬁoﬁmw @aon_.:on
conflicting solutions, and not reconcile the differences. Faowau most investiga-
tors report that many students do not recognize that the differences must be
reconciled. .

A further explanation for students’ tendency to compartmentalize knowledge
is offered by Posner, Strike, Hewson, & Gertzog (1982). They suggest that
because learners often resist conceptual change, the new knowledge is ooBmmH.?
mentalized so that it does not interfere with existing concepts. This is mm@mn_&@
true when new knowledge is perceived to be unrefated to or conflicts with
existing knowledge. Specific compartments are monommna. only .@&g. mﬁs.qmno
characteristics of the problem context are recognized as similar to those in which
the knowledge was acquired. :
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The effects on mathematics leaming of acquiring units of knowledge but not
establishing relationshps between them are serious. Important insights into the
acquisition and application of mathematical competencies can be gained by
examining the nature of these breakdowns and the points at which they occur, On
the basis of recent work in this area, it now is possible to trace the changing
nature of the relationships between conceptual and procedural knowledge as
children proceed through the preschool and school years. What follows is a
simplified sketch. The remaining chapters in this volume describe in more detail

the nature of the relationships at succeeding points in a person’s mathematical
career.

Ontogeny of Relationships
During the Mathematical Learning Years

Preschool Years. During the earliest years, conceptual knowledge and pro-
cedural knowledge are closely related. In fact, Sinclair and Sinclair (this volume)
suggest that at this point concepts and procedures are so closely related that they
become nearly indissociable. Before children enter school, their mathematical
knowledge is limited mostly to knowledge about counting (Ginsburg, 1977).
How conceptual and procedural knowledge interact as children learn to count is a
matter of current debate. Some investigators believe that the development of
concepts or principles of counting precedes the acquisition of skills needed to
count accurately (Gelman, 1982: Gelman & Gallistel, 1978; Gelman & Meck,
1983, this volume). Children know more conceptually than they are able to
demonstrate procedurally. Other researchers believe that some counting skills are
acquired initially as rote procedures and later become informed by conceptual
knowledge (Baroody, 1984; Baroody & Ginsburg, this volume; Fuson & Hall,
1983; Fuson, Richards, & Briars, 1982). Either way, concepts and procedures
are closely intertwined as children learn to count.

During the preschool years, children also are learning about numerical print
(Sinclair & Sinclair, 1984, this volume). They acquire meanings for numerical
symbols from environmental print and gradually refine and enrich their meanings
to correspond to adult conventions. The important point is that the process seems
to involve concepts and procedures that are closely connected.

The connections between conceptual and procedural knowledge still are in
place as children enter school. By this time children have learned to use their
counting abilities to solve simple addition and subtraction problems, if they are
presented in words rather than symbols. The kinds of strategies they use to solve
the problems is the clue to the link between their procedures and their concep-
tualization of the problem (Carpenter, this volume; Carpenter, Hiebert, &
Moser, 1981; Carpenter & Moser, 1984; De Corte & Verschaffel, 1984). For
example, if concrete counters are available, almost all beginning school children
will solve a missing-addend story by adding on, and a take-away story @« taking
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away. That is, the child’s counting strategy matches the semantic structure of the
story. It is as if the child’s conceptual knowledge of the situation guides the
selection of a solution procedure.

Additional weight for the argument that conceptual and procedural knowledge
are closely related at this point is provided by two models proposed to account
for children’s performance on addition and subtraction word problems (Briars &
Larkin, 1984; Riley, Greeno, & Heller, 1983). Although there are some impor-
tant differences between them, both models assume that increases in procedural
skill are tied to advances in conceptual knowledge. Improvements in perfor-
mance are related to improvements in understanding, not merely to increases in
memorized procedures. Students have not yet learned algorithms that take them
beyond their level of conceptual knowledge. At this point in their mathematical
careers, students do not get right answers for problems they do not understand,

School Years. Classroom instruction in arithmetic introduces students to the
formal symbolic language of mathematics. If students connéct the symbols with
conceptually based referents, the symbols acquire meaning and become powerful
tools for recording and communicating mathematical events. Unfortunately,
many students seem to learn symbols as meaningless marks on paper (Hiebert,
19844). The symbols are separated from the conceptual knowledge they are
supposed to represent. For instance, after instruction on writing number sen-
tences {equations), many first graders still do not see the connection between the
story problems and the number sentences that represent them (Carpenter, Hiebert
& Moser, 1983; Lindvall & Ibarra, 1980; Matthews, 1983). They view the
process of solving a story problem and solving the related number sentence as
two separate, independent events. Their conceptual knowledge of addition and
subtraction accessed through story problems is not connected with the symbolism
of arithmetic.

For many children, the effect of initial instruction on arithmetic symbols is to
pry apart conceptual and procedural knowledge and send them in different direc-
tions. Up to this point both types of knowledge seem to develop in close syn-
chrony, continually informing each other. But with the introduction of written
symbols whose meanings are not well estabiished, the dynamic interaction is
broken. Probably due to the emphases of conventional instruction (see chapters
in this volume by Baroody and Ginsburg, by Carpenter, by VanLehn, and by
Schoenfeld), the focus of attention shifts to the procedural level, New symbols
are introduced, and rules for manipulating the symbols are heavily emphasized.
Students learn to execute the rules and algorithms according to syntactic con-
straints, and the rules produce current answers if they are fed the problems in
familiar form. But the rules are tied only to the symbols, not to the conceptual
knowledge that provides their rationale.

By the time students are in third and fourth grade, they rm<m acquired a large
array of symbol manipulation rules. In general, the rules are more sensitive to
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syntactic constraints than to conceptual underpinnings. Even if conceptual under-
standings exist, they have little effect on the selection or execution of procedural
skills (Davis & McKnight, 1980; Resnick, 1982). The nearly exclusive reliance
on procedural knowledge is evidenced in two ways, First, most of students’
behavior on arithmetic computation tagks can be described in purely syntactic
terms (Brown & VanLehn, 1982; Vanlehn, 1983, this volume). Second, stu-
dents’ computation errors reflect attempts to repair broken procedures according
to syntactic constraints rather than semantic or conceptual considerations (Van-
Lehn, this volume).

As students move through elementary and junior high school, conceptual
knowledge and procedural knowledge continue to develop along separate tracks.
The focus of instruction remains on procedural knowledge, and students acquire
new rules for new symbol systems such as common and decimal fractions
{Hiebert & Wearne, this volume)}. As with whole numbers, there are few connec-
tions apparent between procedures and concepts. For example, students’ behay-
tor on decimal computation problems can be modeled well by appealing only to
procedural, symbol manipulation rules (Hiebert & Wearne, 1985). Also, the
errors students make often are produced by rules that mildly distort the syntactic
guidelines but greatly violate the relevant concepts. As an illustration, an earlier
National Assessment of Educational Progress confirms that many students add
common fractions by adding numerators and adding denominators (Post, 1981).
From a procedural point of view, it is easy to explain why students do this, but
conceptually it makes no sense.

Reliance on syntactic symbol manipulation rules continues into high school.
Students’ behavior on algebra tasks can be characterized by identifving a list of
syntactic rules together with distortions of the rules triggered by surface features
of the tasks (Matz, 1980). Notably absent from the use of algebraic symbols is a
link with conceptual content (Kaput, 1982; Rosnick & Clement, 1980). In geom-
etry, the separation between types of knowledge can be characterized somewhat
differently (Schoenfeld, this volume), but the theme remains the same. Students
leam rules for solving specific kinds of problems, and the rules remain isolated
from students conceptual knowledge of the subject.

In spite of the fact that students’ procedural rules often become flawed, the -
rules can take them well beyond their level of conceptual understanding. Stu-
dents are able to get correct answers for many problems they do not understand.
Studies have shown that students from elementary school through college can
perform successfully on routine paper and pencil problems but lack essential,
underlying conceptual knowledge. This happens in mathematics (e.g., Erl-
wanger, 1975; Rosnick & Clement, 1980), in science (see Gentner & Stevens,
1983), and undoubtedly in other disciplines as well.

The problem with learning procedures without concepts is that the procedures
become likely victims of all the matadies identified earlier. Procedures that lack
connections with conceptual knowledge may deteriorate quickly and are not

§
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reconstructable; they may be only partially remembered and combined with other
subprocedures in inappropriate ways; they often are bound to the specific context
in which they were leamed and do not transfer easily to new situations; and they
can be applied inappropriately without the benefit of a validating critic to check
the reasonableness of the outcome. Hence, although routinized procedural skills
are essential for efficient problem solving, related conceptual knowledge is
needed to give procedures stability and effectiveness. ‘‘Without these meanings
to held skills and ideas together in an intelligible, unified systemn, pupils in cur
schools for too Iong a time have ‘mastered’ skills which they do not understand,
which they can use only in situations closely paralleling those of learning, and
which they must soon forget”” (Browneil, 1947, p. 260}.

Formal mathematics instruction seems to do a better job of teaching pro-

cedures than concepts or relationships between them. There are undoubtedly -

many reasons for this. Chapters in this velume by Baroody and Ginsburg, by
Carpenter, by Schoenfeld, and by Vanlehn discuss some of these, and the
literature on classroom processes and teacher decision making identifies o.ﬁ:wﬂm
(Brophy. 1982; Doyle, 1983; Good, 1984). An examination of instructional
processes kies beyond the scope of this chapter. Nevertheless, it should be recog-
nized that the preeminence of procedures over concepts and the lack of rela-
tionships between the two ¢an be explained in part by the nature of formal school
instruction.

THE MISSKON OF THE BOOK

*“The relationship between computational skill and mathematical understanding
is one of the oldest concerns in the psychology of mathematics™ (Resnick &
Ford, 1981, p. 246). Relationships between procedural and conceptual WE.EL-
edge have had a long history for two reasons, First, the issue has been EoomENa.a
as an important one by many psychologists and educators through the years. It is
important because it seems to hold the key to many learning processes and
problems. If we understood more about the acquisition of these kinds of knowl-
edge and the interplay between them in mathematical performance, we surely
could unlock some doors that have until now hidden significant learning prob-
lems in mathematics. Second, the issne has been extremely difficult to resolve.
Relationships between conceptual and procedural knowledge change over time
and are influenced by many forces, both internal and external to the leamer.
Describing such complex relationships is a monumental task.

Why should we think that this book will succeed in ammnagnm. Eo. rela-
tionships between conceptual and procedural knowledge? Certainly, it will not
succeed in explicating all of the issues surrounding the conceptual and waoﬂomcﬂmﬂ
knowledge debate. We simply don’t know everything needed to finish the dis-
cussion. But we do believe that the remaining chapters take uws significantly
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further in our understanding of conceptual and procedural knowledge than we
have come so far,

We are optimistic for two reasons. One is that there is a clearer understanding
of the questions that need to be asked, a clearer focus on the issues that will yield
useful insights. Building on past work, it now is evident that it is the relg-
tionships between conceptual and procedural knowledge that hold the key. The
skills and understanding issue is important, to be sure, but not because instruc-
tion should choose between them. Rather, skills and understandings are impor-
tant because they signal two kinds of knowledge that play crucial, interactive
roles in the development of mathematical competence. It is understanding the
relationships between these two forms of knowledge that will provide the real
payoff (Glaser, 1979).

Our second reason for optimism is the convergence in focus of several lines of
research. Two dimensions of this joining of forces are especially significant. One
Is the coming together of two previously separate paradigms of psychology
research: Gestalt psychology, with an emphasis on concept learning and develop-
ment; and behavioral psychology, with its emphasis on skilled performance.
Studying the relationship between concepts and procedures focuses these two
perspectives on the same issues, A second form of convergence is that of two
disciplines: mathematics education and cognitive psychology, The nature of the
relationships between conceptual and procedural knowledge is receiving concen-
trated attention by researchers from both fields, using a neatly common lan-
guage. The broad field of cognitive science provides much common ground that
facilitates and encourages serious communication and collaborative efforts
among those from various research traditions. Past experience suggests that joint
efforts by mathematics educators and psychologists are especially productive in
providing insights in children’s leamning of mathematics (Hiebert, 1984b). This
book represents such an effort.
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